以下代码分析基于
kubernetes v1.12.0
版本。
本文主要分析调度逻辑中的预选策略,即第一步筛选出符合pod调度条件的节点。
1. 调用入口
预选,通过预选函数来判断每个节点是否适合被该Pod调度。
genericScheduler.Schedule
中对findNodesThatFit
的调用过程如下:
此部分代码位于pkg/scheduler/core/generic_scheduler.go
func (g *genericScheduler) Schedule(pod *v1.Pod, nodeLister algorithm.NodeLister) (string, error) {
...
// 列出所有的节点
nodes, err := nodeLister.List()
if err != nil {
return "", err
}
if len(nodes) == 0 {
return "", ErrNoNodesAvailable
}
// Used for all fit and priority funcs.
err = g.cache.UpdateNodeNameToInfoMap(g.cachedNodeInfoMap)
if err != nil {
return "", err
}
trace.Step("Computing predicates")
startPredicateEvalTime := time.Now()
// 调用findNodesThatFit过滤出预选节点
filteredNodes, failedPredicateMap, err := g.findNodesThatFit(pod, nodes)
if err != nil {
return "", err
}
if len(filteredNodes) == 0 {
return "", &FitError{
Pod: pod,
NumAllNodes: len(nodes),
FailedPredicates: failedPredicateMap,
}
}
// metrics
metrics.SchedulingAlgorithmPredicateEvaluationDuration.Observe(metrics.SinceInMicroseconds(startPredicateEvalTime))
metrics.SchedulingLatency.WithLabelValues(metrics.PredicateEvaluation).Observe(metrics.SinceInSeconds(startPredicateEvalTime))
...
}
核心代码:
// 调用findNodesThatFit过滤出预选节点
filteredNodes, failedPredicateMap, err := g.findNodesThatFit(pod, nodes)
findNodesThatFit
基于给定的预选函数过滤node,每个node传入到预选函数中来确实该节点是否符合要求。
findNodesThatFit
的入参是被调度的pod和当前的节点列表,返回预选节点列表和错误。
findNodesThatFit
基本流程如下:
- 设置可行节点的总数,作为预选节点数组的容量,避免总节点过多需要筛选的节点过多。
- 通过
NodeTree
不断获取下一个节点来判断该节点是否满足pod的调度条件。 - 通过之前注册的各种预选函数来判断当前节点是否符合pod的调度条件。
- 最后返回满足调度条件的node列表,供下一步的优选操作。
findNodesThatFit
完整代码如下:
此部分代码位于pkg/scheduler/core/generic_scheduler.go
// Filters the nodes to find the ones that fit based on the given predicate functions
// Each node is passed through the predicate functions to determine if it is a fit
func (g *genericScheduler) findNodesThatFit(pod *v1.Pod, nodes []*v1.Node) ([]*v1.Node, FailedPredicateMap, error) {
var filtered []*v1.Node
failedPredicateMap := FailedPredicateMap{}
if len(g.predicates) == 0 {
filtered = nodes
} else {
allNodes := int32(g.cache.NodeTree().NumNodes)
numNodesToFind := g.numFeasibleNodesToFind(allNodes)
// Create filtered list with enough space to avoid growing it
// and allow assigning.
filtered = make([]*v1.Node, numNodesToFind)
errs := errors.MessageCountMap{}
var (
predicateResultLock sync.Mutex
filteredLen int32
equivClass *equivalence.Class
)
ctx, cancel := context.WithCancel(context.Background())
// We can use the same metadata producer for all nodes.
meta := g.predicateMetaProducer(pod, g.cachedNodeInfoMap)
if g.equivalenceCache != nil {
// getEquivalenceClassInfo will return immediately if no equivalence pod found
equivClass = equivalence.NewClass(pod)
}
checkNode := func(i int) {
var nodeCache *equivalence.NodeCache
nodeName := g.cache.NodeTree().Next()
if g.equivalenceCache != nil {
nodeCache, _ = g.equivalenceCache.GetNodeCache(nodeName)
}
fits, failedPredicates, err := podFitsOnNode(
pod,
meta,
g.cachedNodeInfoMap[nodeName],
g.predicates,
g.cache,
nodeCache,
g.schedulingQueue,
g.alwaysCheckAllPredicates,
equivClass,
)
if err != nil {
predicateResultLock.Lock()
errs[err.Error()]++
predicateResultLock.Unlock()
return
}
if fits {
length := atomic.AddInt32(&filteredLen, 1)
if length > numNodesToFind {
cancel()
atomic.AddInt32(&filteredLen, -1)
} else {
filtered[length-1] = g.cachedNodeInfoMap[nodeName].Node()
}
} else {
predicateResultLock.Lock()
failedPredicateMap[nodeName] = failedPredicates
predicateResultLock.Unlock()
}
}
// Stops searching for more nodes once the configured number of feasible nodes
// are found.
