-
Notifications
You must be signed in to change notification settings - Fork 223
/
vcf.py
455 lines (374 loc) · 15.2 KB
/
vcf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
#!/usr/bin/env python
'''A VCFv4.0 parser for Python.
The intent of this module is to mimic the ``csv`` module in the Python stdlib,
as opposed to more flexible serialization formats like JSON or YAML. ``vcf``
will attempt to parse the content of each record based on the data types
specified in the meta-information lines -- specifically the ##INFO and
##FORMAT lines. If these lines are missing or incomplete, it will check
against the reserved types mentioned in the spec. Failing that, it will just
return strings.
There is currently one piece of interface: ``VCFReader``. It takes a file-like
object and acts as a reader::
>>> import vcf
>>> vcf_reader = vcf.VCFReader(open('example.vcf', 'rb'))
>>> for record in vcf_reader:
... print record
Record(CHROM='20', POS=14370, ID='rs6054257', REF='G', ALT=['A'], QUAL=29,
FILTER='PASS', INFO={'H2': True, 'NS': 3, 'DB': True, 'DP': 14, 'AF': [0.5]
}, FORMAT='GT:GQ:DP:HQ', samples=[{'GT': '0', 'HQ': [58, 50], 'DP': 3, 'GQ'
: 49, 'name': 'NA00001'}, {'GT': '0', 'HQ': [65, 3], 'DP': 5, 'GQ': 3, 'nam
e' : 'NA00002'}, {'GT': '0', 'DP': 3, 'GQ': 41, 'name': 'NA00003'}])
This produces a great deal of information, but it is conveniently accessed.
The attributes of a Record are the 8 fixed fields from the VCF spec plus two
more. That is:
* ``Record.CHROM``
* ``Record.POS``
* ``Record.ID``
* ``Record.REF``
* ``Record.ALT``
* ``Record.QUAL``
* ``Record.FILTER``
* ``Record.INFO``
plus two more attributes to handle genotype information:
* ``Record.FORMAT``
* ``Record.samples``
``samples``, not being the title of any column, is left lowercase. The format
of the fixed fields is from the spec. Comma-separated lists in the VCF are
converted to lists. In particular, one-entry VCF lists are converted to
one-entry Python lists (see, e.g., ``Record.ALT``). Semicolon-delimited lists
of key=value pairs are converted to Python dictionaries, with flags being given
a ``True`` value. Integers and floats are handled exactly as you'd expect::
>>> record = vcf_reader.next()
>>> print record.POS
17330
>>> print record.ALT
['A']
>>> print record.INFO['AF']
[0.017]
``record.FORMAT`` will be a string specifying the format of the genotype
fields. In case the FORMAT column does not exist, ``record.FORMAT`` is
``None``. Finally, ``record.samples`` is a list of dictionaries containing the
parsed sample column::
>>> record = vcf_reader.next()
>>> for sample in record.samples:
... print sample['GT']
'1|2'
'2|1'
'2/2'
Metadata regarding the VCF file itself can be investigated through the
following attributes:
* ``VCFReader.metadata``
* ``VCFReader.infos``
* ``VCFReader.filters``
* ``VCFReader.formats``
* ``VCFReader.samples``
For example::
>>> vcf_reader.metadata['fileDate']
20090805
>>> vcf_reader.samples
['NA00001', 'NA00002', 'NA00003']
>>> vcf_reader.filters
{'q10': Filter(id='q10', desc='Quality below 10'),
's50': Filter(id='s50', desc='Less than 50% of samples have data')}
>>> vcf_reader.infos['AA'].desc
Ancestral Allele
'''
import collections
import re
# Metadata parsers/constants
RESERVED_INFO = {
'AA': 'String', 'AC': 'Integer', 'AF': 'Float', 'AN': 'Integer',
'BQ': 'Float', 'CIGAR': 'String', 'DB': 'Flag', 'DP': 'Integer',
'END': 'Integer', 'H2': 'Flag', 'MQ': 'Float', 'MQ0': 'Integer',
'NS': 'Integer', 'SB': 'String', 'SOMATIC': 'Flag', 'VALIDATED': 'Flag'
}
RESERVED_FORMAT = {
'GT': 'String', 'DP': 'Integer', 'FT': 'String', 'GL': 'Float',
'GQ': 'Float', 'HQ': 'Float'
}
_Info = collections.namedtuple('Info', ['id', 'num', 'type', 'desc'])
_Filter = collections.namedtuple('Filter', ['id', 'desc'])
_Format = collections.namedtuple('Format', ['id', 'num', 'type', 'desc'])
class _vcf_metadata_parser(object):
'''Parse the metadat in the header of a VCF file.'''
