-
Notifications
You must be signed in to change notification settings - Fork 0
/
rnn_minibatch.py
409 lines (329 loc) · 16.2 KB
/
rnn_minibatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
__author__ = 'JinHoon'
"""
This file contains a RNN benchmark for a standard RNN with tap -1 without minibatches.
It uses a softmax output layer. It can be used to compare THEANO with another
RNN code snippet.
This version can have different sequence lengths. You can access them via a special
index table.
data format:
input ... matrix:[N][frame]
output ... vector:[target1|...|targetN]
access a input sequence N via the indexTable idx
input[idx['input'][N]:idx['input'][N+1]]
access a target (output) N via the indexTable idx
target[idx['target'][N]:idx['target'][N+1]]
NOTE:
- Please take care that you only compare equal networks with equal datasets.
- this version works with taps [-N,...,-1]
- if you want to use tap [-1] please init with [-1,0], due to a shape mismatch
- if you want to use tap [-2,-1] please init with [-2,-1]
"""
import sys
import os
import time
import numpy
import theano
import theano.tensor as T
import glob
#---------------------------------------------------------------------------------
class RNN(object):
#---------------------------------------------------------------------------------
def __init__(self, rng, output_taps, n_in, n_hidden, n_out, mode, profile, dtype=theano.config.floatX):
"""
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type order: int32
:param order: order of the RNN (used for higher order RNNs)
:type n_in: int32
:param n_in: number of input neurons
:type n_hidden: int32
:param n_hidden: number of hidden units
:type dtype: theano.config.floatX
:param dtype: theano 32/64bit mode
"""
#--------------------------------------------------------------------
# PROBLEM section (needs review)
#--------------------------------------------------------------------
"""
here the the recurrent delay elements (taps) will be created
You can change the line below to add special delays like [-4,-1]
Problem: single delays like tap = [-1] lead to a T.matrix() generation
in step() line:117. A theano shape error will be generated.
Hence we have to create at least a tuple [-1,0] for order.1 RNNs.
Tap[0] will not be used in step (skipped)
QuickFIX: tap = [-1,0] -> tap[0] won't be used
Description: we have to create at least a tuple [-1,0] used in
outputs_info line:91
otherwise a T.matrix will be generated in step(),
leading to an theano shape error.
Discuss: @theano-dev-group
"""
# length of output taps
self.len_output_taps = len(output_taps)
# input over the time (1st dim is the time)
self.x = T.dmatrix('x')
# target over the time (1st dim is the time)
self.y = T.ivector('y')
# recurrent activations over the time (1st dim is the time)
self.H = T.dmatrix()
# learning rate
self.lr = T.fscalar()
# input to hidden layer weights
W_in = theano.shared(numpy.asarray(rng.uniform(
low = - numpy.sqrt(6./(n_in+n_hidden)),
high = numpy.sqrt(6./(n_in+n_hidden)),
size = (n_in, n_hidden)),
dtype = dtype), name='W_in')
b_in = theano.shared(numpy.zeros((n_hidden,), dtype=dtype), name='b_in')
# recurrent bias
b_h = theano.shared(numpy.zeros((n_hidden,)).astype(dtype), name='b_h')
# recurrent activations
self.h = theano.shared(numpy.zeros((n_hidden, n_hidden), dtype=dtype), name='h')
# recurrent weights as real values
W = [theano.shared(numpy.asarray(rng.uniform(low = - numpy.sqrt(6./(n_hidden+n_hidden)),\
high = numpy.sqrt(6./(n_hidden+n_hidden)),\
size = (n_hidden, n_hidden)), dtype = dtype),\
name='W_r'+str(u)) for u in range(self.len_output_taps)]
# hidden to output layer weights
W_out = theano.shared(numpy.asarray(rng.uniform(
low = - numpy.sqrt(6./(n_hidden+n_out)),
high = numpy.sqrt(6./(n_hidden+n_out)),
size = (n_hidden, n_out)),
dtype = dtype), name = 'W_out')
b_out = theano.shared(numpy.zeros((n_out,), dtype=dtype), name='b_out')
