From 0df1c787d59022393198663d923022224dbba942 Mon Sep 17 00:00:00 2001 From: Javier Duarte Date: Sat, 15 Aug 2020 22:35:32 -0700 Subject: [PATCH] Update README.md --- README.md | 55 ++++++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 54 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 2c42955..fcc80c9 100644 --- a/README.md +++ b/README.md @@ -1,3 +1,56 @@ # JEDInet-code -Code for Moreno, E. et al., JEDI-net: a jet identification algorithm based on interaction networks, [arXiv:1908.05318](https://arxiv.org/abs/1908.05318) [hep-ex] +Code for E. Moreno et al., JEDI-net: A jet identification algorithm based on interaction networks, Eur. Phys. J. C 80, 58 (2020), [doi:10.1140/epjc/s10052-020-7608-4](https//doi.org/10.1140/epjc/s10052-020-7608-4), [arXiv:1908.05318](https://arxiv.org/abs/1908.05318). +To cite, use: +``` +@article{Moreno:2019bmu, + author = "Moreno, Eric A. and Cerri, Olmo and Duarte, Javier M. and Newman, Harvey B. and Nguyen, Thong Q. and Periwal, Avikar and Pierini, Maurizio and Serikova, Aidana and Spiropulu, Maria and Vlimant, Jean-Roch", + title = "{JEDI-net: a jet identification algorithm based on interaction networks}", + eprint = "1908.05318", + archivePrefix = "arXiv", + primaryClass = "hep-ex", + reportNumber = "FERMILAB-PUB-19-360-PPD", + doi = "10.1140/epjc/s10052-020-7608-4", + journal = "Eur. Phys. J. C", + volume = "80", + pages = "58", + year = "2020" +} +``` + +To test the IN architecture on the [public top tagging dataset](https://zenodo.org/record/2603256), follow these steps. + +## Download data +Download the preprocessed files from CERNBox: +https://cernbox.cern.ch/index.php/s/I2AVonDyOdgr1bj + +(Warning: 14 GB zipped tar ball) + +There are 122 training files, 41 validation files, and 41 testing files. Each file has ~10k jets. The files contain the 224x224 jet images (img_pt) and up to 100 particle constituents with various properties (see below), and labels (first index is top, second index is QCD). Note the top vs QCD jets come in chunks so some shuffling is good. + +## Setup libraries +Setup necessary libraries like PyTorch. One option is to use a singularity image generated from this: https://github.com/cmscaltech/gpuservers/blob/master/singularity/cutting_edge.singularity + +## Training + Example commands for training + ``` +SINGULARITY_IMAGE=/storage/group/gpu/software/singularity/ibanks/edge.simg +# train without sumO +singularity exec --nv -B /storage -B /bigdata $SINGULARITY_IMAGE python3 JetImageClassifier_INTop_FinalTraining.py 150 1 0 +# train with sumO +singularity exec --nv -B /storage -B /bigdata $SINGULARITY_IMAGE python3 JetImageClassifier_INTop_FinalTraining.py 150 1 1 +``` + +## Testing +Example commmands for testing +``` +# test without sumO +singularity exec --nv -B /storage -B /bigdata $SINGULARITY_IMAGE python3 JetImageClassifier_INTop_Test.py 150 1 0 +# test with sumO +singularity exec --nv -B /storage -B /bigdata $SINGULARITY_IMAGE python3 JetImageClassifier_INTop_Test.py 150 1 1 +``` +## Results + +Results should be similar to Table 7 in the paper: + +Table 7