forked from a-r-r-o-w/finetrainers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
args.py
484 lines (468 loc) · 16.5 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import argparse
def _get_model_args(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
def _get_dataset_args(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"--data_root",
type=str,
default=None,
help=("A folder containing the training data."),
)
parser.add_argument(
"--dataset_file",
type=str,
default=None,
help=("Path to a CSV file if loading prompts/video paths using this format."),
)
parser.add_argument(
"--video_column",
type=str,
default="video",
help="The column of the dataset containing videos. Or, the name of the file in `--data_root` folder containing the line-separated path to video data.",
)
parser.add_argument(
"--caption_column",
type=str,
default="text",
help="The column of the dataset containing the instance prompt for each video. Or, the name of the file in `--data_root` folder containing the line-separated instance prompts.",
)
parser.add_argument(
"--id_token",
type=str,
default=None,
help="Identifier token appended to the start of each prompt if provided.",
)
parser.add_argument(
"--height_buckets",
nargs="+",
type=int,
default=[256, 320, 384, 480, 512, 576, 720, 768, 960, 1024, 1280, 1536],
)
parser.add_argument(
"--width_buckets",
nargs="+",
type=int,
default=[256, 320, 384, 480, 512, 576, 720, 768, 960, 1024, 1280, 1536],
)
parser.add_argument(
"--frame_buckets",
nargs="+",
type=int,
default=[49],
help="CogVideoX1.5 need to guarantee that ((num_frames - 1) // self.vae_scale_factor_temporal + 1) % patch_size_t == 0, such as 53"
)
parser.add_argument(
"--load_tensors",
action="store_true",
help="Whether to use a pre-encoded tensor dataset of latents and prompt embeddings instead of videos and text prompts. The expected format is that saved by running the `prepare_dataset.py` script.",
)
parser.add_argument(
"--random_flip",
type=float,
default=None,
help="If random horizontal flip augmentation is to be used, this should be the flip probability.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
)
parser.add_argument(
"--pin_memory",
action="store_true",
help="Whether or not to use the pinned memory setting in pytorch dataloader.",
)
def _get_validation_args(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"--validation_prompt",
type=str,
default=None,
help="One or more prompt(s) that is used during validation to verify that the model is learning. Multiple validation prompts should be separated by the '--validation_prompt_seperator' string.",
)
parser.add_argument(
"--validation_images",
type=str,
default=None,
help="One or more image path(s)/URLs that is used during validation to verify that the model is learning. Multiple validation paths should be separated by the '--validation_prompt_seperator' string. These should correspond to the order of the validation prompts.",
)
parser.add_argument(
"--validation_prompt_separator",
type=str,
default=":::",
help="String that separates multiple validation prompts",
)
parser.add_argument(
"--num_validation_videos",
type=int,
default=1,
help="Number of videos that should be generated during validation per `validation_prompt`.",
)
parser.add_argument(
"--validation_epochs",
type=int,
default=None,
help="Run validation every X training epochs. Validation consists of running the validation prompt `args.num_validation_videos` times.",
)
parser.add_argument(
"--validation_steps",
type=int,
default=None,
help="Run validation every X training steps. Validation consists of running the validation prompt `args.num_validation_videos` times.",
)
parser.add_argument(
"--guidance_scale",
type=float,
default=6,
help="The guidance scale to use while sampling validation videos.",
)
parser.add_argument(
"--use_dynamic_cfg",
action="store_true",
default=False,
help="Whether or not to use the default cosine dynamic guidance schedule when sampling validation videos.",
)
parser.add_argument(
"--enable_model_cpu_offload",
action="store_true",
default=False,
help="Whether or not to enable model-wise CPU offloading when performing validation/testing to save memory.",
)
def _get_training_args(parser: argparse.ArgumentParser) -> None:
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--rank", type=int, default=64, help="The rank for LoRA matrices.")
parser.add_argument(
"--lora_alpha",
type=int,
default=64,
help="The lora_alpha to compute scaling factor (lora_alpha / rank) for LoRA matrices.",
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.and an Nvidia Ampere GPU. "
"Default to the value of accelerate config of the current system or the flag passed with the `accelerate.launch` command. Use this "
"argument to override the accelerate config."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="cogvideox-sft",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--height",
type=int,
default=480,
help="All input videos are resized to this height.",
)
parser.add_argument(
"--width",
type=int,
default=720,
help="All input videos are resized to this width.",
)
parser.add_argument(
"--video_reshape_mode",
type=str,
default=None,
help="All input videos are reshaped to this mode. Choose between ['center', 'random', 'none']",
)
parser.add_argument("--fps", type=int, default=8, help="All input videos will be used at this FPS.")
