-
Notifications
You must be signed in to change notification settings - Fork 6
/
lib_binary.py
1237 lines (1020 loc) · 43.7 KB
/
lib_binary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (C) 2013 Oskar Maier
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# author Oskar Maier
# version r0.1.1
# since 2014-03-13
# status Release
# build-in modules
# third-party modules
import numpy
from scipy.ndimage import _ni_support
from scipy.ndimage.morphology import distance_transform_edt, binary_erosion,\
generate_binary_structure
from scipy.ndimage.measurements import label, find_objects
from scipy.stats import pearsonr
# own modules
# code
def dc(result, reference):
r"""
Dice coefficient
Computes the Dice coefficient (also known as Sorensen index) between the binary
objects in two images.
The metric is defined as
.. math::
DC=\frac{2|A\cap B|}{|A|+|B|}
, where :math:`A` is the first and :math:`B` the second set of samples (here: binary objects).
Parameters
----------
result : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
reference : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
Returns
-------
dc : float
The Dice coefficient between the object(s) in ```result``` and the
object(s) in ```reference```. It ranges from 0 (no overlap) to 1 (perfect overlap).
Notes
-----
This is a real metric. The binary images can therefore be supplied in any order.
"""
result = numpy.atleast_1d(result.astype(numpy.bool))
reference = numpy.atleast_1d(reference.astype(numpy.bool))
intersection = numpy.count_nonzero(result & reference)
size_i1 = numpy.count_nonzero(result)
size_i2 = numpy.count_nonzero(reference)
try:
dc = 2. * intersection / float(size_i1 + size_i2)
except ZeroDivisionError:
dc = 0.0
return dc
def jc(result, reference):
"""
Jaccard coefficient
Computes the Jaccard coefficient between the binary objects in two images.
Parameters
----------
result: array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
reference: array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
Returns
-------
jc: float
The Jaccard coefficient between the object(s) in `result` and the
object(s) in `reference`. It ranges from 0 (no overlap) to 1 (perfect overlap).
Notes
-----
This is a real metric. The binary images can therefore be supplied in any order.
"""
result = numpy.atleast_1d(result.astype(numpy.bool))
reference = numpy.atleast_1d(reference.astype(numpy.bool))
intersection = numpy.count_nonzero(result & reference)
union = numpy.count_nonzero(result | reference)
jc = float(intersection) / float(union)
return jc
def precision(result, reference):
"""
Precison.
Parameters
----------
result : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
reference : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
Returns
-------
precision : float
The precision between two binary datasets, here mostly binary objects in images,
which is defined as the fraction of retrieved instances that are relevant. The
precision is not symmetric.
See also
--------
:func:`recall`
Notes
-----
Not symmetric. The inverse of the precision is :func:`recall`.
High precision means that an algorithm returned substantially more relevant results than irrelevant.
References
----------
.. [1] http://en.wikipedia.org/wiki/Precision_and_recall
.. [2] http://en.wikipedia.org/wiki/Confusion_matrix#Table_of_confusion
"""
result = numpy.atleast_1d(result.astype(numpy.bool))
reference = numpy.atleast_1d(reference.astype(numpy.bool))
tp = numpy.count_nonzero(result & reference)
fp = numpy.count_nonzero(result & ~reference)
try:
precision = tp / float(tp + fp)
except ZeroDivisionError:
precision = 0.0
return precision
def recall(result, reference):
"""
Recall.
Parameters
----------
result : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
reference : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
Returns
-------
recall : float
The recall between two binary datasets, here mostly binary objects in images,
which is defined as the fraction of relevant instances that are retrieved. The
recall is not symmetric.
See also
--------
:func:`precision`
Notes
-----
Not symmetric. The inverse of the recall is :func:`precision`.
High recall means that an algorithm returned most of the relevant results.
References
----------
.. [1] http://en.wikipedia.org/wiki/Precision_and_recall
.. [2] http://en.wikipedia.org/wiki/Confusion_matrix#Table_of_confusion
"""
result = numpy.atleast_1d(result.astype(numpy.bool))
reference = numpy.atleast_1d(reference.astype(numpy.bool))
tp = numpy.count_nonzero(result & reference)
fn = numpy.count_nonzero(~result & reference)
try:
recall = tp / float(tp + fn)
except ZeroDivisionError:
recall = 0.0
return recall
def sensitivity(result, reference):
"""
Sensitivity.
