From ca5e4e1d9a81463cba6f109af5cd8dda8317f53b Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Wed, 1 Nov 2023 14:15:57 +0000 Subject: [PATCH] build based on f2db713 --- dev/authors/index.html | 2 +- dev/function_index/index.html | 2 +- dev/index.html | 2 +- dev/search/index.html | 2 +- 4 files changed, 4 insertions(+), 4 deletions(-) diff --git a/dev/authors/index.html b/dev/authors/index.html index 84f35c0..338de6a 100644 --- a/dev/authors/index.html +++ b/dev/authors/index.html @@ -1,2 +1,2 @@ -Authors · NodesAndModes.jl
+Authors · NodesAndModes.jl
diff --git a/dev/function_index/index.html b/dev/function_index/index.html index 93798fa..961f667 100644 --- a/dev/function_index/index.html +++ b/dev/function_index/index.html @@ -1,3 +1,3 @@ Index · NodesAndModes.jl

NodesAndModes

NodesAndModes.abctorstMethod
abctorst(elem::Pyr,a,b,c)

Converts from Stroud coordinates (a,b,c) on [-1,1]^3 to reference element coordinates (r,s,t).

source
NodesAndModes.basisFunction
basis(elem::Pyr,N,r,s,t,tol=1e-12)

Computes orthonormal semi-nodal basis on the biunit pyramid element.

Warning: nodal derivative matrices may contain errors for nodes at t = 1. A way to avoid this is to use weak differentiation matrices computed using quadrature rules with only interior nodes.

source
NodesAndModes.basisMethod
basis(elem::AbstractElemShape, N, rst...)

Computes orthonormal basis of degree N at tuple of coordinate arrays (r,s,t).

source
NodesAndModes.basisMethod
basis(elem::Line,N,r)

Computes the generalized Vandermonde matrix V of degree N (along with the derivative matrix Vr) at points r.

source
NodesAndModes.build_warped_nodesMethod
build_warped_nodes(elem::AbstractElemShape, N, r1D)

Computes degree N warp-and-blend interpolation nodes for elem = Tri(), Pyr(), or Tet() based on the 1D node set "r1D". Returns a tuple "rst" containing arrays of interpolation points.

source
NodesAndModes.edge_basisMethod
edge_basis(elem::AbstractElemShape, N, rst...)

Returns the generalized Vandermonde matrix evaluated using an edge basis (e.g., degree N polynomials over an edge, but linearly blended into the interior). The dimension of the resulting space is simply the number of total nodes on edges of a degree N element.

source
NodesAndModes.edge_basisMethod
edge_basis(N, vertices, edges, basis, vertex_functions, rst...)

Computes edge basis given vertex functions and 1D basis.

source
NodesAndModes.find_face_nodesFunction
function find_face_nodes(elem, r, s, tol=50*eps())
-function find_face_nodes(elem, r, s, t, tol=50*eps())

Given volume nodes r, s, t, finds face nodes. Note that this function implicitly defines an ordering on the faces.

source
NodesAndModes.get_edge_listMethod
get_edge_list(elem::AbstractElemShape)

Returns list of edges for a specific element (elem = Tri(), Pyr(), Hex(), or Tet()).

source
NodesAndModes.grad_vandermondeMethod
grad_vandermonde(elem::AbstractElemShape, N, rst...)

Computes the generalized Vandermonde derivative matrix V of degree N at points (r,s,t).

source
NodesAndModes.jaskowiec_sukumar_quad_nodesMethod
jaskowiek_sukumar_quad_nodes(elem::Tet)

Symmetric quadrature rules on the tetrahedron of degree up to 20 from:

Jaśkowiec, J, Sukumar, N., "High-order symmetric cubature rules for tetrahedra and pyramids." Int J Numer Methods Eng. 122(1): 148-171, 2021.

source
NodesAndModes.meshgridMethod

meshgrid(vx) Computes an (x,y)-grid from the vectors (vx,vx). For more information, see the MATLAB documentation.

Copied and pasted directly from VectorizedRoutines.jl. Using VectorizedRoutines.jl directly causes Pkg versioning issues with SpecialFunctions.jl

source
NodesAndModes.meshgridMethod

meshgrid(vx,vy,vz) Computes an (x,y,z)-grid from the vectors (vx,vy,vz). For more information, see the MATLAB documentation.

