-
Notifications
You must be signed in to change notification settings - Fork 380
/
3-full_sft.py
216 lines (174 loc) · 8.37 KB
/
3-full_sft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import platform
import argparse
import time
import math
import warnings
import pandas as pd
import torch
import torch.nn.functional as F
import torch.distributed as dist
from contextlib import nullcontext
from torch import optim
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader, DistributedSampler
from transformers import AutoTokenizer, AutoModelForCausalLM
from model.model import Transformer
from model.LMConfig import LMConfig
from model.dataset import SFTDataset
warnings.filterwarnings('ignore')
def Logger(content):
if not ddp or dist.get_rank() == 0:
print(content)
def get_lr(it, all):
warmup_iters = args.warmup_iters
lr_decay_iters = all
min_lr = args.learning_rate / 10
if it < warmup_iters:
return args.learning_rate * it / warmup_iters
if it > lr_decay_iters:
return min_lr
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (args.learning_rate - min_lr)
def train_epoch(epoch, wandb):
start_time = time.time()
for step, (X, Y, loss_mask) in enumerate(train_loader):
X = X.to(args.device)
Y = Y.to(args.device)
loss_mask = loss_mask.to(args.device)
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
with ctx:
logits = model(X, Y).logits
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), Y.view(-1), ignore_index=0, reduction='none')
loss_mask = loss_mask.view(-1)
loss = torch.sum(loss * loss_mask) / loss_mask.sum()
scaler.scale(loss).backward()
if (step + 1) % args.accumulation_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
if step % args.log_interval == 0:
spend_time = time.time() - start_time
Logger(
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
epoch,
args.epochs,
step,
iter_per_epoch,
loss.item(),
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
if (wandb is not None) and (not ddp or dist.get_rank() == 0):
wandb.log({"loss": loss,
"lr": optimizer.param_groups[-1]['lr'],
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
model.eval()
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'{args.save_dir}/full_sft_{lm_config.dim}{moe_path}.pth'
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save(state_dict, ckp)
model.train()
def init_model():
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
model_from = 1 # 1从权重,2用transformers
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
if model_from == 1:
model = Transformer(lm_config)
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'./out/pretrain_{lm_config.dim}{moe_path}.pth'
state_dict = torch.load(ckp, map_location=args.device)
unwanted_prefix = '_orig_mod.'
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
model.load_state_dict(state_dict, strict=False)
else:
model = AutoModelForCausalLM.from_pretrained('./minimind-v1-small', trust_remote_code=True)
Logger(f'LLM总参数量:{count_parameters(model) / 1e6:.3f} 百万')
model = model.to(args.device)
return model, tokenizer
def init_distributed_mode():
if not ddp: return
global ddp_local_rank, DEVICE
dist.init_process_group(backend="nccl")
ddp_rank = int(os.environ["RANK"])
ddp_local_rank = int(os.environ["LOCAL_RANK"])
ddp_world_size = int(os.environ["WORLD_SIZE"])
DEVICE = f"cuda:{ddp_local_rank}"
torch.cuda.set_device(DEVICE)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="MiniMind Full SFT")
parser.add_argument("--out_dir", type=str, default="out", help="Output directory")
parser.add_argument("--epochs", type=int, default=19, help="Number of epochs")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size")
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate")
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type")
parser.add_argument("--use_wandb", action="store_true", help="Use Weights & Biases")
parser.add_argument("--wandb_project", type=str, default="MiniMind-Full-SFT", help="Weights & Biases project name")
parser.add_argument("--num_workers", type=int, default=1, help="Number of workers for data loading")
parser.add_argument("--ddp", action="store_true", help="Use DistributedDataParallel")
parser.add_argument("--accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold")
parser.add_argument("--warmup_iters", type=int, default=0, help="Number of warmup iterations")
parser.add_argument("--log_interval", type=int, default=100, help="Logging interval")
parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval")
parser.add_argument('--local_rank', type=int, default=-1, help='local rank for distributed training')
args = parser.parse_args()
lm_config = LMConfig()
max_seq_len = lm_config.max_seq_len
args.save_dir = os.path.join(args.out_dir)
os.makedirs(args.save_dir, exist_ok=True)
os.makedirs(args.out_dir, exist_ok=True)
tokens_per_iter = args.batch_size * max_seq_len
torch.manual_seed(1337)
device_type = "cuda" if "cuda" in args.device else "cpu"
args.wandb_run_name = f"MiniMind-Full-SFT-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
ddp_local_rank, DEVICE = 0, "cuda:0"
if ddp:
init_distributed_mode()
args.device = torch.device(DEVICE)
if args.use_wandb and (not ddp or ddp_local_rank == 0):
import wandb
wandb.init(project=args.wandb_project, name=args.wandb_run_name)
else:
wandb = None
model, tokenizer = init_model()
df = pd.read_csv('./dataset/sft_data_single.csv')
df = df.sample(frac=1.0)
train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len)
train_sampler = DistributedSampler(train_ds) if ddp else None
train_loader = DataLoader(
train_ds,
batch_size=args.batch_size,
pin_memory=True,
drop_last=False,
shuffle=False,
num_workers=args.num_workers,
sampler=train_sampler
)
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
if False and not lm_config.use_moe and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:
Logger("compiling the model... (takes a ~minute)")
unoptimized_model = model
model = torch.compile(model)
if ddp:
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
iter_per_epoch = len(train_loader)
for epoch in range(args.epochs):
train_epoch(epoch, wandb)