workqueue.ParallelizeUntil(ctx, 16, int(allNodes), checkNode)
filtered = filtered[:filteredLen]
if len(errs) > 0 {
return []*v1.Node{}, FailedPredicateMap{}, errors.CreateAggregateFromMessageCountMap(errs)
}
}
if len(filtered) > 0 && len(g.extenders) != 0 {
for _, extender := range g.extenders {
if !extender.IsInterested(pod) {
continue
}
filteredList, failedMap, err := extender.Filter(pod, filtered, g.cachedNodeInfoMap)
if err != nil {
if extender.IsIgnorable() {
glog.Warningf("Skipping extender %v as it returned error %v and has ignorable flag set",
extender, err)
continue
} else {
return []*v1.Node{}, FailedPredicateMap{}, err
}
}
for failedNodeName, failedMsg := range failedMap {
if _, found := failedPredicateMap[failedNodeName]; !found {
failedPredicateMap[failedNodeName] = []algorithm.PredicateFailureReason{}
}
failedPredicateMap[failedNodeName] = append(failedPredicateMap[failedNodeName], predicates.NewFailureReason(failedMsg))
}
filtered = filteredList
if len(filtered) == 0 {
break
}
}
}
return filtered, failedPredicateMap, nil
}
以下对findNodesThatFit
分段分析。
findNodesThatFit
先基于所有的节点找出可行的节点是总数。numFeasibleNodesToFind
的作用主要是避免当节点过多(超过100)影响调度的效率。
allNodes := int32(g.cache.NodeTree().NumNodes)
numNodesToFind := g.numFeasibleNodesToFind(allNodes)
// Create filtered list with enough space to avoid growing it
// and allow assigning.
filtered = make([]*v1.Node, numNodesToFind)
numFeasibleNodesToFind
基本流程如下:
- 如果所有的node节点小于
minFeasibleNodesToFind
(当前默认为100)则返回节点数。 - 如果节点数超100,则取指定计分的百分比的节点数,当该百分比后的数目仍小于
minFeasibleNodesToFind
,则返回minFeasibleNodesToFind
。 - 如果百分比后的数目大于
minFeasibleNodesToFind
,则返回该百分比。
// numFeasibleNodesToFind returns the number of feasible nodes that once found, the scheduler stops
// its search for more feasible nodes.
func (g *genericScheduler) numFeasibleNodesToFind(numAllNodes int32) int32 {
if numAllNodes < minFeasibleNodesToFind || g.percentageOfNodesToScore <= 0 ||
g.percentageOfNodesToScore >= 100 {
return numAllNodes
}
numNodes := numAllNodes * g.percentageOfNodesToScore / 100
if numNodes < minFeasibleNodesToFind {
return minFeasibleNodesToFind
}
return numNodes
}
checkNode
是一个校验node是否符合要求的函数,其中实际调用到的核心函数是podFitsOnNode
。再通过workqueue
并发执行checkNode
操作。
checkNode
主要流程如下:
- 通过cache中的nodeTree不断获取下一个node。
- 将当前node和pod传入
podFitsOnNode
判断当前node是否符合要求。 - 如果当前node符合要求就将当前node加入预选节点的数组中
filtered
。 - 如果当前node不满足要求,则加入到失败的数组中,并记录原因。
- 通过
workqueue.ParallelizeUntil
并发执行checkNode
函数,一旦找到配置的可行节点数,就停止搜索更多节点。
checkNode := func(i int) {
var nodeCache *equivalence.NodeCache
nodeName := g.cache.NodeTree().Next()
if g.equivalenceCache != nil {
nodeCache, _ = g.equivalenceCache.GetNodeCache(nodeName)
}
fits, failedPredicates, err := podFitsOnNode(
pod,
meta,
g.cachedNodeInfoMap[nodeName],
g.predicates,
g.cache,
nodeCache,
g.schedulingQueue,
g.alwaysCheckAllPredicates,
equivClass,
)
if err != nil {
predicateResultLock.Lock()
errs[err.Error()]++
predicateResultLock.Unlock()
return
}
if fits {
length := atomic.AddInt32(&filteredLen, 1)
if length > numNodesToFind {
cancel()
atomic.AddInt32(&filteredLen, -1)
} else {
filtered[length-1] = g.cachedNodeInfoMap[nodeName].Node()
}
} else {
predicateResultLock.Lock()
failedPredicateMap[nodeName] = failedPredicates
predicateResultLock.Unlock()
}
}
workqueue的并发操作:
// Stops searching for more nodes once the configured number of feasible nodes
// are found.
