forked from vgsatorras/pytorch-caffe-darknet-convert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch2caffe.py
240 lines (217 loc) · 9.61 KB
/
pytorch2caffe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import sys
sys.path.append('/data/temp/caffe/python')
import caffe
from collections import OrderedDict
import torch.nn as nn
import torch.nn.functional as F
import torch
import numpy as np
from torch.autograd import Variable
from prototxt import *
layer_dict = {'ConvNdBackward' : 'Convolution',
'ThresholdBackward' : 'ReLU',
'MaxPool2dBackward' : 'Pooling',
'AvgPool2dBackward' : 'Pooling',
'DropoutBackward' : 'Dropout',
'AddmmBackward' : 'InnerProduct',
'BatchNormBackward' : 'BatchNorm',
'AddBackward' : 'Eltwise',
'SoftmaxBackward' : 'Softmax',
'ViewBackward' : 'Reshape'}
layer_id = 0
def pytorch2caffe(input_var, output_var, protofile, caffemodel):
global layer_id
net_info = pytorch2prototxt(input_var, output_var)
print_prototxt(net_info)
save_prototxt(net_info, protofile)
net = caffe.Net(protofile, caffe.TEST)
params = net.params
layer_id = 1
seen = set()
def convert_layer(func):
if True:
global layer_id
parent_type = str(type(func).__name__)
if hasattr(func, 'next_functions'):
for u in func.next_functions:
if u[0] is not None:
child_type = str(type(u[0]).__name__)
child_name = child_type + str(layer_id)
if child_type != 'AccumulateGrad' and (parent_type != 'AddmmBackward' or child_type != 'TransposeBackward'):
if u[0] not in seen:
convert_layer(u[0])
seen.add(u[0])
if child_type != 'ViewBackward':
layer_id = layer_id + 1
parent_name = parent_type+str(layer_id)
print('converting %s' % parent_name)
if parent_type == 'ConvNdBackward':
weights = func.next_functions[1][0].variable.data
if func.next_functions[2][0]:
biases = func.next_functions[2][0].variable.data
else:
biases = None
save_conv2caffe(weights, biases, params[parent_name])
elif parent_type == 'BatchNormBackward':
running_mean = func.running_mean
running_var = func.running_var
#print('%s running_mean' % parent_name, running_mean)
#exit(0)
scale_weights = func.next_functions[1][0].variable.data
scale_biases = func.next_functions[2][0].variable.data
bn_name = parent_name + "_bn"
scale_name = parent_name + "_scale"
save_bn2caffe(running_mean, running_var, params[bn_name])
save_scale2caffe(scale_weights, scale_biases, params[scale_name])
elif parent_type == 'AddmmBackward':
biases = func.next_functions[0][0].variable.data
weights = func.next_functions[2][0].next_functions[0][0].variable.data
save_fc2caffe(weights, biases, params[parent_name])
convert_layer(output_var.grad_fn)
print('save caffemodel to %s' % caffemodel)
net.save(caffemodel)
def save_conv2caffe(weights, biases, conv_param):
if biases is not None:
conv_param[1].data[...] = biases.numpy()
conv_param[0].data[...] = weights.numpy()
def save_fc2caffe(weights, biases, fc_param):
fc_param[1].data[...] = biases.numpy()
fc_param[0].data[...] = weights.numpy()
def save_bn2caffe(running_mean, running_var, bn_param):
bn_param[0].data[...] = running_mean.numpy()
bn_param[1].data[...] = running_var.numpy()
bn_param[2].data[...] = np.array([1.0])
def save_scale2caffe(weights, biases, scale_param):
scale_param[1].data[...] = biases.numpy()
scale_param[0].data[...] = weights.numpy()
#def pytorch2prototxt(model, x, var):
def pytorch2prototxt(input_var, output_var):
global layer_id
net_info = OrderedDict()
props = OrderedDict()
props['name'] = 'pytorch'
props['input'] = 'data'
props['input_dim'] = input_var.size()
layers = []
layer_id = 1
seen = set()
top_names = dict()
def add_layer(func):
global layer_id
parent_type = str(type(func).__name__)
parent_bottoms = []
if hasattr(func, 'next_functions'):
for u in func.next_functions:
if u[0] is not None:
child_type = str(type(u[0]).__name__)
child_name = child_type + str(layer_id)
