-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathMakeLocalMetData.c
executable file
·326 lines (291 loc) · 11.6 KB
/
MakeLocalMetData.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/*
* SUMMARY: MakeLocalMetData.c - Generates meteorological conditions
* USAGE: Part of DHSVM
*
* AUTHOR: Bart Nijssen
* ORG: University of Washington, Department of Civil Engineering
* E-MAIL: [email protected]
* ORIG-DATE: Apr-96
* DESCRIPTION: Generates meteorological conditions for each individual cell
* DESCRIP-END.
* FUNCTIONS: MakeLocalMetData()
* COMMENTS:
* $Id: MakeLocalMetData.c,v 1.5 2004/02/19 15:36:17 colleen Exp $
*/
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "settings.h"
#include "data.h"
#include "snow.h"
#include "DHSVMerror.h"
#include "functions.h"
#include "constants.h"
#include "rad.h"
/*****************************************************************************
Function name: MakeLocalMetData()
Purpose : Generates meteorological for each individual cell
Required :
int y
int x
MAPSIZE Map
int DayStep
unsigned char PrecipType
int NStats
METLOCATION *Stat
uchar *MetWeights
float LocalElev
RADCLASSPIX *RadMap
PRECIPPIX *PrecipMap
MAPSIZE Radar
RADARPIX **RadarMap
Returns :
PIXMET LocalMet
Modifies :
Comments :
Reference: Shuttleworth, W.J., Evaporation, In: Maidment, D. R. (ed.),
Handbook of hydrology, 1993, McGraw-Hill, New York, etc..
*****************************************************************************/
PIXMET MakeLocalMetData(int y, int x, MAPSIZE * Map, int DayStep,
OPTIONSTRUCT * Options, int NStats,
METLOCATION * Stat, uchar * MetWeights,
float LocalElev, RADCLASSPIX * RadMap,
PRECIPPIX * PrecipMap, MAPSIZE * Radar,
RADARPIX ** RadarMap, float **PrismMap,
SNOWPIX * LocalSnow, SNOWTABLE * SnowAlbedo,
float ***MM5Input, float ***WindModel,
float **PrecipLapseMap, MET_MAP_PIX *** MetMap,
int NGraphics, int Month, float skyview,
unsigned char shadow, float SunMax,
float SineSolarAltitude)
{
float CurrentWeight; /* weight for current station */
float ScaleWind = 1; /* Wind to be scaled by model factors if
WindSource == MODEL */
float Temp; /* Temporary variable */
float WeightSum; /* sum of the weights */
int i; /* counter */
int RadarX; /* X coordinate of radar map coordinate */
int RadarY; /* Y coordinate of radar map coordinate */
float TempLapseRate;
int WindDirection = 0; /* Direction of model wind */
PIXMET LocalMet; /* local met data */
LocalMet.Tair = 0.0;
LocalMet.Rh = 0.0;
LocalMet.Wind = 0.0;
LocalMet.Sin = 0.0;
LocalMet.SinBeam = 0.0;
LocalMet.SinDiffuse = 0.0;
LocalMet.Lin = 0.0;
TempLapseRate = 0.0;
if (Options->MM5 == TRUE && Options->QPF == TRUE) {
WeightSum = 0.0;
for (i = 0; i < NStats; i++)
WeightSum += (float) MetWeights[i];
}
if (Options->MM5 == TRUE) {
LocalMet.Tair = MM5Input[MM5_temperature - 1][y][x] +
(LocalElev - MM5Input[MM5_terrain - 1][y][x]) * MM5Input[MM5_lapse -
1][y][x];
LocalMet.Rh = MM5Input[MM5_humidity - 1][y][x];
LocalMet.Wind = MM5Input[MM5_wind - 1][y][x];
LocalMet.Sin = MM5Input[MM5_shortwave - 1][y][x];
if (Options->Shading == TRUE) {
if (SunMax > 0.0) {
SeparateRadiation(LocalMet.Sin, LocalMet.Sin / SunMax,
&(LocalMet.SinBeam), &(LocalMet.SinDiffuse));
}
else {
/* if sun is below horizon, the force all shortwave to zero */
LocalMet.Sin = 0.0;
LocalMet.SinBeam = 0.0;
LocalMet.SinDiffuse = 0.0;
}
}
LocalMet.Lin = MM5Input[MM5_longwave - 1][y][x];
LocalMet.Press = 101300.0;
PrecipMap->Precip = MM5Input[MM5_precip - 1][y][x];
/* if(LocalMet.Sin>0) {
printf("LocalMet.Sin, LocalMet.Lin are: %f %f \n",LocalMet.Sin, LocalMet.Lin);
} */
}
else { /* MM5 is false and we need to interpolate the basic met records */
