forked from efficient/cicada-exp-sigmod2017-silo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
allocator.cc
376 lines (336 loc) · 11 KB
/
allocator.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#include <sys/mman.h>
#include <unistd.h>
#include <map>
#include <iostream>
#include <cstring>
#include <numa.h>
#include "allocator.h"
#include "spinlock.h"
#include "lockguard.h"
#include "static_vector.h"
#include "counter.h"
using namespace util;
static event_counter evt_allocator_total_region_usage(
"allocator_total_region_usage_bytes");
// page+alloc routines taken from masstree
#ifdef MEMCHECK_MAGIC
const allocator::pgmetadata *
allocator::PointerToPgMetadata(const void *p)
{
static const size_t hugepgsize = GetHugepageSize();
if (unlikely(!ManagesPointer(p)))
return nullptr;
const size_t cpu = PointerToCpu(p);
const regionctx &pc = g_regions[cpu];
if (p >= pc.region_begin)
return nullptr;
// round pg down to page
p = (const void *) ((uintptr_t)p & ~(hugepgsize-1));
const pgmetadata *pmd = (const pgmetadata *) p;
ALWAYS_ASSERT((pmd->unit_ % AllocAlignment) == 0);
ALWAYS_ASSERT((MAX_ARENAS * AllocAlignment) >= pmd->unit_);
return pmd;
}
#endif
size_t
allocator::GetHugepageSizeImpl()
{
FILE *f = fopen("/proc/meminfo", "r");
assert(f);
char *linep = NULL;
size_t n = 0;
static const char *key = "Hugepagesize:";
static const int keylen = strlen(key);
size_t size = 0;
while (getline(&linep, &n, f) > 0) {
if (strstr(linep, key) != linep)
continue;
size = atol(linep + keylen) * 1024;
break;
}
fclose(f);
assert(size);
return size;
}
size_t
allocator::GetPageSizeImpl()
{
return sysconf(_SC_PAGESIZE);
}
bool
allocator::UseMAdvWillNeed()
{
static const char *px = getenv("DISABLE_MADV_WILLNEED");
static const std::string s = px ? to_lower(px) : "";
static const bool use_madv = !(s == "1" || s == "true");
return use_madv;
}
void
allocator::Initialize(size_t ncpus, size_t maxpercore)
{
static spinlock s_lock;
static bool s_init = false;
if (likely(s_init))
return;
lock_guard<spinlock> l(s_lock);
if (s_init)
return;
ALWAYS_ASSERT(!g_memstart);
ALWAYS_ASSERT(!g_memend);
ALWAYS_ASSERT(!g_ncpus);
ALWAYS_ASSERT(!g_maxpercore);
static const size_t hugepgsize = GetHugepageSize();
// round maxpercore to the nearest hugepagesize
maxpercore = slow_round_up(maxpercore, hugepgsize);
g_ncpus = ncpus;
g_maxpercore = maxpercore;
// mmap() the entire region for now, but just as a marker
// (this does not actually cause physical pages to be allocated)
// note: we allocate an extra hugepgsize so we can guarantee alignment
// of g_memstart to a huge page boundary
void * const x = mmap(nullptr, g_ncpus * g_maxpercore + hugepgsize,
PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
if (x == MAP_FAILED) {
perror("mmap");
ALWAYS_ASSERT(false);
}
void * const endpx = (void *) ((uintptr_t)x + g_ncpus * g_maxpercore + hugepgsize);
std::cerr << "allocator::Initialize()" << std::endl
<< " hugepgsize: " << hugepgsize << std::endl
<< " use MADV_WILLNEED: " << UseMAdvWillNeed() << std::endl
<< " mmap() region [" << x << ", " << endpx << ")" << std::endl;
g_memstart = reinterpret_cast<void *>(util::iceil(uintptr_t(x), hugepgsize));
g_memend = reinterpret_cast<char *>(g_memstart) + (g_ncpus * g_maxpercore);
ALWAYS_ASSERT(!(reinterpret_cast<uintptr_t>(g_memstart) % hugepgsize));
ALWAYS_ASSERT(reinterpret_cast<uintptr_t>(g_memend) <=
(reinterpret_cast<uintptr_t>(x) + (g_ncpus * g_maxpercore + hugepgsize)));
for (size_t i = 0; i < g_ncpus; i++) {
g_regions[i].region_begin =
reinterpret_cast<char *>(g_memstart) + (i * g_maxpercore);
g_regions[i].region_end =
reinterpret_cast<char *>(g_memstart) + ((i + 1) * g_maxpercore);