# stack the network parameters
self.params = []
self.params.extend(W)
self.params.extend([b_h])
self.params.extend([W_in, b_in])
# this is the recursive BBTP loop
# `self.H` are the recurrent activations, 'y_act_list' is the output for the
# entire sequence over the time
h, updates = theano.scan(fn = self.step, \
sequences = dict(input = self.x, taps = [0]), \
outputs_info = dict(initial = self.H, taps = output_taps), \
non_sequences = self.params,
mode=mode,
profile=profile)
# softmax output signal
self.y_act = T.nnet.softmax(T.dot(h, W_out) + b_out)
# error between output and target
self.cost = -T.mean(T.log(self.y_act)[T.arange(self.y.shape[0]), self.y])
# add the output network params
self.params.extend([W_out, b_out])
def step(self, u_t, *args):
"""
step function to calculate BPTT
type u_t: T.matrix()
param u_t: input sequence of the network
type * args: python parameter list
param * args: this is needed to implement a more general model of the step function
see theano@users: http: // groups.google.com / group / theano - users / \
browse_thread / thread / 2fa44792c9cdd0d5
"""
# get the recurrent activations
r_act_vals = [args[u] for u in range(self.len_output_taps)]
# get the recurrent weights
r_weights = [args[u] for u in range(self.len_output_taps, (self.len_output_taps) * 2)]
# get the input/output weights
b_h = args[self.len_output_taps * 2]
W_in = args[self.len_output_taps * 2 + 1]
b_in = args[self.len_output_taps * 2 + 2]
# sum up the recurrent activations
act = theano.dot(r_act_vals[0], r_weights[0]) + b_h
for u in range(1, self.len_output_taps):
act += T.dot(r_act_vals[u], r_weights[u]) + b_h
# compute the new recurrent activation
h_t = T.tanh(T.dot(u_t, W_in) + b_in + act)
return h_t
#---------------------------------------------------------------------------------
def build_finetune_functions(self, train_set_x, train_set_y, learning_rate, mode, profile):
"""
type train_set_x: T.matrix()
param train_set_x: training input sequences of the network
type train_set_y: T.ivector()
param train_set_y: training output sequences of the network
type learning_rate: float32
param learning_rate: learning_rate of the training algorithm
type mode: str
param mode: theano function compile mode
"""
#-----------------------------------------
# THEANO variables for the data access
#-----------------------------------------
# we specify direct indizes here, since this allows to have different seq. lengths
i_idx_0 = T.iscalar('input_start') # index to input start
i_idx_1 = T.iscalar('input_stop') # index to input stop
t_idx_0 = T.iscalar('target_start') # index to target start
t_idx_1 = T.iscalar('target_stop') # index to target stop
print('Compiling')
#-----------------------------------------
# THEANO train function
#-----------------------------------------
gparams = []
for param in self.params:
gparam = T.grad(self.cost, param)
gparams.append(gparam)
# specify how to update the parameters of the model as a dictionary
updates = [
(param, param - learning_rate * gparam)
for param, gparam in zip(self.params, gparams)
]
# define the train function
t_inputs = [i_idx_0] + [i_idx_1] + [t_idx_0] + [t_idx_1]
train_fn = theano.function(inputs = t_inputs,
outputs = self.cost,
updates = updates,
givens={self.x:train_set_x[i_idx_0:i_idx_1],
self.y:train_set_y[t_idx_0:t_idx_1],
self.H:T.cast(self.h,'float64'),
self.lr:T.cast(learning_rate,'float64')},
mode = mode,
profile = profile)
return train_fn
#---------------------------------------------------------------------------------
class Engine(object):
def __init__(self,
learning_rate=0.01,
n_epochs=20,
output_taps=[-1, 0]):
#-----------------------------------------
# BENCHMARK SETUP
#-----------------------------------------
"""
Please note that if you are comparing different RNNs (C/C++/TORCH/...)
the data & network topology and parameters should be at least the same, to
be fair.