Copied and pasted directly from VectorizedRoutines.jl. Using VectorizedRoutines.jl directly causes Pkg versioning issues with SpecialFunctions.jl

source
NodesAndModes.meshgridMethod

meshgrid(vx,vy) Computes an (x,y)-grid from the vectors (vx,vy). For more information, see the MATLAB documentation.

Copied and pasted directly from VectorizedRoutines.jl. Using VectorizedRoutines.jl directly causes Pkg versioning issues with SpecialFunctions.jl

source
NodesAndModes.nodesMethod
nodes(elem::AbstractElemShape,N)

Computes interpolation nodes of degree N. Edge nodes coincide with (N+1)-point Lobatto points. Default routine for elem = Tet(), Pyr(), Tri().

For Quad(), Hex(), Wedge() elements, nodes(...) returns interpolation points constructed using a tensor product of lower-dimensional nodes.

source
NodesAndModes.nodesMethod
nodes(elem::Pyr,N)

Computes interpolation nodes of degree N. Edge nodes coincide with (N+1)-point Lobatto points. Triangular face nodes coincide with Tri.nodes(N), quadrilateral face nodes coincide with tensor product (N+1)-point Lobatto points.

source
NodesAndModes.quad_nodesMethod
quad_nodes(elem::AbstractElemShape, N)

Compute quadrature nodes and weights exact for (at least) degree 2N polynomials.

source
NodesAndModes.rstoabFunction
rstoab(r, s, tol = 1e-12)

Converts from reference bi-unit right triangle coordinate (r,s) to polynomial basis evaluation coordinates (a,b) on the domain [-1,1]^2

source
NodesAndModes.stroud_quad_nodesMethod
stroud_quad_nodes(elem::AbstractElemShape,N)

Returns Stroud-type quadrature nodes and weights constructed from the tensor product of (N+1)-point Gauss-Jacobi rules. Exact for degree 2N polynomials

source
NodesAndModes.vandermondeMethod
vandermonde(elem::AbstractElemShape, N, rst...)

Computes the generalized Vandermonde matrix V of degree N at points (r,s,t).

source
+function find_face_nodes(elem, r, s, t, tol=50*eps())

Given volume nodes r, s, t, finds face nodes. Note that this function implicitly defines an ordering on the faces.

source
NodesAndModes.gauss_lobatto_quadMethod
gauss_lobatto_quad(α, β, N)

Computes Legendre-Gauss-Lobatto quadrature points and weights with Jacobi weights α,β.

source
NodesAndModes.gauss_quadMethod
gauss_quad(α, β, N)

Compute nodes and weights for Gaussian quadrature with Jacobi weights (α,β).

source
NodesAndModes.get_edge_listMethod
get_edge_list(elem::AbstractElemShape)

Returns list of edges for a specific element (elem = Tri(), Pyr(), Hex(), or Tet()).

source
NodesAndModes.grad_jacobiPMethod
grad_jacobiP(r, α, β, N, tmp_array=())

Evaluate derivative of Jacobi polynomial (α, β) of order N at points r.

source
NodesAndModes.grad_vandermondeMethod
grad_vandermonde(elem::AbstractElemShape, N, rst...)

Computes the generalized Vandermonde derivative matrix V of degree N at points (r,s,t).

source
NodesAndModes.interp_1D_to_edgesMethod
interp_1D_to_edges(elem::AbstractElemShape, r1D)

Interpolates points r1D to the edges of an element (elem = :Tri, :Pyr, or :Tet)

source
NodesAndModes.jaskowiec_sukumar_quad_nodesMethod
jaskowiek_sukumar_quad_nodes(elem::Tet)

Symmetric quadrature rules on the tetrahedron of degree up to 20 from:

Jaśkowiec, J, Sukumar, N., "High-order symmetric cubature rules for tetrahedra and pyramids." Int J Numer Methods Eng. 122(1): 148-171, 2021.

source
NodesAndModes.meshgridMethod

meshgrid(vx) Computes an (x,y)-grid from the vectors (vx,vx). For more information, see the MATLAB documentation.

Copied and pasted directly from VectorizedRoutines.jl. Using VectorizedRoutines.jl directly causes Pkg versioning issues with SpecialFunctions.jl

source
NodesAndModes.meshgridMethod

meshgrid(vx,vy,vz) Computes an (x,y,z)-grid from the vectors (vx,vy,vz). For more information, see the MATLAB documentation.