def __init__(self, aggressive=False):
super(_vcf_metadata_parser, self).__init__()
self.aggro = aggressive
self.info_pattern = re.compile(r'''\#\#INFO=<
ID=(?P<id>[^,]+),
Number=(?P<number>\d+|\.|[AG]),
Type=(?P<type>Integer|Float|Flag|Character|String),
Description="(?P<desc>[^"]*)"
>''', re.VERBOSE)
self.filter_pattern = re.compile(r'''\#\#FILTER=<
ID=(?P<id>[^,]+),
Description="(?P<desc>[^"]*)"
>''', re.VERBOSE)
self.format_pattern = re.compile(r'''\#\#FORMAT=<
ID=(?P<id>.+),
Number=(?P<number>\d+|\.|[AG]),
Type=(?P<type>.+),
Description="(?P<desc>.*)"
>''', re.VERBOSE)
self.meta_pattern = re.compile(r'''##(?P<key>.+)=(?P<val>.+)''')
def read_info(self, info_string):
'''Read a meta-information INFO line.'''
match = self.info_pattern.match(info_string)
if not match:
raise SyntaxError(
"One of the INFO lines is malformed: {}".format(info_string))
try:
num = int(match.group('number'))
except ValueError:
num = None if self.aggro else '.'
info = _Info(match.group('id'), num,
match.group('type'), match.group('desc'))
return (match.group('id'), info)
def read_filter(self, filter_string):
'''Read a meta-information FILTER line.'''
match = self.filter_pattern.match(filter_string)
if not match:
raise SyntaxError(
"One of the FILTER lines is malformed: {}".format(
filter_string))
filt = _Filter(match.group('id'), match.group('desc'))
return (match.group('id'), filt)
def read_format(self, format_string):
'''Read a meta-information FORMAT line.'''
match = self.format_pattern.match(format_string)
if not match:
raise SyntaxError(
"One of the FORMAT lines is malformed: {}".format(
format_string))
try:
num = int(match.group('number'))
except ValueError:
num = None if self.aggro else '.'
form = _Format(match.group('id'), num,
match.group('type'), match.group('desc'))
return (match.group('id'), form)
def read_meta(self, meta_string):
match = self.meta_pattern.match(meta_string)
return match.group('key'), match.group('val')
# Reader class
class _meta_info(object):
'''Decorator for a property stored in the header info.'''
def __init__(self, func):
self.func = func
def __call__(self, fself):
if getattr(fself, "_%s" % self.func.__name__) is None:
fself._parse_metainfo()
return self.func(fself)
def __repr__(self):
'''Return the function's docstring.'''
return self.func.__doc__
def __doc__(self):
'''Return the function's docstring.'''
return self.func.__doc__
_Record = collections.namedtuple('Record', [
'CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO', 'FORMAT',
'samples'
])
class VCFReader(object):
'''Read and parse a VCF v 4.0 file'''
def __init__(self, fsock, aggressive=False):
super(VCFReader, self).__init__()
self.aggro = aggressive
self._metadata = None
self._infos = None
self._filters = None
self._formats = None
self._samples = None
self.reader = fsock
if aggressive:
self._mapper = self._none_map
else:
self._mapper = self._pass_map
def __iter__(self):
return self
@property
@_meta_info
def metadata(self):
'''Return the information from lines starting "##"'''
return self._metadata
@property
@_meta_info
def infos(self):
'''Return the information from lines starting "##INFO"'''
return self._infos
@property
@_meta_info
def filters(self):
'''Return the information from lines starting "##FILTER"'''
return self._filters
@property
@_meta_info
def formats(self):
'''Return the information from lines starting "##FORMAT"'''
return self._formats
@property
@_meta_info
def samples(self):
'''Return the names of the genotype fields.'''
return self._samples
def _parse_metainfo(self):
'''Parse the information stored in the metainfo of the VCF.
The end user shouldn't have to use this. She can access the metainfo
directly with ``self.metadata``.'''
for attr in ('_metadata', '_infos', '_filters', '_formats'):
setattr(self, attr, {})
parser = _vcf_metadata_parser()
line = self.reader.next()
while line.startswith('##'):
line = line.strip()
if line.startswith('##INFO'):
key, val = parser.read_info(line)
self._infos[key] = val
elif line.startswith('##FILTER'):
key, val = parser.read_filter(line)
self._filters[key] = val
elif line.startswith('##FORMAT'):
key, val = parser.read_format(line)
self._formats[key] = val
else:
key, val = parser.read_meta(line.strip())
self._metadata[key] = val
line = self.reader.next()
fields = line.split()
self._samples = fields[9:]
def _none_map(self, func, iterable, bad='.'):
'''``map``, but make bad values None.'''
return [func(x) if x != bad else None
for x in iterable]
def _pass_map(self, func, iterable, bad='.'):
'''``map``, but make bad values None.'''
return [func(x) if x != bad else bad
for x in iterable]
def _parse_info(self, info_str):
'''Parse the INFO field of a VCF entry into a dictionary of Python
types.