Same as :func:`recall`, see there for a detailed description.
See also
--------
:func:`specificity`
"""
return recall(result, reference)
def specificity(result, reference):
"""
Specificity.
Parameters
----------
result : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
reference : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
Returns
-------
specificity : float
The specificity between two binary datasets, here mostly binary objects in images,
which denotes the fraction of correctly returned negatives. The
specificity is not symmetric.
See also
--------
:func:`sensitivity`
Notes
-----
Not symmetric. The completment of the specificity is :func:`sensitivity`.
High recall means that an algorithm returned most of the irrelevant results.
References
----------
.. [1] https://en.wikipedia.org/wiki/Sensitivity_and_specificity
.. [2] http://en.wikipedia.org/wiki/Confusion_matrix#Table_of_confusion
"""
result = numpy.atleast_1d(result.astype(numpy.bool))
reference = numpy.atleast_1d(reference.astype(numpy.bool))
tn = numpy.count_nonzero(~result & ~reference)
fp = numpy.count_nonzero(result & ~reference)
try:
specificity = tn / float(tn + fp)
except ZeroDivisionError:
specificity = 0.0
return specificity
def true_negative_rate(result, reference):
"""
True negative rate.
Same as :func:`specificity`, see there for a detailed description.
See also
--------
:func:`true_positive_rate`
:func:`positive_predictive_value`
"""
return specificity(result, reference)
def true_positive_rate(result, reference):
"""
True positive rate.
Same as :func:`recall` and :func:`sensitivity`, see there for a detailed description.
See also
--------
:func:`positive_predictive_value`
:func:`true_negative_rate`
"""
return recall(result, reference)
def positive_predictive_value(result, reference):
"""
Positive predictive value.
Same as :func:`precision`, see there for a detailed description.
See also
--------
:func:`true_positive_rate`
:func:`true_negative_rate`
"""
return precision(result, reference)
def hd(result, reference, voxelspacing=None, connectivity=1):
"""
Hausdorff Distance.
Computes the (symmetric) Hausdorff Distance (HD) between the binary objects in two
images. It is defined as the maximum surface distance between the objects.
Parameters
----------
result : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
reference : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
voxelspacing : float or sequence of floats, optional
The voxelspacing in a distance unit i.e. spacing of elements
along each dimension. If a sequence, must be of length equal to
the input rank; if a single number, this is used for all axes. If
not specified, a grid spacing of unity is implied.
connectivity : int
The neighbourhood/connectivity considered when determining the surface
of the binary objects. This value is passed to
`scipy.ndimage.morphology.generate_binary_structure` and should usually be :math:`> 1`.
Note that the connectivity influences the result in the case of the Hausdorff distance.
Returns
-------
hd : float
The symmetric Hausdorff Distance between the object(s) in ```result``` and the
object(s) in ```reference```. The distance unit is the same as for the spacing of
elements along each dimension, which is usually given in mm.
See also
--------
:func:`assd`
:func:`asd`
Notes
-----
This is a real metric. The binary images can therefore be supplied in any order.
"""
hd1 = __surface_distances(result, reference, voxelspacing, connectivity).max()
hd2 = __surface_distances(reference, result, voxelspacing, connectivity).max()
hd = max(hd1, hd2)
return hd
def hd95(result, reference, voxelspacing=None, connectivity=1):
"""
95th percentile of the Hausdorff Distance.
Computes the 95th percentile of the (symmetric) Hausdorff Distance (HD) between the binary objects in two
images. Compared to the Hausdorff Distance, this metric is slightly more stable to small outliers and is
commonly used in Biomedical Segmentation challenges.
Parameters
----------
result : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
reference : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
voxelspacing : float or sequence of floats, optional
The voxelspacing in a distance unit i.e. spacing of elements
along each dimension. If a sequence, must be of length equal to
the input rank; if a single number, this is used for all axes. If
not specified, a grid spacing of unity is implied.
connectivity : int
The neighbourhood/connectivity considered when determining the surface
of the binary objects. This value is passed to
`scipy.ndimage.morphology.generate_binary_structure` and should usually be :math:`> 1`.
Note that the connectivity influences the result in the case of the Hausdorff distance.