f.e. samples, batchsize, learning_rate, epochs, #neurons, ... (other obvious stuff)
"""
#-----------------------------------------
# THEANO SETUP
#-----------------------------------------
# setup mode
mode = theano.Mode(linker='cvm')
# setup profile
profile = 0
#-----------------------------------------
# MODEL SETUP
#-----------------------------------------
dataset = glob.glob('../Data/smallHybrid/*')
N = 500 # number of samples
n_in = 9460 # number of inumpyut units
n_hidden = 1000# number of hidden units
n_out = 3 #129 # number of output units
n_symbol = 43
length = 5 #sequence length
batch_size = 500 # batch_size
print('network: n_in:', n_in, 'n_hidden:', n_hidden, 'n_out:', n_out, 'output:softmax')
print('data: samples:', N, 'batch_size:', batch_size, 'sequence length', length)
#load Data
def preprocessData(path):
files = []
for file in path:
files.append(file)
files.sort()
label = numpy.zeros((N, n_symbol))
feature = numpy.zeros((N, n_in))
index = 0
col_index = 0
for file in files:
binary = numpy.fromfile(file, dtype='float64')
numRow=binary[0]
numCol=binary[1]
print("Num Row", numRow)
print("Num Col", numCol)
binary=numpy.delete(binary,[0,1])
binary=binary.reshape((numRow,numCol))
binary = binary[:N]
label[:,index] = binary[:,0]
feature[:, col_index:col_index+numCol-1] = binary[:, 1:]
col_index += numCol-1
index += 1
feature = feature[:,:col_index]
label = label + 1
label = label[:,0]
print(label)
print("label", label.shape)
print("feature", feature.shape)
# label = label.squeeze()
# feature = feature.squeeze()
print("label", label.shape)
print("feature", feature.shape)
label = label.astype('int32')
feature = feature.astype('float64')
return feature, label
def trainTestSplit(feature, label):
n_train = int(0.6 * N)
n_valid = int(0.2 * N)
x_train = feature[:n_train]
y_train = label[:n_train]
x_valid = feature[n_train: n_train + n_valid]
y_valid = label[n_train: n_train + n_valid]
x_test = feature[n_train + n_valid:]
y_test = label[n_train + n_valid:]
train_set = (x_train, y_train)
valid_set = (x_valid, y_valid)
test_set = (x_test, y_test)
return train_set, valid_set, test_set
#return x_train, y_train, x_valid, y_valid, x_test, y_test
def shared_dataset(data_xy, borrow=True):
""" Function that loads the dataset into shared variables
The reason we store our dataset in shared variables is to allow
Theano to copy it into the GPU memory (when code is run on GPU).
Since copying data into the GPU is slow, copying a minibatch everytime
is needed (the default behaviour if the data is not in a shared
variable) would lead to a large decrease in performance.
"""
data_x, data_y = data_xy
shared_x = theano.shared(numpy.asarray(data_x,
dtype=theano.config.floatX),
borrow=borrow)
shared_y = theano.shared(numpy.asarray(data_y,
dtype=theano.config.floatX),
borrow=borrow)
# When storing data on the GPU it has to be stored as floats
# therefore we will store the labels as ``floatX`` as well
# (``shared_y`` does exactly that). But during our computations
# we need them as ints (we use labels as index, and if they are
# floats it doesn't make sense) therefore instead of returning
# ``shared_y`` we will have to cast it to int. This little hack
# lets ous get around this issue
return shared_x, T.cast(shared_y, 'int32')
# create data vectors
# TODO: fix reshape, ValueError: ('setting an array element with a sequence.', 'Bad inumpyut argument to theano)
#data_x = theano.shared(numpy.random.uniform(size=(N, minibatch, n_in)).astype(theano.config.floatX))
#data_y = theano.shared(numpy.random.uniform(size=(N*minibatch)).astype(theano.config.floatX))
# data_x = numpy.random.uniform(size=(N, minibatch, n_in)).astype(theano.config.floatX)
# data_y = numpy.random.uniform(size=(N*minibatch)).astype('int32')
feature, label = preprocessData(dataset)
train_set, valid_set, test_set = trainTestSplit(feature, label)
x_test, y_test = shared_dataset(test_set)
x_valid, y_valid = shared_dataset(valid_set)
x_train, y_train = shared_dataset(train_set)
#x_train, y_train, x_valid, y_valid, x_test, y_test = trainTestSplit(feature, label)
inputIndex = [ u*length*batch_size for u in range(N+1)]
targetIndex = [ u*length*batch_size for u in range(N+1)]
seq = { 'inputs':inputIndex, 'targets':targetIndex }
#-----------------------------------------
# RNN SETUP
#-----------------------------------------
# initialize random generator
rng = numpy.random.RandomState(1234)
# construct the CTC_RNN class
classifier = RNN(rng=rng, output_taps=output_taps, n_in=n_in, n_hidden=n_hidden, n_out=n_out, mode=mode, profile=profile)
# fetch the training function
train_fn = classifier.build_finetune_functions(x_train, y_train, learning_rate, mode, profile)
#-----------------------------------------
# BENCHMARK START
#-----------------------------------------
# start the benchmark
start_time = time.clock()
print('Running', n_epochs)
for _ in range(n_epochs) :
for j in range(0,N,batch_size) :
cost = train_fn(seq['inputs'][j], seq['inputs'][j+batch_size], seq['targets'][j], seq['targets'][j+batch_size])
print("cost", cost)
print >> sys.stderr, (' training epoch time (%.5fm)' % ((time.clock()-start_time)/60.))
#---------------------------------------------------------------------------------
if __name__ == '__main__':
Engine(n_epochs=10)