-
Notifications
You must be signed in to change notification settings - Fork 523
/
Copy pathdata_process.py
157 lines (128 loc) · 5.12 KB
/
data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import csv
import itertools
import re
import json
import jsonlines
import psutil
import ujson
import numpy as np
import pandas as pd
from transformers import AutoTokenizer
from datasets import load_dataset
bos_token = "<s>"
eos_token = "</s>"
def pretrain_process(chunk_size=50000):
chunk_idx = 0
with jsonlines.open('./dataset/mobvoi_seq_monkey_general_open_corpus.jsonl') as reader:
with open('./dataset/pretrain_data.csv', 'w', newline='', encoding='utf-8') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(['text'])
while True:
chunk = list(itertools.islice(reader, chunk_size))
if not chunk:
break
for idx, obj in enumerate(chunk):
try:
content = obj.get('text', '')
if len(content) > 512:
continue
writer.writerow([content])
except UnicodeDecodeError as e:
print(f"Skipping invalid line {chunk_idx * chunk_size + idx + 1}: {e}")
continue
chunk_idx += 1
print('chunk:', ((chunk_idx - 1) * chunk_size, chunk_idx * chunk_size), 'process end')
def sft_process(contain_history=False):
file_name = 'sft_data.csv'
if not contain_history:
file_name = 'sft_data_single.csv'
def chinese_ratio(text):
# 匹配所有中文字符
chinese_chars = re.findall(r'[\u4e00-\u9fff]', text)
# 中文字符数量占比
return len(chinese_chars) / len(text) if text else 0
def process_and_write_data(data):
q_lst, a_lst, history_lst = [], [], []
for per in data:
history, q, a = per['history'], per['q'], per['a']
if (contain_history and not history) or not q or not a:
continue
if len(q) < 10 or len(a) < 5:
continue
if len(q) > 512 or len(a) > 512:
continue
# 判断q和a中中文字符占比是否超过70%
if not (chinese_ratio(q) > 0.5 and chinese_ratio(a) > 0.5):
continue
q_lst.append(q)
a_lst.append(a)
if contain_history:
history_lst.append(history)
else:
history_lst.append([])
# 创建DataFrame并追加到CSV文件
df = pd.DataFrame({'history': history_lst, 'q': q_lst, 'a': a_lst})
# # 1、默认
# df.to_csv(f'./dataset/{file_name}', mode='a', header=False, index=False, lineterminator='\r\n', encoding='utf-8')
# 2、若遇到数据 `_csv.Error: need to escape, but no escapechar set` 问题,可加 escapechar='\\' 参数:
df.to_csv(f'./dataset/{file_name}', mode='a', header=False, index=False, lineterminator='\r\n', escapechar='\\',
encoding='utf-8')
chunk_size = 1000 # 每次处理的记录数
data = []
with open(f'./dataset/{file_name}', 'w', encoding='utf-8') as f:
f.write('history,q,a\n')
sft_datasets = ['./dataset/sft_data_zh.jsonl']
if not contain_history:
sft_datasets = ['./dataset/sft_data_zh.jsonl']
chunk_num = 0
for path in sft_datasets:
with jsonlines.open(path) as reader:
for idx, obj in enumerate(reader):
try:
data.append({
'history': obj.get('history', ''),
'q': obj.get('input', '') + obj.get('q', ''),
'a': obj.get('output', '') + obj.get('a', '')
})
if len(data) >= chunk_size:
chunk_num += 1
process_and_write_data(data)
data = []
if chunk_num % 100 == 0:
print(f'chunk:{chunk_num} process end')
except jsonlines.InvalidLineError as e:
print(f"Skipping invalid JSON line {idx + 1}: {e}")
continue
if data:
process_and_write_data(data)
data = []
def rl_process():
################
# Dataset
################
dataset_paths = [
'./dataset/dpo/dpo_zh_demo.json',
'./dataset/dpo/dpo_train_data.json',
'./dataset/dpo/huozi_rlhf_data.json',
]
train_dataset = load_dataset('json', data_files=dataset_paths)
merged_data = []
for split in train_dataset.keys():
merged_data.extend(train_dataset[split])
with open('./dataset/dpo/train_data.json', 'w', encoding='utf-8') as f:
json.dump(merged_data, f, ensure_ascii=False, indent=4)
if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer', use_fast=False)
print('tokenizer词表大小:', len(tokenizer))
################
# 1: pretrain
# 2: sft
# 3: RL
################
process_type = 2
if process_type == 1:
pretrain_process()
if process_type == 2:
sft_process(contain_history=False)
if process_type == 3:
rl_process()