-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript_clase.R
39 lines (31 loc) · 1.09 KB
/
script_clase.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
###librerias nece
library(stringr)
library(stringdist)
library(dplyr)
###leems y revisamos
herbario_conc<-read.csv("conc_cactaceae.csv")
catalogo_col<-read.csv("col_cactaceae.csv")
head(herbario_conc)
head(catalogo_col)
colnames(herbario_conc)
colnames(catalogo_col)
####sacamos lo q no nos sirve
group <- c('variety', 'species', 'form', 'subspecies', 'infraspecific name', 'subvariety', 'proles', 'subform', 'lusus', 'species aggregate')
catalogo_col<-catalogo_col[catalogo_col$taxonRank %in% group,]
#####hacemos el fuzzy match
length_conc<-nrow(herbario_conc)
length_col<-nrow(catalogo_col)
output<-data.frame()
for(i in length_conc){
for(j in length_col){
species_fuzzy <- grabl(
pattern = toupper(trimws(catalogo_col[j,"scientificName"])),
x = toupper(trimws(herbario_conc[i,"Nombre.Cientifico.abreviado"])),
method = "lv", maxDist = 0,4)
if (species_fuzzy){
new_row<-cbind.data.frame(catalogo_col[j,c("scientificName", "taxonID")],herbario_conc[i,c("Nombre.Cientifico.abreviado", "taxa_id")])
output<-rbind.data.frame(output, new_row)
}
}
}
View(output)