forked from shibing624/MedicalGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gradio_demo.py
247 lines (223 loc) · 8.85 KB
/
gradio_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description:
pip install gradio
pip install mdtex2html
"""
import argparse
import os
from threading import Thread
import gradio as gr
import mdtex2html
import torch
from peft import PeftModel
from transformers import (
AutoModel,
AutoTokenizer,
AutoModelForCausalLM,
BloomForCausalLM,
BloomTokenizerFast,
LlamaTokenizer,
LlamaForCausalLM,
GenerationConfig,
TextIteratorStreamer,
)
from supervised_finetuning import get_conv_template
MODEL_CLASSES = {
"bloom": (BloomForCausalLM, BloomTokenizerFast),
"chatglm": (AutoModel, AutoTokenizer),
"llama": (LlamaForCausalLM, LlamaTokenizer),
"baichuan": (AutoModelForCausalLM, AutoTokenizer),
"auto": (AutoModelForCausalLM, AutoTokenizer),
}
@torch.inference_mode()
def stream_generate_answer(
model,
tokenizer,
prompt,
device,
max_new_tokens=512,
temperature=0.7,
top_p=0.8,
repetition_penalty=1.0,
context_len=2048,
):
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
input_ids = tokenizer(prompt).input_ids
max_src_len = context_len - max_new_tokens - 8
input_ids = input_ids[-max_src_len:]
generation_kwargs = dict(
input_ids=torch.as_tensor([input_ids]).to(device),
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
streamer=streamer,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
yield from streamer
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', default=None, type=str, required=True)
parser.add_argument('--base_model', default=None, type=str, required=True)
parser.add_argument('--lora_model', default="", type=str, help="If None, perform inference on the base model")
parser.add_argument('--tokenizer_path', default=None, type=str)
parser.add_argument('--template_name', default="vicuna", type=str,
help="Prompt template name, eg: alpaca, vicuna, baichuan-chat, chatglm2 etc.")
parser.add_argument('--gpus', default="0", type=str)
parser.add_argument('--only_cpu', action='store_true', help='only use CPU for inference')
parser.add_argument('--resize_emb', action='store_true', help='Whether to resize model token embeddings')
parser.add_argument('--share', default=True, help='Share gradio')
parser.add_argument('--port', default=8081, type=int, help='Port of gradio demo')
args = parser.parse_args()
print(args)
if args.only_cpu is True:
args.gpus = ""
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
text = "".join(lines)
return text
load_type = torch.float16
if torch.cuda.is_available():
device = torch.device(0)
else:
device = torch.device('cpu')
if args.tokenizer_path is None:
args.tokenizer_path = args.base_model
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_path, trust_remote_code=True)
base_model = model_class.from_pretrained(
args.base_model,
load_in_8bit=False,
torch_dtype=load_type,
low_cpu_mem_usage=True,
device_map='auto',
trust_remote_code=True,
)
try:
base_model.generation_config = GenerationConfig.from_pretrained(args.base_model, trust_remote_code=True)
except OSError:
print("Failed to load generation config, use default.")
if args.resize_emb:
model_vocab_size = base_model.get_input_embeddings().weight.size(0)
tokenzier_vocab_size = len(tokenizer)
print(f"Vocab of the base model: {model_vocab_size}")
print(f"Vocab of the tokenizer: {tokenzier_vocab_size}")
if model_vocab_size != tokenzier_vocab_size:
print("Resize model embeddings to fit tokenizer")
base_model.resize_token_embeddings(tokenzier_vocab_size)
if args.lora_model:
model = PeftModel.from_pretrained(base_model, args.lora_model, torch_dtype=load_type, device_map='auto')
print("loaded lora model")
else:
model = base_model
if device == torch.device('cpu'):
model.float()
model.eval()
prompt_template = get_conv_template(args.template_name)
stop_str = tokenizer.eos_token if tokenizer.eos_token else prompt_template.stop_str
def reset_user_input():
return gr.update(value='')
def reset_state():
return [], []
def predict(
now_input,
chatbot,
history,
max_new_tokens,
temperature,
top_p
):
chatbot.append((parse_text(now_input), ""))
history = history or []
history.append([now_input, ''])
prompt = prompt_template.get_prompt(messages=history)
response = ""
for new_text in stream_generate_answer(
model,
tokenizer,
prompt,
device,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
):
stop = False
pos = new_text.find(stop_str)
if pos != -1:
new_text = new_text[:pos]
stop = True
response += new_text
history[-1][-1] = response
chatbot[-1] = (parse_text(now_input), parse_text(response))
yield chatbot, history
if stop:
break
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">MedicalGPT</h1>""")
gr.Markdown(
"> 为了促进医疗行业大模型的开放研究,本项目开源了[MedicalGPT](https://github.com/shibing624/MedicalGPT)医疗大模型")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(
0, 4096, value=512, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.8, step=0.01,
label="Top P", interactive=True)
temperature = gr.Slider(
0, 1, value=0.7, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
submitBtn.click(predict, [user_input, chatbot, history, max_length, temperature, top_p], [chatbot, history],
show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
demo.queue().launch(share=args.share, inbrowser=True, server_name='0.0.0.0', server_port=args.port)
if __name__ == '__main__':
main()