WeightSum = 0.0;
for (i = 0; i < NStats; i++) {
WeightSum += (float) MetWeights[i];
if (Options->WindSource == MODEL && Stat[i].IsWindModelLocation) {
ScaleWind = Stat[i].Data.Wind;
WindDirection = Stat[i].Data.WindDirection;
}
}
for (i = 0; i < NStats; i++) {
CurrentWeight = ((float) MetWeights[i]) / WeightSum;
LocalMet.Tair += CurrentWeight *
LapseT(Stat[i].Data.Tair, Stat[i].Elev, LocalElev,
Stat[i].Data.TempLapse);
LocalMet.Rh += CurrentWeight * Stat[i].Data.Rh;
if (Options->WindSource == STATION)
LocalMet.Wind += CurrentWeight * Stat[i].Data.Wind;
LocalMet.Lin += CurrentWeight * Stat[i].Data.Lin;
LocalMet.Sin += CurrentWeight * Stat[i].Data.Sin;
if (Options->Shading == TRUE) {
LocalMet.SinBeam += CurrentWeight * Stat[i].Data.SinBeamObs;
LocalMet.SinDiffuse += CurrentWeight * Stat[i].Data.SinDiffuseObs;
}
TempLapseRate += CurrentWeight * Stat[i].Data.TempLapse;
}
if (Options->WindSource == MODEL)
LocalMet.Wind = ScaleWind * WindModel[WindDirection - 1][y][x];
if (Options->PrecipType == RADAR) {
RadarY = (int) ((y + Radar->OffsetY) * Map->DY / Radar->DY);
RadarX = (int) ((x - Radar->OffsetX) * Map->DX / Radar->DX);
PrecipMap->Precip = RadarMap[RadarY][RadarX].Precip;
}
/* WORK IN PROGRESS, taken from old DHSVM version */
/* Air pressure */
/* In rare cases - i.e. when the lapse rate has a different sign for
different met stations - you can end up with a TemplapseRate of 0.0
This will result in a crash, so a check was put in (Jul 28, 1997 - Bart
Nijssen). It is somewhat awkward to interpolate lapse rates anyway, so
a better way of doing this would be welcome */
if (TempLapseRate != 0.0) {
Temp = 9.8067 / (TempLapseRate * 287.0);
LocalMet.Press =
101300. * pow(((288.0 - TempLapseRate * LocalElev) / 288.0), Temp);
}
else
LocalMet.Press = 101300.;
} /* end of else MM5==TRUE, i.e. all basic met, except for precip */
/* has been interpolated */
/* Here is how the following section works */
/* Arc-Info (through use of the hillshade command) will give */
/* an output file that ranges from 0 to 255 (the shade factor) */
/* These correspond to the reflectance of the direct beam radiation */
/* for a given sun position (altitude and azimuth) taking */
/* into account the slope and aspect and topographic shading */
/* of the local pixel. If we wanted to use this value directly */
/* then the correction to the observed beam w.r.t. a horizontal plane */
/* would be actual = horizontal*shadefactor/255/sin(solar_altitude) */
/* the sin(solar_altitude) is necessary to convert horizontal into the maximum */
/* possible flux */
/* We can either have DHSVM make the solar_altitude calculation, which */
/* is not all that hard, but is prone to user error (e.g. GMT time shifts, etc) */
/* or we can simply include the solar_altitude info in the shade_factor */
/* the question is how do we include the sin(solar_altitude) while */
/* keeping new_shade_factor = shadefactor/255/sin(solar_altitude) defined */
/* as a unsigned character */
/* Answer: At sal = 5 degrees max_new_shadefactor = 11.47 */
/* i.e. the actual flux normal to sal is 11.47*observed_horizontal_flux */
/* if we adopt this 5 degree value as a cutoff, we can then be assured that */
/* 0<=newshadefactor<=11.47 and then scale it between 0 and 255 */
/* the final calculation becomes, */
/* actual = horizontal*(float)shadefactor/255.0*11.47 or simply
acutal = horizontal*(float)shadefactor/22.23191 */
/* thus radiation increases from 0 to 11.47 times the observed value in */
/* increments of 4.5 percent */
/* a finer resolution than this would require a higher min angle or more memory */
if (Options->Shading == TRUE) {
LocalMet.SinBeam = LocalMet.Sin * (float) shadow / 22.23191;
