forked from raspberrypi/pico-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
control_blocks.c
115 lines (98 loc) · 4.55 KB
/
control_blocks.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/**
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
// Use two DMA channels to make a programmed sequence of data transfers to the
// UART (a data gather operation). One channel is responsible for transferring
// the actual data, the other repeatedly reprograms that channel.
#include <stdio.h>
#include "pico/stdlib.h"
#include "hardware/dma.h"
#include "hardware/structs/uart.h"
// These buffers will be DMA'd to the UART, one after the other.
const char word0[] = "Transferring ";
const char word1[] = "one ";
const char word2[] = "word ";
const char word3[] = "at ";
const char word4[] = "a ";
const char word5[] = "time.\n";
// Note the order of the fields here: it's important that the length is before
// the read address, because the control channel is going to write to the last
// two registers in alias 3 on the data channel:
// +0x0 +0x4 +0x8 +0xC (Trigger)
// Alias 0: READ_ADDR WRITE_ADDR TRANS_COUNT CTRL
// Alias 1: CTRL READ_ADDR WRITE_ADDR TRANS_COUNT
// Alias 2: CTRL TRANS_COUNT READ_ADDR WRITE_ADDR
// Alias 3: CTRL WRITE_ADDR TRANS_COUNT READ_ADDR
//
// This will program the transfer count and read address of the data channel,
// and trigger it. Once the data channel completes, it will restart the
// control channel (via CHAIN_TO) to load the next two words into its control
// registers.
const struct {uint32_t len; const char *data;} control_blocks[] = {
{count_of(word0) - 1, word0}, // Skip null terminator
{count_of(word1) - 1, word1},
{count_of(word2) - 1, word2},
{count_of(word3) - 1, word3},
{count_of(word4) - 1, word4},
{count_of(word5) - 1, word5},
{0, NULL} // Null trigger to end chain.
};
int main() {
#ifndef uart_default
#warning dma/control_blocks example requires a UART
#else
stdio_init_all();
puts("DMA control block example:");
// ctrl_chan loads control blocks into data_chan, which executes them.
int ctrl_chan = dma_claim_unused_channel(true);
int data_chan = dma_claim_unused_channel(true);
// The control channel transfers two words into the data channel's control
// registers, then halts. The write address wraps on a two-word
// (eight-byte) boundary, so that the control channel writes the same two
// registers when it is next triggered.
dma_channel_config c = dma_channel_get_default_config(ctrl_chan);
channel_config_set_transfer_data_size(&c, DMA_SIZE_32);
channel_config_set_read_increment(&c, true);
channel_config_set_write_increment(&c, true);
channel_config_set_ring(&c, true, 3); // 1 << 3 byte boundary on write ptr
dma_channel_configure(
ctrl_chan,
&c,
&dma_hw->ch[data_chan].al3_transfer_count, // Initial write address
&control_blocks[0], // Initial read address
2, // Halt after each control block
false // Don't start yet
);
// The data channel is set up to write to the UART FIFO (paced by the
// UART's TX data request signal) and then chain to the control channel
// once it completes. The control channel programs a new read address and
// data length, and retriggers the data channel.
c = dma_channel_get_default_config(data_chan);
channel_config_set_transfer_data_size(&c, DMA_SIZE_8);
channel_config_set_dreq(&c, uart_get_dreq(uart_default, true));
// Trigger ctrl_chan when data_chan completes
channel_config_set_chain_to(&c, ctrl_chan);
// Raise the IRQ flag when 0 is written to a trigger register (end of chain):
channel_config_set_irq_quiet(&c, true);
dma_channel_configure(
data_chan,
&c,
&uart_get_hw(uart_default)->dr,
NULL, // Initial read address and transfer count are unimportant;
0, // the control channel will reprogram them each time.
false // Don't start yet.
);
// Everything is ready to go. Tell the control channel to load the first
// control block. Everything is automatic from here.
dma_start_channel_mask(1u << ctrl_chan);
// The data channel will assert its IRQ flag when it gets a null trigger,
// indicating the end of the control block list. We're just going to wait
// for the IRQ flag instead of setting up an interrupt handler.
while (!(dma_hw->intr & 1u << data_chan))
tight_loop_contents();
dma_hw->ints0 = 1u << data_chan;
puts("DMA finished.");
#endif
}