forked from rogerlinndesign/linnstrument-firmware
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ls_lowRow.ino
447 lines (406 loc) · 14.6 KB
/
ls_lowRow.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/******************************** ls_lowRow: LinnStrument Low Row *********************************
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/
or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
***************************************************************************************************
These are the functions for the low row functionality of the LinnStrument
The low row operations are designed to be driven by the main cell scanning loop. When actions
occur, they are registered to provide the appropriate state during the handleLowRowState() function.
This function also takes cell that are outside the low row into account, to trigger to relevant
operations for those when needed.
**************************************************************************************************/
enum ColumnState {
inactive,
pressed,
continuous
};
ColumnState lowRowColumnState[MAXCOLS];
ColumnState lowRowSplitState[NUMSPLITS];
boolean lowRowBendActive[NUMSPLITS];
boolean lowRowCCXActive[NUMSPLITS];
boolean lowRowCCXYZActive[NUMSPLITS];
short lowRowInitialColumn[NUMSPLITS];
short lastRestrikeColumn = 0;
inline boolean isLowRow() {
if (sensorRow != 0) return false;
if (Split[sensorSplit].lowRowMode == lowRowNormal) return false;
if (Split[sensorSplit].ccFaders) return false;
if (Split[sensorSplit].sequencer) return false;
if (isStrummingSplit(sensorSplit)) return false;
return true;
}
void initializeLowRowState() {
lastRestrikeColumn = 0;
for (byte col = 0; col < NUMCOLS; ++col) {
lowRowColumnState[col] = inactive;
}
for (byte split = 0; split < NUMSPLITS; ++split) {
lowRowSplitState[split] = inactive;
lowRowBendActive[split] = false;
lowRowCCXActive[split] = false;
lowRowCCXYZActive[split] = false;
lowRowInitialColumn[split] = -1;
}
}
boolean lowRowRequiresSlideTracking() {
switch (Split[sensorSplit].lowRowMode)
{
case lowRowRestrike:
case lowRowStrum:
case lowRowSustain:
return false;
case lowRowArpeggiator:
case lowRowBend:
case lowRowCCX:
case lowRowCCXYZ:
return true;
default:
return false;
}
}
boolean allowNewTouchOnLowRow() {
switch (Split[sensorSplit].lowRowMode)
{
case lowRowRestrike:
case lowRowStrum:
case lowRowArpeggiator:
case lowRowBend:
case lowRowCCX:
case lowRowCCXYZ:
return true;
case lowRowSustain:
return lowRowSplitState[sensorSplit] == inactive;
default:
return false;
}
}
#define LOWROW_X_LEFT_LIMIT 0
#define LOWROW_X_RIGHT_LIMIT 4095
void handleLowRowState(boolean newVelocity, short pitchBend, short timbre, byte pressure) {
// if we're processing a low-row sensor, mark the appropriate column as continuous
// if it was previously presssed
if (isLowRow()) {
// get fader dimensions for possible later use
byte faderLeft, faderLength;
determineFaderBoundaries(sensorSplit, faderLeft, faderLength);
// it's a new touch which is complementary to lowRowStart since we have access to the expression data
if (newVelocity) {
// when the fader only spans one cell, it acts as a toggle in fader mode
if (faderLength == 0) {
switch (Split[sensorSplit].lowRowMode)
{
case lowRowCCX:
{
if (Split[sensorSplit].lowRowCCXBehavior == lowRowCCFader) {
if (ccFaderValues[sensorSplit][Split[sensorSplit].ccForLowRow] > 0) {
sendLowRowCCX(0);
}
else {
sendLowRowCCX(127);
}
}
break;
}
case lowRowCCXYZ:
{
// determine the X value based on the fader behavior, also update the fader position if that's needed
if (Split[sensorSplit].lowRowCCXYZBehavior == lowRowCCFader) {
if (ccFaderValues[sensorSplit][Split[sensorSplit].ccForLowRowX] > 0) {
sendLowRowCCXYZ(0, timbre, pressure);
}
else {
sendLowRowCCXYZ(127, timbre, pressure);
}
}
break;
}
}
}
}
// send out the continuous data for the low row cells
else if (sensorCell->velocity) {
switch (Split[sensorSplit].lowRowMode)
{
case lowRowArpeggiator:
case lowRowBend:
case lowRowCCX:
case lowRowCCXYZ:
// We limit the low row data to not go past the center of the leftmost and rightmost cell.