std::cerr << "cpu" << i << " owns [" << g_regions[i].region_begin
<< ", " << g_regions[i].region_end << ")" << std::endl;
ALWAYS_ASSERT(g_regions[i].region_begin < g_regions[i].region_end);
ALWAYS_ASSERT(g_regions[i].region_begin >= x);
ALWAYS_ASSERT(g_regions[i].region_end <= endpx);
}
s_init = true;
}
void
allocator::DumpStats()
{
std::cerr << "[allocator] ncpus=" << g_ncpus << std::endl;
for (size_t i = 0; i < g_ncpus; i++) {
const bool f = g_regions[i].region_faulted;
const size_t remaining =
intptr_t(g_regions[i].region_end) -
intptr_t(g_regions[i].region_begin);
std::cerr << "[allocator] cpu=" << i << " fully_faulted?=" << f
<< " remaining=" << remaining << " bytes" << std::endl;
}
}
static void *
initialize_page(void *page, const size_t pagesize, const size_t unit)
{
INVARIANT(((uintptr_t)page % pagesize) == 0);
#ifdef MEMCHECK_MAGIC
::allocator::pgmetadata *pmd = (::allocator::pgmetadata *) page;
pmd->unit_ = unit;
page = (void *) ((uintptr_t)page + sizeof(*pmd));
#endif
void *first = (void *)util::iceil((uintptr_t)page, (uintptr_t)unit);
INVARIANT((uintptr_t)first + unit <= (uintptr_t)page + pagesize);
void **p = (void **)first;
void *next = (void *)((uintptr_t)p + unit);
while ((uintptr_t)next + unit <= (uintptr_t)page + pagesize) {
INVARIANT(((uintptr_t)p % unit) == 0);
*p = next;
#ifdef MEMCHECK_MAGIC
NDB_MEMSET(
(char *) p + sizeof(void **),
MEMCHECK_MAGIC, unit - sizeof(void **));
#endif
p = (void **)next;
next = (void *)((uintptr_t)next + unit);
}
INVARIANT(((uintptr_t)p % unit) == 0);
*p = NULL;
#ifdef MEMCHECK_MAGIC
NDB_MEMSET(
(char *) p + sizeof(void **),
MEMCHECK_MAGIC, unit - sizeof(void **));
#endif
return first;
}
void *
allocator::AllocateArenas(size_t cpu, size_t arena)
{
INVARIANT(cpu < g_ncpus);
INVARIANT(arena < MAX_ARENAS);
INVARIANT(g_memstart);
INVARIANT(g_maxpercore);
static const size_t hugepgsize = GetHugepageSize();
regionctx &pc = g_regions[cpu];
pc.lock.lock();
if (likely(pc.arenas[arena])) {
// claim
void *ret = pc.arenas[arena];
pc.arenas[arena] = nullptr;
pc.lock.unlock();
return ret;
}
void * const mypx = AllocateUnmanagedWithLock(pc, 1); // releases lock
return initialize_page(mypx, hugepgsize, (arena + 1) * AllocAlignment);
}
void *
allocator::AllocateUnmanaged(size_t cpu, size_t nhugepgs)
{
regionctx &pc = g_regions[cpu];
pc.lock.lock();
return AllocateUnmanagedWithLock(pc, nhugepgs); // releases lock
}
void *
allocator::AllocateUnmanagedWithLock(regionctx &pc, size_t nhugepgs)
{
static const size_t hugepgsize = GetHugepageSize();
void * const mypx = pc.region_begin;
// check alignment
if (reinterpret_cast<uintptr_t>(mypx) % hugepgsize)
ALWAYS_ASSERT(false);
void * const mynewpx =
reinterpret_cast<char *>(mypx) + nhugepgs * hugepgsize;
if (unlikely(mynewpx > pc.region_end)) {
std::cerr << "allocator::AllocateUnmanagedWithLock():" << std::endl
<< " region ending at " << pc.region_end << " OOM" << std::endl;
ALWAYS_ASSERT(false); // out of memory otherwise
}
const bool needs_mmap = !pc.region_faulted;
pc.region_begin = mynewpx;
pc.lock.unlock();
evt_allocator_total_region_usage.inc(nhugepgs * hugepgsize);
if (needs_mmap) {
void * const x = mmap(mypx, hugepgsize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED | MAP_HUGETLB, -1, 0);
if (unlikely(x == MAP_FAILED)) {
perror("mmap");
ALWAYS_ASSERT(false);
}
INVARIANT(x == mypx);
//const int advice =
// UseMAdvWillNeed() ? MADV_HUGEPAGE | MADV_WILLNEED : MADV_HUGEPAGE;
//if (madvise(x, hugepgsize, advice)) {
// perror("madvise");
// ALWAYS_ASSERT(false);
//}
}
return mypx;
}
void
allocator::ReleaseArenas(void **arenas)
{
// cpu -> [(head, tail)]
// XXX: use a small_map here?
