-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
210 lines (168 loc) · 9.07 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import argparse
import copy
import datetime
import glob
import logging
import numpy as np
import os
import shutil
import sys
import torch
import traceback
import time
import yaml
from runners import *
def parse_args_and_config():
parser = argparse.ArgumentParser(description=globals()['__doc__'])
parser.add_argument('--config', type=str, required=True, help='Path to the config file')
parser.add_argument('--data_path', type=str, required=True, help='Path to the dataset')
parser.add_argument('--seed', type=int, default=1234, help='Random seed')
parser.add_argument('--exp', type=str, default='exp', required=True, help='Path for saving running related data.')
parser.add_argument('--comment', type=str, default='', help='A string for experiment comment')
parser.add_argument('--verbose', type=str, default='info', help='Verbose level: info | debug | warning | critical')
parser.add_argument('--resume_training', action='store_true', help='Whether to resume training')
parser.add_argument('--feats_dir', type=str, default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'datasets'),
help='Path to directory containing InceptionV3 feats pt files')
parser.add_argument('--stats_dir', type=str, default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'datasets'),
help='Path to directory containing fid_stats npz files')
parser.add_argument('--stats_download', action='store_true', help='Whether to download fid stats')
parser.add_argument('--fid_batch_size', type=int, default=1000, help='Batch size in InceptionNetV3 for FID calc')
parser.add_argument('--no_pr', action='store_true', help="No PR calc, only FID calc. Generally unnecessary.")
parser.add_argument('--fid_num_samples', type=int, default=None, help='# of samples for FID, to override config.fast_fid.num_samples, when using sample/test/fast_fid')
parser.add_argument('--pr_nn_k', type=int, default=None, help='# of nearest neighbours for Precision/Recall, to override config.fast_fid.pr_nn_k, when using sample/test/fast_fid')
parser.add_argument('-i', '--image_folder', type=str, default='images', help="The folder name of samples")
parser.add_argument('--final_only', type=eval, default=None, choices=[True, False], help='Whether to save ONLY final image or all sampling steps, when using sample/test/fast_fid')
parser.add_argument('--end_ckpt', type=int, default=None, help='Model checkpoint # to load until, when using test/fast_fid')
parser.add_argument('--freq', type=int, default=None, help='Model checkpoint freq to load, when using test/fast_fid')
parser.add_argument('--no_ema', action='store_true', help="Don't use Exponential Moving Average")
parser.add_argument('--ni', action='store_true', help="No interaction. Suitable for Slurm Job launcher")
parser.add_argument('--interact', action='store_true', help='Whether to interact') # basically do nothing
args = parser.parse_args()
args.command = 'python ' + ' '.join(sys.argv)
# args.log_path = os.path.join(args.exp, 'logs', args.doc)
args.log_path = os.path.join(args.exp, 'logs')
# parse config file
with open(args.config, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
assert not config['model'].get('cond_emb', False) or (config['model'].get('cond_emb', False) and config['data'].get('prob_mask_cond',0.0) > 0)
if config['data'].get('prob_mask_sync', False):
assert config['data'].get('prob_mask_cond', 0.0) > 0 and config['data'].get('prob_mask_cond', 0.0) == config['data'].get('prob_mask_future', 0.0)
new_config = dict2namespace(config)
if not args.resume_training:
if os.path.exists(args.log_path):
overwrite = False
if args.ni:
overwrite = True
else:
response = input(f"Folder {args.log_path} already exists.\nOverwrite? (Y/N)")
if response.upper() == 'Y':
overwrite = True
if overwrite:
shutil.rmtree(args.log_path)
os.makedirs(args.log_path)
else:
print("Folder exists. Program halted.")