parser.add_argument(
"--max_num_frames",
type=int,
default=49,
help="All input videos will be truncated to these many frames.",
)
parser.add_argument(
"--skip_frames_start",
type=int,
default=0,
help="Number of frames to skip from the beginning of each input video. Useful if training data contains intro sequences.",
)
parser.add_argument(
"--skip_frames_end",
type=int,
default=0,
help="Number of frames to skip from the end of each input video. Useful if training data contains outro sequences.",
)
parser.add_argument(
"--train_batch_size",
type=int,
default=4,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides `--num_train_epochs`.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps",
type=int,
default=500,
help="Number of steps for the warmup in the lr scheduler.",
)
parser.add_argument(
"--lr_num_cycles",
type=int,
default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument(
"--lr_power",
type=float,
default=1.0,
help="Power factor of the polynomial scheduler.",
)
parser.add_argument(
"--enable_slicing",
action="store_true",
default=False,
help="Whether or not to use VAE slicing for saving memory.",
)
parser.add_argument(
"--enable_tiling",
action="store_true",
default=False,
help="Whether or not to use VAE tiling for saving memory.",
)
parser.add_argument(
"--noised_image_dropout",
type=float,
default=0.05,
help="Image condition dropout probability when finetuning image-to-video.",
)
parser.add_argument(
"--ignore_learned_positional_embeddings",
action="store_true",
default=False,
help=(
"Whether to ignore the learned positional embeddings when training CogVideoX Image-to-Video. This setting "
"should be used when performing multi-resolution training, because CogVideoX-I2V does not support it "
"otherwise. Please read the comments in https://github.com/a-r-r-o-w/cogvideox-factory/issues/26 to understand why."
),
)
def _get_optimizer_args(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"--optimizer",
type=lambda s: s.lower(),
default="adam",
choices=["adam", "adamw", "prodigy", "came"],
help=("The optimizer type to use."),
)
parser.add_argument(
"--use_8bit",
action="store_true",
help="Whether or not to use 8-bit optimizers from `bitsandbytes` or `bitsandbytes`.",
)
parser.add_argument(
"--use_4bit",
action="store_true",
help="Whether or not to use 4-bit optimizers from `torchao`.",
)
parser.add_argument(
"--use_torchao", action="store_true", help="Whether or not to use the `torchao` backend for optimizers."
)
parser.add_argument(
"--beta1",
type=float,
default=0.9,
help="The beta1 parameter for the Adam and Prodigy optimizers.",
)
parser.add_argument(
"--beta2",
type=float,
default=0.95,
help="The beta2 parameter for the Adam and Prodigy optimizers.",
)
parser.add_argument(
"--beta3",
type=float,
default=None,
help="Coefficients for computing the Prodigy optimizer's stepsize using running averages. If set to None, uses the value of square root of beta2.",
)
parser.add_argument(
"--prodigy_decouple",
action="store_true",
help="Use AdamW style decoupled weight decay.",
)
parser.add_argument(
"--weight_decay",
type=float,
default=1e-04,
help="Weight decay to use for optimizer.",
)
parser.add_argument(
"--epsilon",
type=float,
default=1e-8,
help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
)
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--prodigy_use_bias_correction",
action="store_true",
help="Turn on Adam's bias correction.",
)
parser.add_argument(
"--prodigy_safeguard_warmup",
action="store_true",
help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage.",
)
parser.add_argument(
"--use_cpu_offload_optimizer",
action="store_true",
help="Whether or not to use the CPUOffloadOptimizer from TorchAO to perform optimization step and maintain parameters on the CPU.",
)
parser.add_argument(
"--offload_gradients",
action="store_true",
help="Whether or not to offload the gradients to CPU when using the CPUOffloadOptimizer from TorchAO.",
)
def _get_configuration_args(parser: argparse.ArgumentParser) -> None:
parser.add_argument("--tracker_name", type=str, default=None, help="Project tracker name")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the model to the Hub.",
)
parser.add_argument(
"--hub_token",
type=str,
default=None,
help="The token to use to push to the Model Hub.",
)
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help="Directory where logs are stored.",
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--nccl_timeout",
type=int,
default=600,
help="Maximum timeout duration before which allgather, or related, operations fail in multi-GPU/multi-node training settings.",
)
parser.add_argument(
"--report_to",
type=str,
default=None,
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
def get_args():
parser = argparse.ArgumentParser(description="Simple example of a training script for CogVideoX.")
_get_model_args(parser)
_get_dataset_args(parser)
_get_training_args(parser)
_get_validation_args(parser)
_get_optimizer_args(parser)
_get_configuration_args(parser)
return parser.parse_args()