workqueue.ParallelizeUntil(ctx, 16, int(allNodes), checkNode)
ParallelizeUntil
具体代码如下:
// ParallelizeUntil is a framework that allows for parallelizing N
// independent pieces of work until done or the context is canceled.
func ParallelizeUntil(ctx context.Context, workers, pieces int, doWorkPiece DoWorkPieceFunc) {
var stop <-chan struct{}
if ctx != nil {
stop = ctx.Done()
}
toProcess := make(chan int, pieces)
for i := 0; i < pieces; i++ {
toProcess <- i
}
close(toProcess)
if pieces < workers {
workers = pieces
}
wg := sync.WaitGroup{}
wg.Add(workers)
for i := 0; i < workers; i++ {
go func() {
defer utilruntime.HandleCrash()
defer wg.Done()
for piece := range toProcess {
select {
case <-stop:
return
default:
doWorkPiece(piece)
}
}
}()
}
wg.Wait()
}
podFitsOnNode
主要内容如下:
-
podFitsOnNode
会检查给定的某个Node是否满足预选的函数。 -
对于给定的pod,
podFitsOnNode
会检查是否有相同的pod存在,尽量复用缓存过的预选结果。
podFitsOnNode
主要在Schedule
(调度)和Preempt
(抢占)的时候被调用。
当在Schedule
中被调用的时候,主要判断是否可以被调度到当前节点,依据为当前节点上所有已存在的pod及被提名要运行到该节点的具有相等或更高优先级的pod。
当在Preempt
中被调用的时候,即发生抢占的时候,通过SelectVictimsOnNode
函数选出需要被移除的pod,移除后然后将预调度的pod调度到该节点上。
podFitsOnNode基本流程如下:
- 遍历之前注册好的预选策略
predicates.Ordering
,并获取预选策略的执行函数。 - 遍历执行每个预选函数,并返回是否合适,预选失败的原因和错误。
- 如果预选函数执行的结果不合适,则加入预选失败的数组中。
- 最后返回预选失败的个数是否为0,和预选失败的原因。
入参:
- pod
- PredicateMetadata
- NodeInfo
- predicateFuncs
- schedulercache.Cache
- nodeCache
- SchedulingQueue
- alwaysCheckAllPredicates
- equivClass
出参:
- fit
- PredicateFailureReason
完整代码如下:
此部分代码位于pkg/scheduler/core/generic_scheduler.go
// podFitsOnNode checks whether a node given by NodeInfo satisfies the given predicate functions.
// For given pod, podFitsOnNode will check if any equivalent pod exists and try to reuse its cached
// predicate results as possible.
// This function is called from two different places: Schedule and Preempt.
// When it is called from Schedule, we want to test whether the pod is schedulable
// on the node with all the existing pods on the node plus higher and equal priority
// pods nominated to run on the node.
// When it is called from Preempt, we should remove the victims of preemption and
// add the nominated pods. Removal of the victims is done by SelectVictimsOnNode().
// It removes victims from meta and NodeInfo before calling this function.
func podFitsOnNode(
pod *v1.Pod,
meta algorithm.PredicateMetadata,
info *schedulercache.NodeInfo,
predicateFuncs map[string]algorithm.FitPredicate,
cache schedulercache.Cache,
nodeCache *equivalence.NodeCache,
queue SchedulingQueue,
alwaysCheckAllPredicates bool,
equivClass *equivalence.Class,
) (bool, []algorithm.PredicateFailureReason, error) {
var (
eCacheAvailable bool
failedPredicates []algorithm.PredicateFailureReason
)
podsAdded := false
// We run predicates twice in some cases. If the node has greater or equal priority
// nominated pods, we run them when those pods are added to meta and nodeInfo.
