-
Notifications
You must be signed in to change notification settings - Fork 0
/
Notebook_2_Embed_Words.py
272 lines (218 loc) · 9.11 KB
/
Notebook_2_Embed_Words.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# coding: utf-8
# In[1]:
import csv
import math
import random
import numpy as np
import tensorflow as tf
from tensorflow.models.rnn import rnn
from tensorflow.models.rnn.rnn_cell import BasicLSTMCell, LSTMCell
import collections
import re
import cPickle as pickle
urlFinder = re.compile('\w+:\/{2}[\d\w-]+(\.[\d\w-]+)*(?:(?:\/[^\s/]*))*')
atNameFinder = re.compile(r'@([A-Za-z0-9_]+)')
atNameCounter = 0
exclude_punc = set([
"!",
"?",
".",
",",
":",
";",
"'",
"\"",
"“",
"’",
"-"
])
words = []
with open('sentences.csv', 'r') as f:
reader = csv.reader(f.read().splitlines())
for row in reader:
if len(row) != 0:
for word in row[0] .strip() .replace("&", "") .replace(">","") .replace("<", "") .lower().split():
if urlFinder.match(word):
words.append("<URL/>")
elif atNameFinder.search(word):
words.append("<AT_NAME/>")
else:
''.join([i if ord(i) < 128 else '' for i in text])
word = ''.join(ch for ch in word if ch not in exclude_punc)
word.strip()
if word != "":
words.append(word)
#words = filter(None, (' '.join(bag)).split())
vocabulary_size = int(round(len(set(words)),-2))-100
print("Vocabulary Size: %s" % vocabulary_size)
# In[2]:
count = [['UNK', -1]]
count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count += 1
data.append(index)
count[0][1] = unk_count
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
del words # Hint to reduce memory.
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10])
# In[3]:
data_index = 0
def generate_batch(batch_size, num_skips, skip_window):
global data_index
assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
span = 2 * skip_window + 1 # [ skip_window target skip_window ]
buffer = collections.deque(maxlen=span)
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
for i in range(batch_size // num_skips):
target = skip_window # target label at the center of the buffer
targets_to_avoid = [ skip_window ]
for j in range(num_skips):
while target in targets_to_avoid:
target = random.randint(0, span - 1)
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j, 0] = buffer[target]
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
return batch, labels
batch, labels = generate_batch(batch_size=10, num_skips=10, skip_window=5)
for i in range(10):
print(batch[i], '->', labels[i, 0])
print(reverse_dictionary[batch[i]], '->', reverse_dictionary[labels[i, 0]])
# In[4]:
batch_size = 20
embedding_size = 128 # Dimension of the embedding vector.
skip_window = 10 # How many words to consider left and right.
num_skips = 20 # How many times to reuse an input to generate a label.
# We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.array(random.sample(np.arange(valid_window), valid_size))
num_sampled = 64 # Number of negative examples to sample.
# In[4]:
graph = tf.Graph()
with graph.as_default():
# Input da 4ta.
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# Ops and variables pinned to the CPU because of missing GPU implementation
with tf.device('/cpu:0'):
# Look up embeddings for inputs.
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
# Construct the variables for the NCE loss
with tf.name_scope("nce_weights") as scope:
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
nce_biases_hist = tf.histogram_summary("nce_biases", nce_biases)
# Compute the average NCE loss for the batch.
# tf.nce_loss automatically draws a new sample of the negative labels each
# time we evaluate the loss.
with tf.name_scope("loss") as scope:
loss = tf.reduce_mean(
tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels,
num_sampled, vocabulary_size))
# Construct the SGD optimizer using a learning rate of 1.0.
with tf.name_scope("train") as scope:
optimizer = tf.train.GradientDescentOptimizer(0.25).minimize(loss)
# Compute the cosine similarity between minibatch examples and all embeddings.
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(
normalized_embeddings, valid_dataset)
similarity = tf.matmul(
valid_embeddings, normalized_embeddings, transpose_b=True)
# In[5]:
# Step 5: Begin training.
num_steps = 100001
with tf.Session(graph=graph) as session:
# We must initialize all variables before we use them.
merged = tf.merge_all_summaries()
writer = tf.train.SummaryWriter("/tmp/tensor_logs/expiriment_1", session.graph_def)
#Adds an op to initialize all variables
init_op = tf.initialize_all_variables()
# Begins running the init opp
init_op.run()
print("Initialized")
average_loss = 0
for step in xrange(num_steps):
batch_inputs, batch_labels = generate_batch(
batch_size, num_skips, skip_window)
feed_dict = {train_inputs : batch_inputs, train_labels : batch_labels}
# We perform one update step by evaluating the optimizer op (including it
# in the list of returned values for session.run()
summary_str, _, loss_val = session.run([merged, optimizer, loss], feed_dict=feed_dict)
writer.add_summary(summary_str, step)
average_loss += loss_val
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
# The average loss is an estimate of the loss over the last 2000 batches.
print("Average loss at step ", step, ": ", average_loss)
average_loss = 0
# Note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 5000 == 0:
sim = similarity.eval()
for i in xrange(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k+1]
log_str = "Nearest to %s:" % valid_word
for k in xrange(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = "%s %s," % (log_str, close_word)
print(log_str)
final_embeddings = normalized_embeddings.eval()
# save final embeddings for Expiriment #2
with open("word_embeddings.pkl", "wb") as f:
pickle.dump(final_embeddings, f)
with open("word_mappings.pkl", "wb") as f:
pickle.dump(reverse_dictionary, f)
# In[7]:
import sys
reload(sys)
sys.setdefaultencoding('utf8')
# Step 6: Visualize the embeddings.
def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings"
plt.figure(figsize=(18, 18)) #in inches
for i, label in enumerate(labels):
x, y = low_dim_embs[i,:]
plt.scatter(x, y)
plt.annotate(label,
xy=(x, y),
xytext=(5, 2),
textcoords='offset points',
ha='right',
va='bottom')
plt.savefig(filename)
get_ipython().magic(u'matplotlib inline')
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
plot_only = 10000
low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only,:])
labels = [reverse_dictionary[i] for i in xrange(plot_only)]
plot_with_labels(low_dim_embs, labels)
# In[ ]: