diff --git a/Note/docs/Install-nnUnet.md b/Note/docs/Install-nnUnet.md index 190a597..fecf415 100644 --- a/Note/docs/Install-nnUnet.md +++ b/Note/docs/Install-nnUnet.md @@ -56,10 +56,35 @@ nnUNetv2_train = "nnunetv2.run.run_training:run_training_entry" ``` then go to this file `run_training_entry.py`, then run it after adding a default parameter in function `run_training_entry`: ``` -parser.add_argument('dataset_name_or_id', type=str, required=False, help="Dataset name or ID to train with", default='1101') -parser.add_argument('configuration', type=str, required=False, help="Configuration that should be trained") -parser.add_argument('fold', type=str, default='1', required=False, help='Fold of the 5-fold cross-validation. Should be an int between 0 and 4.') +parser.add_argument('-dataset_name_or_id', type=str, default='1101', required=False, help="Dataset name or ID to train with") +parser.add_argument('-configuration', type=str, required=False, default='2d', # or '3d_fullres' +help="Configuration that should be trained") +parser.add_argument('-fold', type=str, default='1', required=False, help='Fold of the 5-fold cross-validation. Should be an int between 0 and 4.') ``` -6. Model predicting (similar as above) +modify training epochs (default is 1000) before running the code: +`/home/jing/python_code/nnUNet/nnunetv2/training/nnUNetTrainer/nnUNetTrainer.py` ctrl+f: +`self.num_epochs = 2` + +6. Best configuration (optional) +`nnUNet_find_best_configuration -m 2d 3d_fullres 3d_lowres 3d_cascade_fullres -t 1` + +7. Model predicting + - in terminal + `nnUNet_predict -i .../Task05_Prostate/imagesTs/ -o .../Task05_Prostate/inferTs/ -t 1 -m 3d_fullres -f 0` + + + - in code, search `nnUNetv2_predict` in the file `pyproject.toml`, you will find: +``` +nnUNetv2_predict = "nnunetv2.inference.predict_from_raw_data:predict_entry_point" +``` + +8. Model evaluating + - in terminal +`nnUNet_evaluate_folder -ref LABELFOLDER -pred PREDICTIONFOLDER -l 1 2 3` + - in code, search `nnUNetv2_evaluate_folder` in the file `pyproject.toml`, you will find: +``` +nnUNetv2_evaluate_folder = "nnunetv2.evaluation.valuate_predictions:evaluate_folder_entry_point" +``` + ✴️ reference: https://github.com/MIC-DKFZ/nnUNet/blob/master/documentation/how_to_use_nnunet.md