// If all predicates succeed in this pass, we run them again when these
// nominated pods are not added. This second pass is necessary because some
// predicates such as inter-pod affinity may not pass without the nominated pods.
// If there are no nominated pods for the node or if the first run of the
// predicates fail, we don't run the second pass.
// We consider only equal or higher priority pods in the first pass, because
// those are the current "pod" must yield to them and not take a space opened
// for running them. It is ok if the current "pod" take resources freed for
// lower priority pods.
// Requiring that the new pod is schedulable in both circumstances ensures that
// we are making a conservative decision: predicates like resources and inter-pod
// anti-affinity are more likely to fail when the nominated pods are treated
// as running, while predicates like pod affinity are more likely to fail when
// the nominated pods are treated as not running. We can't just assume the
// nominated pods are running because they are not running right now and in fact,
// they may end up getting scheduled to a different node.
for i := 0; i < 2; i++ {
metaToUse := meta
nodeInfoToUse := info
if i == 0 {
podsAdded, metaToUse, nodeInfoToUse = addNominatedPods(util.GetPodPriority(pod), meta, info, queue)
} else if !podsAdded || len(failedPredicates) != 0 {
break
}
// Bypass eCache if node has any nominated pods.
// TODO(bsalamat): consider using eCache and adding proper eCache invalidations
// when pods are nominated or their nominations change.
eCacheAvailable = equivClass != nil && nodeCache != nil && !podsAdded
for _, predicateKey := range predicates.Ordering() {
var (
fit bool
reasons []algorithm.PredicateFailureReason
err error
)
//TODO (yastij) : compute average predicate restrictiveness to export it as Prometheus metric
if predicate, exist := predicateFuncs[predicateKey]; exist {
if eCacheAvailable {
fit, reasons, err = nodeCache.RunPredicate(predicate, predicateKey, pod, metaToUse, nodeInfoToUse, equivClass, cache)
} else {
fit, reasons, err = predicate(pod, metaToUse, nodeInfoToUse)
}
if err != nil {
return false, []algorithm.PredicateFailureReason{}, err
}
if !fit {
// eCache is available and valid, and predicates result is unfit, record the fail reasons
failedPredicates = append(failedPredicates, reasons...)
// if alwaysCheckAllPredicates is false, short circuit all predicates when one predicate fails.
if !alwaysCheckAllPredicates {
glog.V(5).Infoln("since alwaysCheckAllPredicates has not been set, the predicate " +
"evaluation is short circuited and there are chances " +
"of other predicates failing as well.")
break
}
}
}
}
}
return len(failedPredicates) == 0, failedPredicates, nil
}
根据之前初注册好的预选策略函数来执行预选,判断节点是否符合调度。
for _, predicateKey := range predicates.Ordering() {
if predicate, exist := predicateFuncs[predicateKey]; exist {
if eCacheAvailable {
fit, reasons, err = nodeCache.RunPredicate(predicate, predicateKey, pod, metaToUse, nodeInfoToUse, equivClass, cache)
} else {
fit, reasons, err = predicate(pod, metaToUse, nodeInfoToUse)
}
预选策略如下:
var (
predicatesOrdering = []string{CheckNodeConditionPred, CheckNodeUnschedulablePred,
GeneralPred, HostNamePred, PodFitsHostPortsPred,
MatchNodeSelectorPred, PodFitsResourcesPred, NoDiskConflictPred,
PodToleratesNodeTaintsPred, PodToleratesNodeNoExecuteTaintsPred, CheckNodeLabelPresencePred,
CheckServiceAffinityPred, MaxEBSVolumeCountPred, MaxGCEPDVolumeCountPred, MaxCSIVolumeCountPred,
MaxAzureDiskVolumeCountPred, CheckVolumeBindingPred, NoVolumeZoneConflictPred,
CheckNodeMemoryPressurePred, CheckNodePIDPressurePred, CheckNodeDiskPressurePred, MatchInterPodAffinityPred}
)
以下以PodFitsResources
这个预选函数为例做分析,其他重要的预选函数待后续单独分析。
PodFitsResources
用来检查一个节点是否有足够的资源来运行当前的pod,包括CPU、内存、GPU等。
PodFitsResources基本流程如下:
- 判断当前节点上pod总数加上预调度pod个数是否大于node的可分配pod总数,若是则不允许调度。
- 判断pod的request值是否都为0,若是则允许调度。
- 判断pod的request值加上当前node上所有pod的request值总和是否大于node的可分配资源,若是则不允许调度。
- 判断pod的拓展资源request值加上当前node上所有pod对应的request值总和是否大于node对应的可分配资源,若是则不允许调度。
PodFitsResources
的注册代码如下:
factory.RegisterFitPredicate(predicates.PodFitsResourcesPred, predicates.PodFitsResources)
PodFitsResources入参:
-
pod
-
nodeInfo
-
PredicateMetadata
PodFitsResources出参:
- fit
- PredicateFailureReason
PodFitsResources完整代码:
此部分的代码位于pkg/scheduler/algorithm/predicates/predicates.go
// PodFitsResources checks if a node has sufficient resources, such as cpu, memory, gpu, opaque int resources etc to run a pod.