'''
entries = info_str.split(';')
retdict = {}
for entry in entries:
entry = entry.split('=')
ID = entry[0]
try:
entry_type = self.infos[ID].type
except KeyError:
try:
entry_type = RESERVED_INFO[ID]
except KeyError:
if entry[1:]:
entry_type = 'String'
else:
entry_type = 'Flag'
if entry_type == 'Integer':
vals = entry[1].split(',')
val = self._mapper(int, vals)
elif entry_type == 'Float':
vals = entry[1].split(',')
val = self._mapper(float, vals)
elif entry_type == 'Flag':
val = True
elif entry_type == 'String':
val = entry[1]
try:
if self.infos[ID].num == 1:
val = val[0]
except KeyError:
pass
retdict[ID] = val
return retdict
def _parse_samples(self, samples, samp_fmt):
'''Parse a sample entry according to the format specified in the FORMAT
column.'''
samp_data = []
samp_fmt = samp_fmt.split(':')
for sample in samples:
sampdict = dict(zip(samp_fmt, sample.split(':')))
for fmt in sampdict:
vals = sampdict[fmt].split(',')
try:
entry_type = self.formats[fmt].type
except KeyError:
try:
entry_type = RESERVED_FORMAT[fmt]
except KeyError:
entry_type = 'String'
if entry_type == 'Integer':
sampdict[fmt] = self._mapper(int, vals)
elif entry_type == 'Float' or entry_type == 'Numeric':
sampdict[fmt] = self._mapper(float, vals)
elif sampdict[fmt] == './.' and self.aggro:
sampdict[fmt] = None
samp_data.append(sampdict)
for name, data in zip(self.samples, samp_data):
data['name'] = name
return samp_data
def next(self):
'''Return the next record in the file.'''
if self._samples is None:
self._parse_metainfo()
row = self.reader.next().split()
chrom = row[0]
pos = int(row[1])
if row[2] != '.':
ID = row[2]
else:
ID = None if self.aggro else row[2]
ref = row[3]
alt = self._mapper(str, row[4].split(','))
qual = float(row[5]) if '.' in row[5] else int(row[5])
filt = row[6].split(';') if ';' in row[6] else row[6]
if filt == 'PASS' and self.aggro:
filt = None
info = self._parse_info(row[7])
try:
fmt = row[8]
except IndexError:
fmt = None
samples = None
else:
samples = self._parse_samples(row[9:], fmt)
record = _Record(chrom, pos, ID, ref, alt, qual, filt, info, fmt,
samples)
return record
def main():
'''Parse the example VCF file from the specification and print every
record.'''
import contextlib
import StringIO
import textwrap
buff = '''\
##fileformat=VCFv4.0
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=1000GenomesPilot-NCBI36
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=.,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
##INFO=<ID=AC,Number=A,Type=Integer,Description="Total number of alternate alleles in called genotypes">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tNA00001\tNA00002\tNA00003
20\t14370\trs6054257\tG\tA\t29\tPASS\tNS=3;DP=14;AF=0.5;DB;H2\tGT:GQ:DP:HQ\t0|0:48:1:51,51\t1|0:48:8:51,51\t1/1:43:5:.,.
20\t17330\t.\tT\tA\t3\tq10\tNS=3;DP=11;AF=0.017\tGT:GQ:DP:HQ\t0|0:49:3:58,50\t0|1:3:5:65,3\t0/0:41:3
20\t1110696\trs6040355\tA\tG,T\t67\tPASS\tNS=2;DP=10;AF=0.333,0.667;AA=T;DB\tGT:GQ:DP:HQ\t1|2:21:6:23,27\t2|1:2:0:18,2\t2/2:35:4
20\t1230237\t.\tT\t.\t47\tPASS\tNS=3;DP=13;AA=T\tGT:GQ:DP:HQ\t0|0:54:7:56,60\t0|0:48:4:51,51\t0/0:61:2
20\t1234567\tmicrosat1\tGTCT\tG,GTACT\t50\tPASS\tNS=3;DP=9;AA=G\tGT:GQ:DP\t./.:35:4\t0/2:17:2\t1/1:40:3
'''
with contextlib.closing(StringIO.StringIO(textwrap.dedent(buff))) as sock:
vcf_file = VCFReader(sock, aggressive=True)
for record in vcf_file:
print record
if __name__ == '__main__':
main()