Returns
-------
hd : float
The symmetric Hausdorff Distance between the object(s) in ```result``` and the
object(s) in ```reference```. The distance unit is the same as for the spacing of
elements along each dimension, which is usually given in mm.
See also
--------
:func:`hd`
Notes
-----
This is a real metric. The binary images can therefore be supplied in any order.
"""
hd1 = __surface_distances(result, reference, voxelspacing, connectivity)
hd2 = __surface_distances(reference, result, voxelspacing, connectivity)
hd95 = numpy.percentile(numpy.hstack((hd1, hd2)), 95)
return hd95
def assd(result, reference, voxelspacing=None, connectivity=1):
"""
Average symmetric surface distance.
Computes the average symmetric surface distance (ASD) between the binary objects in
two images.
Parameters
----------
result : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
reference : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
voxelspacing : float or sequence of floats, optional
The voxelspacing in a distance unit i.e. spacing of elements
along each dimension. If a sequence, must be of length equal to
the input rank; if a single number, this is used for all axes. If
not specified, a grid spacing of unity is implied.
connectivity : int
The neighbourhood/connectivity considered when determining the surface
of the binary objects. This value is passed to
`scipy.ndimage.morphology.generate_binary_structure` and should usually be :math:`> 1`.
The decision on the connectivity is important, as it can influence the results
strongly. If in doubt, leave it as it is.
Returns
-------
assd : float
The average symmetric surface distance between the object(s) in ``result`` and the
object(s) in ``reference``. The distance unit is the same as for the spacing of
elements along each dimension, which is usually given in mm.
See also
--------
:func:`asd`
:func:`hd`
Notes
-----
This is a real metric, obtained by calling and averaging
>>> asd(result, reference)
and
>>> asd(reference, result)
The binary images can therefore be supplied in any order.
"""
assd = numpy.mean( (asd(result, reference, voxelspacing, connectivity), asd(reference, result, voxelspacing, connectivity)) )
return assd
def asd(result, reference, voxelspacing=None, connectivity=1):
"""
Average surface distance metric.
Computes the average surface distance (ASD) between the binary objects in two images.
Parameters
----------
result : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
reference : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
voxelspacing : float or sequence of floats, optional
The voxelspacing in a distance unit i.e. spacing of elements
along each dimension. If a sequence, must be of length equal to
the input rank; if a single number, this is used for all axes. If
not specified, a grid spacing of unity is implied.
connectivity : int
The neighbourhood/connectivity considered when determining the surface
of the binary objects. This value is passed to
`scipy.ndimage.morphology.generate_binary_structure` and should usually be :math:`> 1`.
The decision on the connectivity is important, as it can influence the results
strongly. If in doubt, leave it as it is.
Returns
-------
asd : float
The average surface distance between the object(s) in ``result`` and the
object(s) in ``reference``. The distance unit is the same as for the spacing
of elements along each dimension, which is usually given in mm.
See also
--------
:func:`assd`
:func:`hd`
Notes
-----
This is not a real metric, as it is directed. See `assd` for a real metric of this.
The method is implemented making use of distance images and simple binary morphology
to achieve high computational speed.
Examples
--------
The `connectivity` determines what pixels/voxels are considered the surface of a
binary object. Take the following binary image showing a cross
>>> from scipy.ndimage.morphology import generate_binary_structure
>>> cross = generate_binary_structure(2, 1)
array([[0, 1, 0],
[1, 1, 1],
[0, 1, 0]])
With `connectivity` set to `1` a 4-neighbourhood is considered when determining the
object surface, resulting in the surface
.. code-block:: python
array([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]])
Changing `connectivity` to `2`, a 8-neighbourhood is considered and we get:
.. code-block:: python
array([[0, 1, 0],
[1, 1, 1],
[0, 1, 0]])
, as a diagonal connection does no longer qualifies as valid object surface.
This influences the results `asd` returns. Imagine we want to compute the surface
distance of our cross to a cube-like object:
>>> cube = generate_binary_structure(2, 1)
array([[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
, which surface is, independent of the `connectivity` value set, always
.. code-block:: python
array([[1, 1, 1],
[1, 0, 1],
[1, 1, 1]])
Using a `connectivity` of `1` we get
>>> asd(cross, cube, connectivity=1)
0.0
while a value of `2` returns us
>>> asd(cross, cube, connectivity=2)
0.20000000000000001
due to the center of the cross being considered surface as well.