if child_type != 'AccumulateGrad' and (parent_type != 'AddmmBackward' or child_type != 'TransposeBackward'):
if u[0] not in seen:
top_name = add_layer(u[0])
parent_bottoms.append(top_name)
seen.add(u[0])
else:
top_name = top_names[u[0]]
parent_bottoms.append(top_name)
if child_type != 'ViewBackward':
layer_id = layer_id + 1
parent_name = parent_type+str(layer_id)
layer = OrderedDict()
layer['name'] = parent_name
layer['type'] = layer_dict[parent_type]
parent_top = parent_name
if len(parent_bottoms) > 0:
layer['bottom'] = parent_bottoms
else:
layer['bottom'] = ['data']
layer['top'] = parent_top
if parent_type == 'ConvNdBackward':
weights = func.next_functions[1][0].variable
conv_param = OrderedDict()
conv_param['num_output'] = weights.size(0)
conv_param['pad'] = func.padding[0]
conv_param['kernel_size'] = weights.size(2)
conv_param['stride'] = func.stride[0]
if func.next_functions[2][0] == None:
conv_param['bias_term'] = 'false'
layer['convolution_param'] = conv_param
elif parent_type == 'BatchNormBackward':
bn_layer = OrderedDict()
bn_layer['name'] = parent_name + "_bn"
bn_layer['type'] = 'BatchNorm'
bn_layer['bottom'] = parent_bottoms
bn_layer['top'] = parent_top
batch_norm_param = OrderedDict()
batch_norm_param['use_global_stats'] = 'true'
bn_layer['batch_norm_param'] = batch_norm_param
scale_layer = OrderedDict()
scale_layer['name'] = parent_name + "_scale"
scale_layer['type'] = 'Scale'
scale_layer['bottom'] = parent_top
scale_layer['top'] = parent_top
scale_param = OrderedDict()
scale_param['bias_term'] = 'true'
scale_layer['scale_param'] = scale_param
elif parent_type == 'ThresholdBackward':
parent_top = parent_bottoms[0]
elif parent_type == 'SoftmaxBackward':
parent_top = parent_bottoms[0]
elif parent_type == 'MaxPool2dBackward':
pooling_param = OrderedDict()
pooling_param['pool'] = 'MAX'
pooling_param['kernel_size'] = func.kernel_size[0]
pooling_param['stride'] = func.stride[0]
pooling_param['pad'] = func.padding[0]
layer['pooling_param'] = pooling_param
elif parent_type == 'AvgPool2dBackward':
pooling_param = OrderedDict()
pooling_param['pool'] = 'AVE'
pooling_param['kernel_size'] = func.kernel_size[0]
pooling_param['stride'] = func.stride[0]
layer['pooling_param'] = pooling_param
elif parent_type == 'DropoutBackward':
parent_top = parent_bottoms[0]
dropout_param = OrderedDict()
dropout_param['dropout_ratio'] = func.p
layer['dropout_param'] = dropout_param
elif parent_type == 'AddmmBackward':
inner_product_param = OrderedDict()
inner_product_param['num_output'] = func.next_functions[0][0].variable.size(0)
layer['inner_product_param'] = inner_product_param
elif parent_type == 'ViewBackward':
parent_top = parent_bottoms[0]
elif parent_type == 'AddBackward':
eltwise_param = OrderedDict()
eltwise_param['operation'] = 'SUM'
layer['eltwise_param'] = eltwise_param
layer['top'] = parent_top # reset layer['top'] as parent_top may change
if parent_type != 'ViewBackward':
if parent_type == "BatchNormBackward":
layers.append(bn_layer)
layers.append(scale_layer)
else:
layers.append(layer)
#layer_id = layer_id + 1
top_names[func] = parent_top
return parent_top
add_layer(output_var.grad_fn)
net_info['props'] = props
net_info['layers'] = layers
return net_info
if __name__ == '__main__':
import torchvision
from visualize import make_dot
#m = torchvision.models.resnet50(pretrained=True)
m = torchvision.models.vgg16()
m.classifier.add_module('softmax', torch.nn.Softmax())
m.eval() # very important here, otherwise batchnorm running_mean, running_var will be incorrect
input_var = Variable(torch.rand(1, 3, 224, 224))
print(m)
output_var = m(input_var)
fp = open("out.dot", "w")
dot = make_dot(output_var)
print >> fp, dot
fp.close()
#exit(0)
#pytorch2caffe(input_var, output_var, 'resnet50-pytorch2caffe.prototxt', 'resnet50-pytorch2caffe.caffemodel')
pytorch2caffe(input_var, output_var, 'vgg16-pytorch2caffe.prototxt', 'vgg16-pytorch2caffe.caffemodel')