forked from neuraloperator/physics_informed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_burgers.py
87 lines (77 loc) · 3.65 KB
/
train_burgers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from argparse import ArgumentParser
import yaml
import torch
from models import FNO2d
from train_utils import Adam
from train_utils.datasets import BurgersLoader
from train_utils.train_2d import train_2d_burger
from train_utils.eval_2d import eval_burgers
def run(args, config):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
data_config = config['data']
dataset = BurgersLoader(data_config['datapath'],
nx=data_config['nx'], nt=data_config['nt'],
sub=data_config['sub'], sub_t=data_config['sub_t'], new=True)
train_loader = dataset.make_loader(n_sample=data_config['n_sample'],
batch_size=config['train']['batchsize'],
start=data_config['offset'])
model = FNO2d(modes1=config['model']['modes1'],
modes2=config['model']['modes2'],
fc_dim=config['model']['fc_dim'],
layers=config['model']['layers'],
act=config['model']['act']).to(device)
# Load from checkpoint
if 'ckpt' in config['train']:
ckpt_path = config['train']['ckpt']
ckpt = torch.load(ckpt_path)
model.load_state_dict(ckpt['model'])
print('Weights loaded from %s' % ckpt_path)
optimizer = Adam(model.parameters(), betas=(0.9, 0.999),
lr=config['train']['base_lr'])
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=config['train']['milestones'],
gamma=config['train']['scheduler_gamma'])
train_2d_burger(model,
train_loader,
dataset.v,
optimizer,
scheduler,
config,
rank=0,
log=args.log,
project=config['log']['project'],
group=config['log']['group'])
def test(config):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
data_config = config['data']
dataset = BurgersLoader(data_config['datapath'],
nx=data_config['nx'], nt=data_config['nt'],
sub=data_config['sub'], sub_t=data_config['sub_t'], new=True)
dataloader = dataset.make_loader(n_sample=data_config['n_sample'],
batch_size=config['test']['batchsize'],
start=data_config['offset'])
model = FNO2d(modes1=config['model']['modes1'],
modes2=config['model']['modes2'],
fc_dim=config['model']['fc_dim'],
layers=config['model']['layers'],
act=config['model']['act']).to(device)
# Load from checkpoint
if 'ckpt' in config['test']:
ckpt_path = config['test']['ckpt']
ckpt = torch.load(ckpt_path)
model.load_state_dict(ckpt['model'])
print('Weights loaded from %s' % ckpt_path)
eval_burgers(model, dataloader, dataset.v, config, device)
if __name__ == '__main__':
parser = ArgumentParser(description='Basic paser')
parser.add_argument('--config_path', type=str, help='Path to the configuration file')
parser.add_argument('--log', action='store_true', help='Turn on the wandb')
parser.add_argument('--mode', type=str, help='train or test')
args = parser.parse_args()
config_file = args.config_path
with open(config_file, 'r') as stream:
config = yaml.load(stream, yaml.FullLoader)
if args.mode == 'train':
run(args, config)
else:
test(config)