"""
sds = __surface_distances(result, reference, voxelspacing, connectivity)
asd = sds.mean()
return asd
def ravd(result, reference):
"""
Relative absolute volume difference.
Compute the relative absolute volume difference between the (joined) binary objects
in the two images.
Parameters
----------
result : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
reference : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
Returns
-------
ravd : float
The relative absolute volume difference between the object(s) in ``result``
and the object(s) in ``reference``. This is a percentage value in the range
:math:`[-1.0, +inf]` for which a :math:`0` denotes an ideal score.
Raises
------
RuntimeError
If the reference object is empty.
See also
--------
:func:`dc`
:func:`precision`
:func:`recall`
Notes
-----
This is not a real metric, as it is directed. Negative values denote a smaller
and positive values a larger volume than the reference.
This implementation does not check, whether the two supplied arrays are of the same
size.
Examples
--------
Considering the following inputs
>>> import numpy
>>> arr1 = numpy.asarray([[0,1,0],[1,1,1],[0,1,0]])
>>> arr1
array([[0, 1, 0],
[1, 1, 1],
[0, 1, 0]])
>>> arr2 = numpy.asarray([[0,1,0],[1,0,1],[0,1,0]])
>>> arr2
array([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]])
comparing `arr1` to `arr2` we get
>>> ravd(arr1, arr2)
-0.2
and reversing the inputs the directivness of the metric becomes evident
>>> ravd(arr2, arr1)
0.25
It is important to keep in mind that a perfect score of `0` does not mean that the
binary objects fit exactely, as only the volumes are compared:
>>> arr1 = numpy.asarray([1,0,0])
>>> arr2 = numpy.asarray([0,0,1])
>>> ravd(arr1, arr2)
0.0
"""
result = numpy.atleast_1d(result.astype(numpy.bool))
reference = numpy.atleast_1d(reference.astype(numpy.bool))
vol1 = numpy.count_nonzero(result)
vol2 = numpy.count_nonzero(reference)
if 0 == vol2:
raise RuntimeError('The second supplied array does not contain any binary object.')
return (vol1 - vol2) / float(vol2)
def volume_correlation(results, references):
r"""
Volume correlation.
Computes the linear correlation in binary object volume between the
contents of the successive binary images supplied. Measured through
the Pearson product-moment correlation coefficient.
Parameters
----------
results : sequence of array_like
Ordered list of input data containing objects. Each array_like will be
converted into binary: background where 0, object everywhere else.
references : sequence of array_like
Ordered list of input data containing objects. Each array_like will be
converted into binary: background where 0, object everywhere else.
The order must be the same as for ``results``.
Returns
-------
r : float
The correlation coefficient between -1 and 1.
p : float
The two-side p value.
"""
results = numpy.atleast_2d(numpy.array(results).astype(numpy.bool))
references = numpy.atleast_2d(numpy.array(references).astype(numpy.bool))
results_volumes = [numpy.count_nonzero(r) for r in results]
references_volumes = [numpy.count_nonzero(r) for r in references]
return pearsonr(results_volumes, references_volumes) # returns (Pearson'
def volume_change_correlation(results, references):
r"""
Volume change correlation.
Computes the linear correlation of change in binary object volume between
the contents of the successive binary images supplied. Measured through
the Pearson product-moment correlation coefficient.
Parameters
----------
results : sequence of array_like
Ordered list of input data containing objects. Each array_like will be
converted into binary: background where 0, object everywhere else.
references : sequence of array_like
Ordered list of input data containing objects. Each array_like will be
converted into binary: background where 0, object everywhere else.
The order must be the same as for ``results``.
Returns
-------
r : float
The correlation coefficient between -1 and 1.
p : float
The two-side p value.
"""
results = numpy.atleast_2d(numpy.array(results).astype(numpy.bool))
references = numpy.atleast_2d(numpy.array(references).astype(numpy.bool))
results_volumes = numpy.asarray([numpy.count_nonzero(r) for r in results])
references_volumes = numpy.asarray([numpy.count_nonzero(r) for r in references])
results_volumes_changes = results_volumes[1:] - results_volumes[:-1]
references_volumes_changes = references_volumes[1:] - references_volumes[:-1]
return pearsonr(results_volumes_changes, references_volumes_changes) # returns (Pearson's correlation coefficient, 2-tailed p-value)
def obj_assd(result, reference, voxelspacing=None, connectivity=1):
"""
Average symmetric surface distance.