LocalMet.SinDiffuse *= skyview;
if (LocalMet.SinBeam + LocalMet.SinDiffuse > SOLARCON)
LocalMet.SinBeam = SOLARCON - LocalMet.SinDiffuse;
}
else {
LocalMet.SinBeam = LocalMet.Sin;
LocalMet.SinDiffuse = 0;
}
RadMap->Beam = LocalMet.SinBeam;
RadMap->Diffuse = LocalMet.SinDiffuse;
LocalMet.Sin = RadMap->Beam + RadMap->Diffuse;
if (Options->QPF == TRUE || Options->MM5 == FALSE) {
if (Options->PrecipType == STATION && Options->Prism == FALSE) {
PrecipMap->Precip = 0.0;
for (i = 0; i < NStats; i++) {
CurrentWeight = ((float) MetWeights[i]) / WeightSum;
if (Options->PrecipLapse == MAP)
PrecipMap->Precip += CurrentWeight *
LapsePrecip(Stat[i].Data.Precip, 0, 1, PrecipLapseMap[y][x]);
else
PrecipMap->Precip += CurrentWeight *
LapsePrecip(Stat[i].Data.Precip, Stat[i].Elev, LocalElev,
Stat[i].Data.PrecipLapse);
}
}
else if (Options->PrecipType == STATION && Options->Prism == TRUE) {
PrecipMap->Precip = 0.0;
for (i = 0; i < NStats; i++) {
CurrentWeight = ((float) MetWeights[i]) / WeightSum;
/* this is the real prism interpolation */
/* note that X = position from left boundary, ie # of columns */
/* note that Y = position from upper boundary, ie # of rows */
if (Options->Outside == FALSE)
PrecipMap->Precip +=
CurrentWeight * Stat[i].Data.Precip /
PrismMap[Stat[i].Loc.N][Stat[i].Loc.E] * PrismMap[y][x];
else
PrecipMap->Precip +=
CurrentWeight * Stat[i].Data.Precip /
Stat[i].PrismPrecip[Month - 1] * PrismMap[y][x];
if(PrismMap[y][x] < 0){
printf("negative PrismMap value in MakeLocalMetData.c\n");
exit(0);
}
}
}
}
/* due to the nature of the interpolation scheme in DHSVM and the */
/* interpolation scheme to handle the mess of different formats of met stations */
/* in the PRISM project */
/* relative humidities can be quite low when precip is occuring */
/* at times this will results in PET being greater than precip */
/* allow an option in DHSVM to override RH if Precip is occuring */
if (Options->Rhoverride == TRUE) {
if (PrecipMap->Precip > 0.0)
LocalMet.Rh = 100.0;
}
/* Separate precipitation into rainfall and snowfall */
if (PrecipMap->Precip > 0.0 && LocalMet.Tair < MAX_SNOW_TEMP) {
if (LocalMet.Tair > MIN_RAIN_TEMP)
PrecipMap->SnowFall = PrecipMap->Precip *
(MAX_SNOW_TEMP - LocalMet.Tair) / (MAX_SNOW_TEMP - MIN_RAIN_TEMP);
else
PrecipMap->SnowFall = PrecipMap->Precip;
}
else
PrecipMap->SnowFall = 0.0;
PrecipMap->RainFall = PrecipMap->Precip - PrecipMap->SnowFall;
/* Local heat of vaporization, Eq. 4.2.1, Shuttleworth (1993) */
LocalMet.Lv = 2501000 - 2361 * LocalMet.Tair;
/* Psychrometric constant */
LocalMet.Gamma = CP * LocalMet.Press / (EPS * LocalMet.Lv);
/* Saturated vapor pressure, Eq. 4.2.2, Shuttleworth (1993) */
LocalMet.Es = SatVaporPressure(LocalMet.Tair);
/* Slope of vapor pressure curve, Eq. 4.2.3, Shuttleworth (1993) */
LocalMet.Slope = 4098.0 * LocalMet.Es /
((237.3 + LocalMet.Tair) * (237.3 + LocalMet.Tair));
/* Actual vapor pressure */
LocalMet.Eact = LocalMet.Es * (LocalMet.Rh / 100.);
/* Vapor pressure deficit */
LocalMet.Vpd = LocalMet.Es - LocalMet.Eact;
/* Air density, Eq. 4.2.4 Shuttleworth (1993) */
LocalMet.AirDens = 0.003486 * LocalMet.Press / (275 + LocalMet.Tair);
if (LocalSnow->HasSnow) {
if (PrecipMap->SnowFall > 0.0)
LocalSnow->LastSnow = 0;
else
LocalSnow->LastSnow++;
LocalSnow->Albedo = CalcSnowAlbedo(LocalSnow->TSurf, LocalSnow->LastSnow,
SnowAlbedo);
}
else
LocalSnow->LastSnow = 0;
if (NGraphics > 0) {
(*MetMap)[y][x].accum_precip =
(*MetMap)[y][x].accum_precip + PrecipMap->Precip;
(*MetMap)[y][x].air_temp = LocalMet.Tair;
(*MetMap)[y][x].wind_speed = LocalMet.Wind;
(*MetMap)[y][x].humidity = LocalMet.Rh;
}
return LocalMet;
}