-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathextract_importance_ensemble.py
66 lines (54 loc) · 2.01 KB
/
extract_importance_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/bin/env python
import os
import numpy as np
import argparse
from ensemble_utils import *
from CNN import *
import argparse
import keras
import pickle
from tensorflow.python.client import device_lib
import os
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
from keras import activations
from importance_utils import *
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.4
config.gpu_options.allow_growth = True # dynamically grow the memory used on the GPU
config.allow_soft_placement = True
sess = tf.Session(config=config)
set_session(sess)
print(device_lib.list_local_devices())
parser = argparse.ArgumentParser()
parser.add_argument('testfasta')
parser.add_argument('comparisons')
parser.add_argument('model',help="model folder")
parser.add_argument('outfile')
opts=parser.parse_args()
X = fa_to_onehot(opts.testfasta)
model_folders = [opts.model+"/"+d for d in os.listdir(opts.model) if os.path.isdir(opts.model+"/"+d)]
with open(opts.model+"/model_acc.pkl","rb") as f:
accuracies = pickle.load(f)
accuracies = {key.split('/')[-1]:accuracies[key] for key in accuracies.keys()}
comps = [tuple(l.strip().split()) for l in open(opts.comparisons)]
print(comps)
for comp in comps:
print(comp)
if comp[0] == 'None':
c1 = []
c2 = [int(c) for c in comp[1].split('-')]
elif comp[1] == 'None':
c2 = []
c1 = [int(c) for c in comp[0].split('-')]
else:
c1 = [int(c) for c in comp[0].split('-')]
c2 = [int(c) for c in comp[1].split('-')]
for mi,model in enumerate(model_folders):
grads_i = accuracies[model.split('/')[-1]]*saliency(0,model+"/model.h5",X,c1,c2)*X
# grads are a X size matrix with importance scores for each
# sequence, for each position in the sequence
with open(opts.outfile+'_'+comp[0]+'vs'+comp[1]+'.pkl', 'wb') as handle:
pickle.dump(grads_i, handle, protocol=2)