Computes the average symmetric surface distance (ASSD) between the binary objects in
two images.
Parameters
----------
result : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
reference : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
voxelspacing : float or sequence of floats, optional
The voxelspacing in a distance unit i.e. spacing of elements
along each dimension. If a sequence, must be of length equal to
the input rank; if a single number, this is used for all axes. If
not specified, a grid spacing of unity is implied.
connectivity : int
The neighbourhood/connectivity considered when determining what accounts
for a distinct binary object as well as when determining the surface
of the binary objects. This value is passed to
`scipy.ndimage.morphology.generate_binary_structure` and should usually be :math:`> 1`.
The decision on the connectivity is important, as it can influence the results
strongly. If in doubt, leave it as it is.
Returns
-------
assd : float
The average symmetric surface distance between all mutually existing distinct
binary object(s) in ``result`` and ``reference``. The distance unit is the same as for
the spacing of elements along each dimension, which is usually given in mm.
See also
--------
:func:`obj_asd`
Notes
-----
This is a real metric, obtained by calling and averaging
>>> obj_asd(result, reference)
and
>>> obj_asd(reference, result)
The binary images can therefore be supplied in any order.
"""
assd = numpy.mean( (obj_asd(result, reference, voxelspacing, connectivity), obj_asd(reference, result, voxelspacing, connectivity)) )
return assd
def obj_asd(result, reference, voxelspacing=None, connectivity=1):
"""
Average surface distance between objects.
First correspondences between distinct binary objects in reference and result are
established. Then the average surface distance is only computed between corresponding
objects. Correspondence is defined as unique and at least one voxel overlap.
Parameters
----------
result : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
reference : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
voxelspacing : float or sequence of floats, optional
The voxelspacing in a distance unit i.e. spacing of elements
along each dimension. If a sequence, must be of length equal to
the input rank; if a single number, this is used for all axes. If
not specified, a grid spacing of unity is implied.
connectivity : int
The neighbourhood/connectivity considered when determining what accounts
for a distinct binary object as well as when determining the surface
of the binary objects. This value is passed to
`scipy.ndimage.morphology.generate_binary_structure` and should usually be :math:`> 1`.
The decision on the connectivity is important, as it can influence the results
strongly. If in doubt, leave it as it is.
Returns
-------
asd : float
The average surface distance between all mutually existing distinct binary
object(s) in ``result`` and ``reference``. The distance unit is the same as for the
spacing of elements along each dimension, which is usually given in mm.
See also
--------
:func:`obj_assd`
:func:`obj_tpr`
:func:`obj_fpr`
Notes
-----
This is not a real metric, as it is directed. See `obj_assd` for a real metric of this.
For the understanding of this metric, both the notions of connectedness and surface
distance are essential. Please see :func:`obj_tpr` and :func:`obj_fpr` for more
information on the first and :func:`asd` on the second.
Examples
--------
>>> arr1 = numpy.asarray([[1,1,1],[1,1,1],[1,1,1]])
>>> arr2 = numpy.asarray([[0,1,0],[0,1,0],[0,1,0]])
>>> arr1
array([[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
>>> arr2
array([[0, 1, 0],
[0, 1, 0],
[0, 1, 0]])
>>> obj_asd(arr1, arr2)
1.5
>>> obj_asd(arr2, arr1)
0.333333333333
With the `voxelspacing` parameter, the distances between the voxels can be set for
each dimension separately:
>>> obj_asd(arr1, arr2, voxelspacing=(1,2))
1.5
>>> obj_asd(arr2, arr1, voxelspacing=(1,2))
0.333333333333
More examples depicting the notion of object connectedness:
>>> arr1 = numpy.asarray([[1,0,1],[1,0,0],[0,0,0]])
>>> arr2 = numpy.asarray([[1,0,1],[1,0,0],[0,0,1]])
>>> arr1
array([[1, 0, 1],
[1, 0, 0],
[0, 0, 0]])
>>> arr2
array([[1, 0, 1],
[1, 0, 0],
[0, 0, 1]])
>>> obj_asd(arr1, arr2)
0.0
>>> obj_asd(arr2, arr1)
0.0
>>> arr1 = numpy.asarray([[1,0,1],[1,0,1],[0,0,1]])
>>> arr2 = numpy.asarray([[1,0,1],[1,0,0],[0,0,1]])
>>> arr1
array([[1, 0, 1],
[1, 0, 1],
[0, 0, 1]])
>>> arr2
array([[1, 0, 1],
[1, 0, 0],
[0, 0, 1]])
>>> obj_asd(arr1, arr2)
0.6
>>> obj_asd(arr2, arr1)
0.0
Influence of `connectivity` parameter can be seen in the following example, where
with the (default) connectivity of `1` the first array is considered to contain two
objects, while with an increase connectivity of `2`, just one large object is
detected.
