Skip to content

Latest commit

 

History

History
51 lines (47 loc) · 6.63 KB

README.md

File metadata and controls

51 lines (47 loc) · 6.63 KB

Deep learning for NextGen

This is a landing page for the CIROH project to integrate and test deep learning (DL) and physics-informed deep learning (PIML) streamflow models and data assimilation into NOAA’s Next Generation Water Modeling Engine and Framework Prototype.

Links

Below are some usefull links that will be heavily used in the project.

Project management

This board includes tasks to do, in progress and completed for the project: https://github.com/users/jmframe/projects/1

References - NeuralHydrology development and experiments

  • Araki, R., Bindas, T., Bhuiyan, S. A., Rapp, J., McMillan, H. K., Ogden, F. L., & Frame, J. M. (2023). Enhancing the Conceptual Functional Equivalent (CFE) rainfall-runoff model via a differentiable modeling approach. Poster session presented at the AGU Fall Meeting 2023. Retrieved from https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1275704
  • Abramowitz et al., 2023, On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results. In review for Biogeosciences. https://egusphere.copernicus.org/preprints/2024/egusphere-2023-3084/egusphere-2023-3084.pdf
  • Bhuiya et al. 2023. “Representing soil physical processes in Conceptual Framework Equivalent (CFE) through the implementation of Ordinary Differential Equation (ODE)”. AGU Fall Meeting
  • Brenner et al., 2021, “Predicting evapotranspiration using machine and deep learning methods”. Österreichische Wasser- und Abfallwirtschaft volume 73, pages 295–307 (2021). https://link.springer.com/article/10.1007/s00506-021-00768-y
  • Feng, D., Liu, J., Lawson, K., & Shen, C. (2022). Differentiable, learnable, regionalized process-based models with physical outputs can approach state-of-the-art hydrologic prediction accuracy. Water Resources Research.
  • Foroumandi et al., 2023. “Development of an Ensemble Hydrologic Data Assimilation within NextGen Framework”. AGU Fall Meeting
  • Frame J.M., Deep Learning for Operational Streamflow Forecasts: A Long Short-Term Memory Network Rainfall-Runoff Module for The National Water Model. The University of Alabama. https://ir.ua.edu/bitstream/handle/123456789/9436/u0015_0000001_0004409.pdf?sequence=1&isAllowed=y
  • Frame et al., 2023, “On strictly enforced mass conservation constraints for modeling the rainfall runoff process”. Hydrological Processes. https://onlinelibrary.wiley.com/doi/10.1002/hyp.14847
  • Frame et al., 2022, “Deep learning rainfall-runoff predictions of extreme events”. Hydrology and Earth System Sciences. https://hess.copernicus.org/articles/26/3377/2022/hess-26-3377-2022.pdf
  • Frame et al., 2021, “Post-processing the National Water Model with Long Short-Term Memory Networks for Streamflow Predictions and Model Diagnostics”. Journal of American Water Resources Association. https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.12964?af=R
  • Gauch, M., Kratzert, F., Klotz, D., Nearing, G., Lin, J, Hochreiter, S.; Rainfall–Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network (2021): Hydrology and Earth System Sciences.
  • Gholizadeh et al., 2023, “Long short-term memory models to quantify long-term evolution of streamflow discharge and groundwater depth in Alabama”. Science of the Total Environment.
  • Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G. (2019a): Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrology and Earth System Sciences.
  • Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., and Nearing, G. S. (2019b): Towards Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning. Water Resources Research.
  • Kratzert, F., Gauch, M., Nearing, G., and Klotz, D. (2022). NeuralHydrology — A Python library for Deep Learning research in hydrology. Journal of Open Source Software.
  • Liu, Q., Bolotin, L., Haces-Garcia, F., Liao, M., Ogden, F. L., & Frame, J. M. (2022). Automated Decision Support for Model Selection in the NextGen National Water Model. Poster session presented at the AGU Fall Meeting 2022, December 15, McCormick Place, Chicago, IL. Retrieved from https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1189555
  • Nearing et al., 2020, “What Role Does Hydrological Science Play in the Age of Machine Learning?”. Water Resources Research. doi.org/10.1029/2020WR028091
  • Nearing et al., 2022, “Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks''. Hydrology and Earth System Sciences.
  • Nearing, G., Cohen, D., Dube, V., Gauch, M., Gilon, O., Harrigan, S., . . . Matias, Y. (2024, 3). Global prediction of extreme floods in ungauged watersheds. Nature, 627 , 559-563. Retrieved from https://www.nature.com/articles/s41586-024-07145-1 doi: 10.1038/s41586-024-07145-1
  • Ogden, F. L., Avant, B., Blodgett, D., Clark, E., Coon, E., Cosgrove, B., Cui, S., Kindl da Cunha, L., Farthing, M., Flowers, T., Frame, J. M., Frazier, N. J., Graziano, T., Guten- son, J., Johnson, D. W., Loney, D., Mattern, D., McDaniel, R., Moulton, J., Peckham, S. D., Jennings, K., Savant, G., Tubbs, C., Williamson, M., Garrett, J., Wood, A., and Johnson, J. M. (2021): The next generation water resources modeling framework: Open source, standards based, community accessible, model interoperability for large scale water prediction. American Geophysical Union Fall Meeting 2021.
  • Peckham, S. D., Hutton, E. W., and Norris, B. (2013): A component-based approach to integrated modeling in the geosciences: The design of CSDMS. Computers and Geosciences.
  • Rapp et al. 2023. “Value of Hydrofabric Artifact Static Parameters for Deep Learning Next Generation National Water Model (NextGen) Development”. AGU Fall Meeting
  • Timilsina et al. 2023. “Data Assimilation in the NextGen Framework for Improved Streamflow Predictions”. AGU Fall Meeting.