sys.exit(0)
else:
os.makedirs(args.log_path)
with open(os.path.join(args.log_path, 'config.yml'), 'w') as f:
yaml.dump(config, f, default_flow_style=False)
with open(os.path.join(args.log_path, 'args.yml'), 'w') as f:
yaml.dump(vars(args), f, default_flow_style=False)
# Code
code_path = os.path.join(args.exp, 'code')
os.makedirs(code_path, exist_ok=True)
copy_scripts(os.path.dirname(os.path.abspath(__file__)), code_path)
# new_config.tb_logger = tb.SummaryWriter(log_dir=tb_path)
# setup logger
level = getattr(logging, args.verbose.upper(), None)
if not isinstance(level, int):
raise ValueError('level {} not supported'.format(args.verbose))
handler1 = logging.StreamHandler()
handler2 = logging.FileHandler(os.path.join(args.log_path, 'stdout.txt'))
formatter = logging.Formatter('%(levelname)s - %(filename)s - %(asctime)s - %(message)s')
handler1.setFormatter(formatter)
handler2.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(handler1)
logger.addHandler(handler2)
logger.setLevel(level)
# add device
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
logging.info("Using device: {}".format(device))
new_config.device = device
config_uncond = new_config
# set random seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.benchmark = True
return args, new_config, config_uncond
def copy_scripts(src, dst):
print("Copying scripts in", src, "to", dst)
for file in glob.glob(os.path.join(src, '*.sh')) + \
glob.glob(os.path.join(src, '*.py')) + \
glob.glob(os.path.join(src, '*_means.pt')) + \
glob.glob(os.path.join(src, '*.data')) + \
glob.glob(os.path.join(src, '*.cfg')) + \
glob.glob(os.path.join(src, '*.yml')) + \
glob.glob(os.path.join(src, '*.names')):
shutil.copy(file, dst)
for d in glob.glob(os.path.join(src, '*/')):
if '__' not in os.path.basename(os.path.dirname(d)) and \
'.' not in os.path.basename(os.path.dirname(d))[0] and \
'ipynb' not in os.path.basename(os.path.dirname(d)) and \
os.path.basename(os.path.dirname(d)) != 'data' and \
os.path.basename(os.path.dirname(d)) != 'experiments' and \
os.path.basename(os.path.dirname(d)) != 'assets' and \
'experiments' not in os.path.basename(os.path.dirname(d)):
if os.path.abspath(d) in os.path.abspath(dst):
continue
print("Copying", d)
# shutil.copytree(d, os.path.join(dst, d))
new_dir = os.path.join(dst, os.path.basename(os.path.normpath(d)))
os.makedirs(new_dir, exist_ok=True)
copy_scripts(d, new_dir)
def dict2namespace(config):
namespace = argparse.Namespace()
for key, value in config.items():
if isinstance(value, dict):
new_value = dict2namespace(value)
else:
new_value = value
setattr(namespace, key, new_value)
return namespace
def main():
args, config, config_uncond = parse_args_and_config()
logging.info("{}".format(args))
logging.info("Writing log file to {}".format(args.log_path))
logging.info("Exp instance id = {}".format(os.getpid()))
logging.info("Exp comment = {}".format(args.comment))
logging.info("Config =")
print(">" * 80)
config_dict = copy.copy(vars(config))
# if not args.test and not args.sample and not args.fast_fid:
# del config_dict['tb_logger']
print(yaml.dump(config_dict, default_flow_style=False))
print("<" * 80)
logging.info("Args =")
print(">" * 80)
args_dict = copy.copy(vars(args))
# if not args.test and not args.sample and not args.fast_fid:
# del config_dict['tb_logger']
print(yaml.dump(args_dict, default_flow_style=False))
print("<" * 80)
try:
runner = NCSNRunner(args, config, config_uncond)
runner.train()
except:
logging.error(traceback.format_exc())
logging.info(datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'))
return runner, args, config
if __name__ == '__main__':
runner, args, config = main()
if not args.interact:
sys.exit()
# python ../main.py --config /path/to/GitHubRepos/ncsnv2-gvv/configs/cifar10_DDPM.yml --data_path /path/to/data/CIFAR10 --exp /path/to/ncsnv2/cifar10/00_DDPM_L1a_800k --comment Using L1a, unet, DDPM --seed 0 --ni
# CUDA_VISIBLE_DEVICES=2 python main.py --config configs/smmnist_DDPM_small.yaml --data_path /path/to/data/MNIST --exp /path/to/ncsnv2/SMMNIST/DDPM_small_1c5 --comment "Using L1a, unet, DDPM SMALL! Gen 1 frame conditioned on 5 frames" --seed 0 --ni