>>> arr1 = numpy.asarray([[1,0,0],[0,1,1],[0,1,1]])
>>> arr2 = numpy.asarray([[1,0,0],[0,0,0],[0,0,0]])
>>> arr1
array([[1, 0, 0],
[0, 1, 1],
[0, 1, 1]])
>>> arr2
array([[1, 0, 0],
[0, 0, 0],
[0, 0, 0]])
>>> obj_asd(arr1, arr2)
0.0
>>> obj_asd(arr1, arr2, connectivity=2)
1.742955328
Note that the connectivity also influence the notion of what is considered an object
surface voxels.
"""
sds = list()
labelmap1, labelmap2, _a, _b, mapping = __distinct_binary_object_correspondences(result, reference, connectivity)
slicers1 = find_objects(labelmap1)
slicers2 = find_objects(labelmap2)
for lid2, lid1 in list(mapping.items()):
window = __combine_windows(slicers1[lid1 - 1], slicers2[lid2 - 1])
object1 = labelmap1[window] == lid1
object2 = labelmap2[window] == lid2
sds.extend(__surface_distances(object1, object2, voxelspacing, connectivity))
asd = numpy.mean(sds)
return asd
def obj_fpr(result, reference, connectivity=1):
"""
The false positive rate of distinct binary object detection.
The false positive rates gives a percentage measure of how many distinct binary
objects in the second array do not exists in the first array. A partial overlap
(of minimum one voxel) is here considered sufficient.
In cases where two distinct binary object in the second array overlap with a single
distinct object in the first array, only one is considered to have been detected
successfully and the other is added to the count of false positives.
Parameters
----------
result : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
reference : array_like
Input data containing objects. Can be any type but will be converted
into binary: background where 0, object everywhere else.
connectivity : int
The neighbourhood/connectivity considered when determining what accounts
for a distinct binary object. This value is passed to
`scipy.ndimage.morphology.generate_binary_structure` and should usually be :math:`> 1`.
The decision on the connectivity is important, as it can influence the results
strongly. If in doubt, leave it as it is.
Returns
-------
tpr : float
A percentage measure of how many distinct binary objects in ``results`` have no
corresponding binary object in ``reference``. It has the range :math:`[0, 1]`, where a :math:`0`
denotes an ideal score.
Raises
------
RuntimeError
If the second array is empty.
See also
--------
:func:`obj_tpr`
Notes
-----
This is not a real metric, as it is directed. Whatever array is considered as
reference should be passed second. A perfect score of :math:`0` tells that there are no
distinct binary objects in the second array that do not exists also in the reference
array, but does not reveal anything about objects in the reference array also
existing in the second array (use :func:`obj_tpr` for this).
Examples
--------
>>> arr2 = numpy.asarray([[1,0,0],[1,0,1],[0,0,1]])
>>> arr1 = numpy.asarray([[0,0,1],[1,0,1],[0,0,1]])
>>> arr2
array([[1, 0, 0],
[1, 0, 1],
[0, 0, 1]])
>>> arr1
array([[0, 0, 1],
[1, 0, 1],
[0, 0, 1]])
>>> obj_fpr(arr1, arr2)
0.0
>>> obj_fpr(arr2, arr1)
0.0
Example of directedness:
>>> arr2 = numpy.asarray([1,0,1,0,1])
>>> arr1 = numpy.asarray([1,0,1,0,0])
>>> obj_fpr(arr1, arr2)
0.0
>>> obj_fpr(arr2, arr1)
0.3333333333333333
Examples of multiple overlap treatment:
>>> arr2 = numpy.asarray([1,0,1,0,1,1,1])
>>> arr1 = numpy.asarray([1,1,1,0,1,0,1])