// This gives us exactly 2 octaves in the main split.
byte lowCol, highCol;
getSplitBoundaries(sensorSplit, lowCol, highCol);
short xDelta = constrain((sensorCell->calibratedX() - sensorCell->initialX) >> 3, 0, 127);
short xPosition = calculateFaderValue(sensorCell->calibratedX(), faderLeft, faderLength);
switch (Split[sensorSplit].lowRowMode)
{
case lowRowArpeggiator:
{
arpTempoDelta[sensorSplit] = sensorCol - lowRowInitialColumn[sensorSplit];
break;
}
case lowRowBend:
{
if (pitchBend != SHRT_MAX) {
preSendPitchBend(sensorSplit, pitchBend);
}
break;
}
case lowRowCCX:
{
if (Split[sensorSplit].lowRowCCXBehavior == lowRowCCFader) {
if (faderLength > 0) {
sendLowRowCCX(xPosition);
}
}
else {
sendLowRowCCX(xDelta);
}
break;
}
case lowRowCCXYZ:
{
if (Split[sensorSplit].lowRowCCXYZBehavior == lowRowCCFader) {
if (faderLength > 0) {
sendLowRowCCXYZ(xPosition, timbre, pressure);
}
}
else {
sendLowRowCCXYZ(xDelta, timbre, pressure);
}
break;
}
}
break;
}
}
// properly transition the low row states based on the active mode (global or per-column state transitions)
switch (Split[sensorSplit].lowRowMode)
{
case lowRowRestrike:
if (lowRowSplitState[sensorSplit] == pressed && sensorCol == lastRestrikeColumn) {
lowRowSplitState[sensorSplit] = continuous;
}
break;
case lowRowArpeggiator:
case lowRowSustain:
case lowRowBend:
case lowRowCCX:
case lowRowCCXYZ:
if (lowRowSplitState[sensorSplit] == pressed) {
lowRowSplitState[sensorSplit] = continuous;
}
break;
case lowRowStrum:
if (lowRowColumnState[sensorCol] == pressed) {
lowRowColumnState[sensorCol] = continuous;
}
break;
}
}
else {
switch (Split[sensorSplit].lowRowMode)
{
case lowRowRestrike:
handleLowRowRestrike();
break;
case lowRowStrum:
handleLowRowStrum();
break;
}
}
}
void sendLowRowCCX(unsigned short x) {
if (Split[sensorSplit].lowRowCCXBehavior == lowRowCCFader) {
ccFaderValues[sensorSplit][Split[sensorSplit].ccForLowRow] = x;
byte faderLeft, faderLength;
determineFaderBoundaries(sensorSplit, faderLeft, faderLength);
paintCCFaderDisplayRow(sensorSplit, sensorRow, Split[sensorSplit].colorLowRow, Split[sensorSplit].ccForLowRow, faderLeft, faderLength, LED_LAYER_LOWROW);
}
// send out the MIDI CC
preSendControlChange(sensorSplit, Split[sensorSplit].ccForLowRow, x, false);
}
void sendLowRowCCXYZ(unsigned short x, short y, short z) {
if (Split[sensorSplit].lowRowCCXYZBehavior == lowRowCCFader) {
ccFaderValues[sensorSplit][Split[sensorSplit].ccForLowRowX] = x;
byte faderLeft, faderLength;
determineFaderBoundaries(sensorSplit, faderLeft, faderLength);
paintCCFaderDisplayRow(sensorSplit, sensorRow, Split[sensorSplit].colorLowRow, Split[sensorSplit].ccForLowRowX, faderLeft, faderLength, LED_LAYER_LOWROW);
}
// send out the MIDI CCs
preSendControlChange(sensorSplit, Split[sensorSplit].ccForLowRowX, x, false);
if (y != SHRT_MAX) {
preSendControlChange(sensorSplit, Split[sensorSplit].ccForLowRowY, y, false);
}
preSendControlChange(sensorSplit, Split[sensorSplit].ccForLowRowZ, z, false);
}
void handleLowRowRestrike() {
// we're processing a cell that's not on the low-row, check if column 0 was pressed
// and retrigger in that case
if (sensorCell->hasNote() && lowRowSplitState[sensorSplit] == pressed) {
// use the velocity of the low-row press
sensorCell->velocity = cell(0, 0).velocity;
// retrigger the MIDI note
midiSendNoteOff(sensorSplit, sensorCell->note, sensorCell->channel);
midiSendNoteOn(sensorSplit, sensorCell->note, sensorCell->velocity, sensorCell->channel);
}
}
void handleLowRowStrum() {
// we're processing a cell that's not on the low-row, check if the corresponding
// low-row column was pressed and retrigger in that case
if (sensorCell->hasNote() && lowRowColumnState[sensorCol] == pressed) {
// use the velocity of the low-row press
sensorCell->velocity = cell(sensorCol, 0).velocity;
// retrigger the MIDI note
midiSendNoteOff(sensorSplit, sensorCell->note, sensorCell->channel);
midiSendNoteOn(sensorSplit, sensorCell->note, sensorCell->velocity, sensorCell->channel);
}
}
void lowRowStart() {
switch (Split[sensorSplit].lowRowMode)
{
case lowRowRestrike:
lowRowSplitState[sensorSplit] = pressed;
lastRestrikeColumn = sensorCol;
