diff --git a/seacrowd/sea_datasets/cebuaner/__init__.py b/seacrowd/sea_datasets/cebuaner/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/seacrowd/sea_datasets/cebuaner/cebuaner.py b/seacrowd/sea_datasets/cebuaner/cebuaner.py new file mode 100644 index 000000000..f9de39944 --- /dev/null +++ b/seacrowd/sea_datasets/cebuaner/cebuaner.py @@ -0,0 +1,151 @@ +from pathlib import Path +from typing import Dict, Iterable, List, Tuple + +import datasets +from datasets.download.download_manager import DownloadManager + +from seacrowd.utils import schemas +from seacrowd.utils.configs import SEACrowdConfig +from seacrowd.utils.constants import Licenses, Tasks + +_CITATION = """ +@misc{pilar2023cebuaner, + title={CebuaNER - A New Baseline Cebuano Named Entity Recognition Model}, + author={Ma. Beatrice Emanuela Pilar and Ellyza Mari Papas and Mary Loise Buenaventura and Dane Dedoroy and Myron Darrel Montefalcon and Jay Rhald Padilla and Lany Maceda and Mideth Abisado and Joseph Marvin Imperial}, + year={2023}, + eprint={2310.00679}, + archivePrefix={arXiv}, + primaryClass={cs.CL} +} +""" + +_LOCAL = False +_LANGUAGES = ["ceb"] +_DATASETNAME = "cebuaner" +_DESCRIPTION = """\ +The CebuaNER dataset contains 4000+ news articles that have been tagged by +native speakers of Cebuano usin gthe BIO encoding schema for the named entity +recognition (NER) task. +""" + +_HOMEPAGE = "https://github.com/mebzmoren/CebuaNER" +_LICENSE = Licenses.CC_BY_NC_SA_4_0.value +_URL = "https://github.com/mebzmoren/CebuaNER/raw/main/data/annotated_data/final-1.txt" + +_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] +_SOURCE_VERSION = "1.0.0" +_SEACROWD_VERSION = "1.0.0" + + +class CebuaNERDataset(datasets.GeneratorBasedBuilder): + """CebuaNER dataset from https://github.com/mebzmoren/CebuaNER""" + + SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) + SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) + + SEACROWD_SCHEMA_NAME = "seq_label" + LABEL_CLASSES = [ + "O", + "B-PER", + "I-PER", + "B-ORG", + "I-ORG", + "B-LOC", + "I-LOC", + "B-OTHER", + "I-OTHER", + ] + + BUILDER_CONFIGS = [ + SEACrowdConfig( + name=f"{_DATASETNAME}_source", + version=SOURCE_VERSION, + description=f"{_DATASETNAME} source schema", + schema="source", + subset_id=_DATASETNAME, + ), + SEACrowdConfig( + name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", + version=SEACROWD_VERSION, + description=f"{_DATASETNAME} SEACrowd schema", + schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", + subset_id=_DATASETNAME, + ), + ] + + DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" + + def _info(self) -> datasets.DatasetInfo: + if self.config.schema == "source": + features = datasets.Features( + { + "id": datasets.Value("string"), + "tokens": datasets.Sequence(datasets.Value("string")), + "ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=self.LABEL_CLASSES)), + } + ) + elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": + features = schemas.seq_label_features(self.LABEL_CLASSES) + + return datasets.DatasetInfo( + description=_DESCRIPTION, + features=features, + homepage=_HOMEPAGE, + license=_LICENSE, + citation=_CITATION, + ) + + def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: + data_file = Path(dl_manager.download_and_extract(_URL)) + return [ + datasets.SplitGenerator( + name=datasets.Split.TRAIN, + gen_kwargs={"filepath": data_file, "split": "train"}, + ), + datasets.SplitGenerator( + name=datasets.Split.VALIDATION, + gen_kwargs={"filepath": data_file, "split": "dev"}, + ), + datasets.SplitGenerator( + name=datasets.Split.TEST, + gen_kwargs={"filepath": data_file, "split": "test"}, + ), + ] + + def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: + label_key = "ner_tags" if self.config.schema == "source" else "labels" + examples: Iterable[Dict[str, List[str]]] = [] + with open(filepath, encoding="utf-8") as f: + tokens = [] + ner_tags = [] + for line in f: + if line.startswith("-DOCSTART-") or line == "" or line == "\n": + if tokens: + examples.append({"tokens": tokens, label_key: ner_tags}) + if len(tokens) != len(ner_tags): + raise ValueError(f"Tokens and tags are not aligned! {len(tokens)} != {len(ner_tags)}") + tokens = [] + ner_tags = [] + else: + # CebuaNER iob are separated by spaces + token, _, _, ner_tag = line.split(" ") + tokens.append(token) + ner_tags.append(ner_tag.rstrip()) + if tokens: + examples.append({"tokens": tokens, label_key: ner_tags}) + if len(tokens) != len(ner_tags): + raise ValueError(f"Tokens and tags are not aligned! {len(tokens)} != {len(ner_tags)}") + + # The CebuaNER paper doesn't provide a recommended split. However, the Github repository + # contains a notebook example of the split they used in the report: + # https://github.com/mebzmoren/CebuaNER/blob/main/notebooks/Named-Entity-Recognition-with-Conditional-Random-Fields.ipynb + if split == "train": + final_examples = examples[0:2980] + if split == "test": + final_examples = examples[2980:3831] + if split == "dev": + final_examples = examples[3831:] + + for idx, eg in enumerate(final_examples): + eg["id"] = idx + yield idx, eg