// First return value indicates whether a node has sufficient resources to run a pod while the second return value indicates the
// predicate failure reasons if the node has insufficient resources to run the pod.
func PodFitsResources(pod *v1.Pod, meta algorithm.PredicateMetadata, nodeInfo *schedulercache.NodeInfo) (bool, []algorithm.PredicateFailureReason, error) {
node := nodeInfo.Node()
if node == nil {
return false, nil, fmt.Errorf("node not found")
}
var predicateFails []algorithm.PredicateFailureReason
allowedPodNumber := nodeInfo.AllowedPodNumber()
if len(nodeInfo.Pods())+1 > allowedPodNumber {
predicateFails = append(predicateFails, NewInsufficientResourceError(v1.ResourcePods, 1, int64(len(nodeInfo.Pods())), int64(allowedPodNumber)))
}
// No extended resources should be ignored by default.
ignoredExtendedResources := sets.NewString()
var podRequest *schedulercache.Resource
if predicateMeta, ok := meta.(*predicateMetadata); ok {
podRequest = predicateMeta.podRequest
if predicateMeta.ignoredExtendedResources != nil {
ignoredExtendedResources = predicateMeta.ignoredExtendedResources
}
} else {
// We couldn't parse metadata - fallback to computing it.
podRequest = GetResourceRequest(pod)
}
if podRequest.MilliCPU == 0 &&
podRequest.Memory == 0 &&
podRequest.EphemeralStorage == 0 &&
len(podRequest.ScalarResources) == 0 {
return len(predicateFails) == 0, predicateFails, nil
}
allocatable := nodeInfo.AllocatableResource()
if allocatable.MilliCPU < podRequest.MilliCPU+nodeInfo.RequestedResource().MilliCPU {
predicateFails = append(predicateFails, NewInsufficientResourceError(v1.ResourceCPU, podRequest.MilliCPU, nodeInfo.RequestedResource().MilliCPU, allocatable.MilliCPU))
}
if allocatable.Memory < podRequest.Memory+nodeInfo.RequestedResource().Memory {
predicateFails = append(predicateFails, NewInsufficientResourceError(v1.ResourceMemory, podRequest.Memory, nodeInfo.RequestedResource().Memory, allocatable.Memory))
}
if allocatable.EphemeralStorage < podRequest.EphemeralStorage+nodeInfo.RequestedResource().EphemeralStorage {
predicateFails = append(predicateFails, NewInsufficientResourceError(v1.ResourceEphemeralStorage, podRequest.EphemeralStorage, nodeInfo.RequestedResource().EphemeralStorage, allocatable.EphemeralStorage))
}
for rName, rQuant := range podRequest.ScalarResources {
if v1helper.IsExtendedResourceName(rName) {
// If this resource is one of the extended resources that should be
// ignored, we will skip checking it.
if ignoredExtendedResources.Has(string(rName)) {
continue
}
}
if allocatable.ScalarResources[rName] < rQuant+nodeInfo.RequestedResource().ScalarResources[rName] {
predicateFails = append(predicateFails, NewInsufficientResourceError(rName, podRequest.ScalarResources[rName], nodeInfo.RequestedResource().ScalarResources[rName], allocatable.ScalarResources[rName]))
}
}
if glog.V(10) {
if len(predicateFails) == 0 {
// We explicitly don't do glog.V(10).Infof() to avoid computing all the parameters if this is
// not logged. There is visible performance gain from it.