std::map<size_t, static_vector<std::pair<void *, void *>, MAX_ARENAS>> m;
for (size_t arena = 0; arena < MAX_ARENAS; arena++) {
void *p = arenas[arena];
while (p) {
void * const pnext = *reinterpret_cast<void **>(p);
const size_t cpu = PointerToCpu(p);
auto it = m.find(cpu);
if (it == m.end()) {
auto &v = m[cpu];
v.resize(MAX_ARENAS);
*reinterpret_cast<void **>(p) = nullptr;
v[arena].first = v[arena].second = p;
} else {
auto &v = it->second;
if (!v[arena].second) {
*reinterpret_cast<void **>(p) = nullptr;
v[arena].first = v[arena].second = p;
} else {
*reinterpret_cast<void **>(p) = v[arena].first;
v[arena].first = p;
}
}
p = pnext;
}
}
for (auto &p : m) {
INVARIANT(!p.second.empty());
regionctx &pc = g_regions[p.first];
lock_guard<spinlock> l(pc.lock);
for (size_t arena = 0; arena < MAX_ARENAS; arena++) {
INVARIANT(bool(p.second[arena].first) == bool(p.second[arena].second));
if (!p.second[arena].first)
continue;
*reinterpret_cast<void **>(p.second[arena].second) = pc.arenas[arena];
pc.arenas[arena] = p.second[arena].first;
}
}
}
static void
numa_hint_memory_placement(void *px, size_t sz, unsigned node)
{
struct bitmask *bm = numa_allocate_nodemask();
numa_bitmask_setbit(bm, node);
numa_interleave_memory(px, sz, bm);
numa_free_nodemask(bm);
}
void
allocator::FaultRegion(size_t cpu)
{
static const size_t hugepgsize = GetHugepageSize();
ALWAYS_ASSERT(cpu < g_ncpus);
regionctx &pc = g_regions[cpu];
if (pc.region_faulted)
return;
lock_guard<std::mutex> l1(pc.fault_lock);
lock_guard<spinlock> l(pc.lock); // exclude other users of the allocator
if (pc.region_faulted)
return;
// mmap the entire region + memset it for faulting
if (reinterpret_cast<uintptr_t>(pc.region_begin) % hugepgsize)
ALWAYS_ASSERT(false);
const size_t sz =
reinterpret_cast<uintptr_t>(pc.region_end) -
reinterpret_cast<uintptr_t>(pc.region_begin);
void * const x = mmap(pc.region_begin, sz, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED | MAP_HUGETLB, -1, 0);
if (unlikely(x == MAP_FAILED)) {
perror("mmap");
std::cerr << " cpu" << cpu
<< " [" << pc.region_begin << ", " << pc.region_end << ")"
<< std::endl;
ALWAYS_ASSERT(false);
}
ALWAYS_ASSERT(x == pc.region_begin);
//const int advice =
// UseMAdvWillNeed() ? MADV_HUGEPAGE | MADV_WILLNEED : MADV_HUGEPAGE;
//if (madvise(x, sz, advice)) {
// perror("madvise");
// ALWAYS_ASSERT(false);
//}
numa_hint_memory_placement(
pc.region_begin,
(uintptr_t)pc.region_end - (uintptr_t)pc.region_begin,
numa_node_of_cpu(cpu));
const size_t nfaults =
((uintptr_t)pc.region_end - (uintptr_t)pc.region_begin) / hugepgsize;
std::cerr << "cpu" << cpu << " starting faulting region ("
<< intptr_t(pc.region_end) - intptr_t(pc.region_begin)
<< " bytes / " << nfaults << " hugepgs)" << std::endl;
timer t;
for (char *px = (char *) pc.region_begin;
px < (char *) pc.region_end;
px += CACHELINE_SIZE)
*px = 0xDE;
std::cerr << "cpu" << cpu << " finished faulting region in "
<< t.lap_ms() << " ms" << std::endl;
pc.region_faulted = true;
}
void *allocator::g_memstart = nullptr;
void *allocator::g_memend = nullptr;
size_t allocator::g_ncpus = 0;
size_t allocator::g_maxpercore = 0;
percore<allocator::regionctx> allocator::g_regions;