cell(0, 0).velocity = sensorCell->velocity;
break;
case lowRowStrum:
lowRowColumnState[sensorCol] = pressed;
break;
case lowRowArpeggiator:
if (lowRowSplitState[sensorSplit] == inactive) {
if (-1 == lowRowInitialColumn[sensorSplit]) {
lowRowInitialColumn[sensorSplit] = sensorCol;
}
lowRowSplitState[sensorSplit] = pressed;
if (!Split[sensorSplit].arpeggiator) {
temporarilyEnableArpeggiator();
}
}
startLowRowContinuousExpression();
break;
case lowRowSustain:
lowRowSplitState[sensorSplit] = pressed;
preSendSustain(sensorSplit, 127);
break;
case lowRowBend:
lowRowBendActive[sensorSplit] = true;
preResetLastMidiPitchBend(sensorSplit);
startLowRowContinuousExpression();
break;
case lowRowCCX:
lowRowCCXActive[sensorSplit] = true;
preResetLastMidiCC(sensorSplit, Split[sensorSplit].ccForLowRow);
startLowRowContinuousExpression();
break;
case lowRowCCXYZ:
lowRowCCXYZActive[sensorSplit] = true;
preResetLastMidiCC(sensorSplit, Split[sensorSplit].ccForLowRowX);
preResetLastMidiCC(sensorSplit, Split[sensorSplit].ccForLowRowY);
preResetLastMidiCC(sensorSplit, Split[sensorSplit].ccForLowRowZ);
startLowRowContinuousExpression();
break;
}
updateSwitchLeds();
}
void startLowRowContinuousExpression() {
if (lowRowSplitState[sensorSplit] != inactive) {
// handle taking over an already active touch
byte lowCol, highCol;
getSplitBoundaries(sensorSplit, lowCol, highCol);
for (byte col = lowCol; col < highCol; ++col) {
if (col != sensorCol && cell(col, 0).velocity) {
transferFromSameRowCell(col);
return;
}
}
}
else {
// initialize the initial low row touch
lowRowSplitState[sensorSplit] = pressed;
}
}
void lowRowStop() {
switch (Split[sensorSplit].lowRowMode)
{
case lowRowRestrike:
if (lastRestrikeColumn && sensorCol == lastRestrikeColumn) {
lowRowSplitState[sensorSplit] = inactive;
lastRestrikeColumn = 0;
cell(0, 0).velocity = 0;
}
break;
case lowRowStrum:
lowRowColumnState[sensorCol] = inactive;
break;
case lowRowSustain:
lowRowSplitState[sensorSplit] = inactive;
preSendSustain(sensorSplit, 0);
break;
case lowRowArpeggiator:
case lowRowBend:
case lowRowCCX:
case lowRowCCXYZ:
if (sensorCell->velocity) {
// handle taking over an already active touch, the highest already active touch wins
byte lowCol, highCol;
getSplitBoundaries(sensorSplit, lowCol, highCol);
for (byte col = highCol-1; col >= lowCol; --col) {
if (col != sensorCol && cell(col, 0).touched == touchedCell) {
transferToSameRowCell(col);
return;
}
}
if (lowRowSplitState[sensorSplit] != inactive) {
switch (Split[sensorSplit].lowRowMode)
{
case lowRowArpeggiator:
arpTempoDelta[sensorSplit] = 0;
if (!Split[sensorSplit].arpeggiator) {
disableTemporaryArpeggiator();
}
lowRowInitialColumn[sensorSplit] = -1;
break;
case lowRowBend:
// reset the pitchbend since no low row touch is active anymore
lowRowBendActive[sensorSplit] = false;
preSendPitchBend(sensorSplit, 0);
break;
case lowRowCCX:
lowRowCCXActive[sensorSplit] = false;
if (Split[sensorSplit].lowRowCCXBehavior == lowRowCCHold) {
// reset CC for lowRowX since no low row touch is active anymore
preSendControlChange(sensorSplit, Split[sensorSplit].ccForLowRow, 0, false);
}
break;
case lowRowCCXYZ:
lowRowCCXYZActive[sensorSplit] = false;
if (Split[sensorSplit].lowRowCCXYZBehavior == lowRowCCHold) {
// reset CCs for lowRowXYZ since no low row touch is active anymore
preSendControlChange(sensorSplit, Split[sensorSplit].ccForLowRowX, 0, false);
preSendControlChange(sensorSplit, Split[sensorSplit].ccForLowRowY, 0, false);
preSendControlChange(sensorSplit, Split[sensorSplit].ccForLowRowZ, 0, false);
}
break;
}
lowRowSplitState[sensorSplit] = inactive;
}
}
break;
}
updateSwitchLeds();
}
inline boolean isLowRowArpeggiatorPressed(byte split) {
return Split[split].lowRowMode == lowRowArpeggiator && lowRowSplitState[split] != inactive;
}
inline boolean isLowRowSustainPressed(byte split) {
return Split[split].lowRowMode == lowRowSustain && lowRowSplitState[split] != inactive;
}
inline boolean isLowRowBendActive(byte split) {
return lowRowBendActive[split];
}
inline boolean isLowRowCCXActive(byte split) {
return lowRowCCXActive[split];
}
inline boolean isLowRowCCXYZActive(byte split) {
return lowRowCCXYZActive[split];
}