glog.Infof("Schedule Pod %+v on Node %+v is allowed, Node is running only %v out of %v Pods.",
podName(pod), node.Name, len(nodeInfo.Pods()), allowedPodNumber)
}
}
return len(predicateFails) == 0, predicateFails, nil
}
NodeInfo
是node的聚合信息,主要包括:
- node:k8s node的结构体
- pods:当前node上pod的数量
- requestedResource:当前node上所有pod的request总和
- allocatableResource:node的实际所有的可分配资源(对应于Node.Status.Allocatable.*),可理解为node的资源总量。
此部分代码位于pkg/scheduler/cache/node_info.go
// NodeInfo is node level aggregated information.
type NodeInfo struct {
// Overall node information.
node *v1.Node
pods []*v1.Pod
podsWithAffinity []*v1.Pod
usedPorts util.HostPortInfo
// Total requested resource of all pods on this node.
// It includes assumed pods which scheduler sends binding to apiserver but
// didn't get it as scheduled yet.
requestedResource *Resource
nonzeroRequest *Resource
// We store allocatedResources (which is Node.Status.Allocatable.*) explicitly
// as int64, to avoid conversions and accessing map.
allocatableResource *Resource
// Cached taints of the node for faster lookup.
taints []v1.Taint
taintsErr error
// imageStates holds the entry of an image if and only if this image is on the node. The entry can be used for
// checking an image's existence and advanced usage (e.g., image locality scheduling policy) based on the image
// state information.
imageStates map[string]*ImageStateSummary
// TransientInfo holds the information pertaining to a scheduling cycle. This will be destructed at the end of
// scheduling cycle.
// TODO: @ravig. Remove this once we have a clear approach for message passing across predicates and priorities.
TransientInfo *transientSchedulerInfo
// Cached conditions of node for faster lookup.
memoryPressureCondition v1.ConditionStatus
diskPressureCondition v1.ConditionStatus
pidPressureCondition v1.ConditionStatus
// Whenever NodeInfo changes, generation is bumped.
// This is used to avoid cloning it if the object didn't change.
generation int64
}
Resource
是可计算资源的集合体。主要包括:
- MilliCPU
- Memory
- EphemeralStorage
- AllowedPodNumber:允许的pod总数(对应于Node.Status.Allocatable.Pods().Value()),一般为110。
- ScalarResources
// Resource is a collection of compute resource.
type Resource struct {
MilliCPU int64
Memory int64
EphemeralStorage int64
// We store allowedPodNumber (which is Node.Status.Allocatable.Pods().Value())
// explicitly as int, to avoid conversions and improve performance.
AllowedPodNumber int
// ScalarResources
ScalarResources map[v1.ResourceName]int64
}
以下分析podFitsOnNode的具体流程。
首先获取节点的信息,先判断如果该节点当前所有的pod的个数加上当前预调度的pod是否会大于该节点允许的pod的总数,一般为110个。如果超过,则predicateFails
数组增加1,即当前节点不适合该pod。
node := nodeInfo.Node()
if node == nil {
return false, nil, fmt.Errorf("node not found")
}
var predicateFails []algorithm.PredicateFailureReason
allowedPodNumber := nodeInfo.AllowedPodNumber()
if len(nodeInfo.Pods())+1 > allowedPodNumber {
predicateFails = append(predicateFails, NewInsufficientResourceError(v1.ResourcePods, 1, int64(len(nodeInfo.Pods())), int64(allowedPodNumber)))
}
如果podRequest都为0,则允许调度到该节点,直接返回结果。
if podRequest.MilliCPU == 0 &&
podRequest.Memory == 0 &&
podRequest.EphemeralStorage == 0 &&
len(podRequest.ScalarResources) == 0 {
return len(predicateFails) == 0, predicateFails, nil
}
如果当前预调度的pod的request资源加上当前node上所有pod的request总和大于该node的可分配资源总量,则不允许调度到该节点,直接返回结果。其中request资源包括CPU、内存、storage。
allocatable := nodeInfo.AllocatableResource()
if allocatable.MilliCPU < podRequest.MilliCPU+nodeInfo.RequestedResource().MilliCPU {
predicateFails = append(predicateFails, NewInsufficientResourceError(v1.ResourceCPU, podRequest.MilliCPU, nodeInfo.RequestedResource().MilliCPU, allocatable.MilliCPU))
}
if allocatable.Memory < podRequest.Memory+nodeInfo.RequestedResource().Memory {
predicateFails = append(predicateFails, NewInsufficientResourceError(v1.ResourceMemory, podRequest.Memory, nodeInfo.RequestedResource().Memory, allocatable.Memory))
}
if allocatable.EphemeralStorage < podRequest.EphemeralStorage+nodeInfo.RequestedResource().EphemeralStorage {
predicateFails = append(predicateFails, NewInsufficientResourceError(v1.ResourceEphemeralStorage, podRequest.EphemeralStorage, nodeInfo.RequestedResource().EphemeralStorage, allocatable.EphemeralStorage))
}
判断其他拓展的标量资源,是否该pod的request值加上当前node上所有pod的对应资源的request总和大于该node上对应资源的可分配总量,如果是,则不允许调度到该节点。
for rName, rQuant := range podRequest.ScalarResources {
if v1helper.IsExtendedResourceName(rName) {
// If this resource is one of the extended resources that should be
// ignored, we will skip checking it.