Copied and pasted directly from VectorizedRoutines.jl. Using VectorizedRoutines.jl directly causes Pkg versioning issues with SpecialFunctions.jl

source
NodesAndModes.meshgridMethod

meshgrid(vx,vy) Computes an (x,y)-grid from the vectors (vx,vy). For more information, see the MATLAB documentation.

Copied and pasted directly from VectorizedRoutines.jl. Using VectorizedRoutines.jl directly causes Pkg versioning issues with SpecialFunctions.jl

source
NodesAndModes.nodesMethod
nodes(elem::AbstractElemShape,N)

Computes interpolation nodes of degree N. Edge nodes coincide with (N+1)-point Lobatto points. Default routine for elem = Tet(), Pyr(), Tri().

For Quad(), Hex(), Wedge() elements, nodes(...) returns interpolation points constructed using a tensor product of lower-dimensional nodes.

source
NodesAndModes.nodesMethod
nodes(elem::Line,N)

Computes interpolation nodes of degree N.

source
NodesAndModes.nodesMethod
nodes(elem::Pyr,N)

Computes interpolation nodes of degree N. Edge nodes coincide with (N+1)-point Lobatto points. Triangular face nodes coincide with Tri.nodes(N), quadrilateral face nodes coincide with tensor product (N+1)-point Lobatto points.

source
NodesAndModes.quad_nodesMethod
quad_nodes(elem::AbstractElemShape, N)

Compute quadrature nodes and weights exact for (at least) degree 2N polynomials.

source
NodesAndModes.quad_nodesMethod
quad_nodes(elem::Line,N)

Computes (N+1)-point Gauss quadrature rule (exact for degree 2N+1 polynomials)

source
NodesAndModes.quad_nodes_tetMethod
quad_nodes_tet(N)

Returns quadrature nodes and weights which exactly integrate degree N polynomials

source
NodesAndModes.quad_nodes_triMethod
quad_nodes_tri(N)

Returns quadrature nodes (from Gimbutas and Xiao 2010) which exactly integrate degree N polynomials

source
NodesAndModes.rstoabFunction
rstoab(r, s, tol = 1e-12)

Converts from reference bi-unit right triangle coordinate (r,s) to polynomial basis evaluation coordinates (a,b) on the domain [-1,1]^2

source
NodesAndModes.simplex_2DMethod
simplex_2D(a, b, i, j)

Evaluate 2D PKDO basis phi_ij at points (a,b) on the Duffy domain [-1,1]^2

source
NodesAndModes.simplex_3DMethod
simplex_3D(a, b, c, i, j, k)

Evaluate 3D "Legendre" basis phi_ijk at (a,b,c) coordinates on the [-1,1] cube

source
NodesAndModes.stroud_quad_nodesMethod
stroud_quad_nodes(elem::AbstractElemShape,N)

Returns Stroud-type quadrature nodes and weights constructed from the tensor product of (N+1)-point Gauss-Jacobi rules. Exact for degree 2N polynomials

source
NodesAndModes.vandermondeMethod
vandermonde(elem::AbstractElemShape, N, rst...)

Computes the generalized Vandermonde matrix V of degree N at points (r,s,t).

source
diff --git a/dev/index.html b/dev/index.html index c1204f5..241c321 100644 --- a/dev/index.html +++ b/dev/index.html @@ -16,4 +16,4 @@ julia> V = vandermonde(Tri(),N,r,s) julia> rq,sq,wq = quad_nodes(Tri(),N) julia> Vq,Vrq,Vsq = (A->A/V).(basis(Tri(),N,rq,sq)) -julia> M,Qr,Qs = (A->Vq'*diagm(wq)*A).((Vq,Vrq,Vsq)) +julia> M,Qr,Qs = (A->Vq'*diagm(wq)*A).((Vq,Vrq,Vsq)) diff --git a/dev/search/index.html b/dev/search/index.html index 72ceed2..17baae3 100644 --- a/dev/search/index.html +++ b/dev/search/index.html @@ -1,2 +1,2 @@ -Search · NodesAndModes.jl

Loading search...

    +Search · NodesAndModes.jl

    Loading search...