if ignoredExtendedResources.Has(string(rName)) {
continue
}
}
if allocatable.ScalarResources[rName] < rQuant+nodeInfo.RequestedResource().ScalarResources[rName] {
predicateFails = append(predicateFails, NewInsufficientResourceError(rName, podRequest.ScalarResources[rName], nodeInfo.RequestedResource().ScalarResources[rName], allocatable.ScalarResources[rName]))
}
}
findNodesThatFit
基于给定的预选函数过滤node,每个node传入到预选函数中来确实该节点是否符合要求。
findNodesThatFit
的入参是被调度的pod和当前的节点列表,返回预选节点列表和错误。
findNodesThatFit
基本流程如下:
- 设置可行节点的总数,作为预选节点数组的容量,避免总节点过多导致需要筛选的节点过多,效率低。
- 通过
NodeTree
不断获取下一个节点来判断该节点是否满足pod的调度条件。 - 通过之前注册的各种预选函数来判断当前节点是否符合pod的调度条件。
- 最后返回满足调度条件的node列表,供下一步的优选操作。
checkNode
是一个校验node是否符合要求的函数,其中实际调用到的核心函数是podFitsOnNode
。再通过workqueue
并发执行checkNode
操作。
checkNode
主要流程如下:
- 通过cache中的nodeTree不断获取下一个node。
- 将当前node和pod传入
podFitsOnNode
判断当前node是否符合要求。 - 如果当前node符合要求就将当前node加入预选节点的数组中
filtered
。 - 如果当前node不满足要求,则加入到失败的数组中,并记录原因。
- 通过
workqueue.ParallelizeUntil
并发执行checkNode
函数,一旦找到配置的可行节点数,就停止搜索更多节点。
其中会调用到核心函数podFitsOnNode。
podFitsOnNode
主要内容如下:
-
podFitsOnNode
会检查给定的某个Node是否满足预选的函数。 -
对于给定的pod,
podFitsOnNode
会检查是否有相同的pod存在,尽量复用缓存过的预选结果。
podFitsOnNode
主要在Schedule
(调度)和Preempt
(抢占)的时候被调用。
当在Schedule
中被调用的时候,主要判断是否可以被调度到当前节点,依据为当前节点上所有已存在的pod及被提名要运行到该节点的具有相等或更高优先级的pod。
当在Preempt
中被调用的时候,即发生抢占的时候,通过SelectVictimsOnNode
函数选出需要被移除的pod,移除后然后将预调度的pod调度到该节点上。
podFitsOnNode基本流程如下:
- 遍历之前注册好的预选策略
predicates.Ordering
,并获取预选策略的执行函数。 - 遍历执行每个
预选函数
,并返回是否合适,预选失败的原因和错误。 - 如果预选函数执行的结果不合适,则加入预选失败的数组中。
- 最后返回预选失败的个数是否为0,和预选失败的原因。
本文只示例分析了其中一个重要的预选函数:PodFitsResources
PodFitsResources
用来检查一个节点是否有足够的资源来运行当前的pod,包括CPU、内存、GPU等。
PodFitsResources基本流程如下:
- 判断当前节点上pod总数加上预调度pod个数是否大于node的可分配pod总数,若是则不允许调度。
- 判断pod的request值是否都为0,若是则允许调度。
- 判断pod的request值加上当前node上所有pod的request值总和是否大于node的可分配资源,若是则不允许调度。
- 判断pod的拓展资源request值加上当前node上所有pod对应的request值总和是否大于node对应的可分配资源,若是则不允许调度。
参考: