-
Notifications
You must be signed in to change notification settings - Fork 772
/
predict.py
389 lines (329 loc) · 13.5 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
import time
import random
import getpass
import shutil
import subprocess
import torch
import numpy as np
import torchaudio
from cog import BasePredictor, Input, Path, BaseModel
os.environ["USER"] = getpass.getuser()
from data.tokenizer import (
AudioTokenizer,
TextTokenizer,
)
from models import voicecraft
from inference_tts_scale import inference_one_sample
from edit_utils import get_span
from inference_speech_editing_scale import (
inference_one_sample as inference_one_sample_editing,
)
MODEL_URL = "https://weights.replicate.delivery/default/pyp1/VoiceCraft-models.tar" # all the models are cached and uploaded to replicate.delivery for faster booting
MODEL_CACHE = "model_cache"
class ModelOutput(BaseModel):
whisper_transcript_orig_audio: str
generated_audio: Path
class WhisperxAlignModel:
def __init__(self):
from whisperx import load_align_model
self.model, self.metadata = load_align_model(
language_code="en", device="cuda:0"
)
def align(self, segments, audio_path):
from whisperx import align, load_audio
audio = load_audio(audio_path)
return align(
segments,
self.model,
self.metadata,
audio,
device="cuda:0",
return_char_alignments=False,
)["segments"]
class WhisperxModel:
def __init__(self, model_name, align_model: WhisperxAlignModel, device="cuda"):
from whisperx import load_model
# the model weights are cached from Systran/faster-whisper-base.en etc
self.model = load_model(
model_name,
device,
asr_options={
"suppress_numerals": True,
"max_new_tokens": None,
"clip_timestamps": None,
"hallucination_silence_threshold": None,
},
)
self.align_model = align_model
def transcribe(self, audio_path):
segments = self.model.transcribe(audio_path, language="en", batch_size=8)[
"segments"
]
return self.align_model.align(segments, audio_path)
def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.device = "cuda"
if not os.path.exists(MODEL_CACHE):
download_weights(MODEL_URL, MODEL_CACHE)
encodec_fn = f"{MODEL_CACHE}/encodec_4cb2048_giga.th"
self.models, self.ckpt, self.phn2num = {}, {}, {}
for voicecraft_name in [
"giga830M.pth",
"giga330M.pth",
"gigaHalfLibri330M_TTSEnhanced_max16s.pth",
]:
ckpt_fn = f"{MODEL_CACHE}/{voicecraft_name}"
self.ckpt[voicecraft_name] = torch.load(ckpt_fn, map_location="cpu")
self.models[voicecraft_name] = voicecraft.VoiceCraft(
self.ckpt[voicecraft_name]["config"]
)
self.models[voicecraft_name].load_state_dict(
self.ckpt[voicecraft_name]["model"]
)
self.models[voicecraft_name].to(self.device)
self.models[voicecraft_name].eval()
self.phn2num[voicecraft_name] = self.ckpt[voicecraft_name]["phn2num"]
self.text_tokenizer = TextTokenizer(backend="espeak")
self.audio_tokenizer = AudioTokenizer(signature=encodec_fn, device=self.device)
align_model = WhisperxAlignModel()
self.transcribe_models = {
k: WhisperxModel(f"{MODEL_CACHE}/whisperx_{k.split('.')[0]}", align_model)
for k in ["base.en", "small.en", "medium.en"]
}
def predict(
self,
task: str = Input(
description="Choose a task",
choices=[
"speech_editing-substitution",
"speech_editing-insertion",
"speech_editing-deletion",
"zero-shot text-to-speech",
],
default="zero-shot text-to-speech",
),
voicecraft_model: str = Input(
description="Choose a model",
choices=["giga830M.pth", "giga330M.pth", "giga330M_TTSEnhanced.pth"],
default="giga330M_TTSEnhanced.pth",
),
orig_audio: Path = Input(description="Original audio file"),
orig_transcript: str = Input(
description="Optionally provide the transcript of the input audio. Leave it blank to use the WhisperX model below to generate the transcript. Inaccurate transcription may lead to error TTS or speech editing",
default="",
),
whisperx_model: str = Input(
description="If orig_transcript is not provided above, choose a WhisperX model for generating the transcript. Inaccurate transcription may lead to error TTS or speech editing. You can modify the generated transcript and provide it directly to orig_transcript above",
choices=[
"base.en",
"small.en",
"medium.en",
],
default="base.en",
),
target_transcript: str = Input(
description="Transcript of the target audio file",
),
cut_off_sec: float = Input(
description="Only used for for zero-shot text-to-speech task. The first seconds of the original audio that are used for zero-shot text-to-speech. 3 sec of reference is generally enough for high quality voice cloning, but longer is generally better, try e.g. 3~6 sec",
default=3.01,
),
kvcache: int = Input(
description="Set to 0 to use less VRAM, but with slower inference",
choices=[0, 1],
default=1,
),
left_margin: float = Input(
description="Margin to the left of the editing segment",
default=0.08,
),
right_margin: float = Input(
description="Margin to the right of the editing segment",
default=0.08,
),
temperature: float = Input(
description="Adjusts randomness of outputs, greater than 1 is random and 0 is deterministic. Do not recommend to change",
default=1,
),
top_p: float = Input(
description="Default value for TTS is 0.9, and 0.8 for speech editing",
default=0.9,
),
stop_repetition: int = Input(
default=3,
description="Default value for TTS is 3, and -1 for speech editing. -1 means do not adjust prob of silence tokens. if there are long silence or unnaturally stretched words, increase sample_batch_size to 2, 3 or even 4",
),
sample_batch_size: int = Input(
description="Default value for TTS is 4, and 1 for speech editing. The higher the number, the faster the output will be. Under the hood, the model will generate this many samples and choose the shortest one",
default=4,
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed", default=None
),
) -> ModelOutput:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
seed_everything(seed)
segments = self.transcribe_models[whisperx_model].transcribe(
str(orig_audio)
)
state = get_transcribe_state(segments)
whisper_transcript = state["transcript"].strip()
if len(orig_transcript.strip()) == 0:
orig_transcript = whisper_transcript
print(f"The transcript from the Whisper model: {whisper_transcript}")
temp_folder = "exp_dir"
if os.path.exists(temp_folder):
shutil.rmtree(temp_folder)
os.makedirs(temp_folder)
filename = "orig_audio"
audio_fn = str(orig_audio)
info = torchaudio.info(audio_fn)
audio_dur = info.num_frames / info.sample_rate
# hyperparameters for inference
codec_audio_sr = 16000
codec_sr = 50
top_k = 0
silence_tokens = [1388, 1898, 131]
if voicecraft_model == "giga330M_TTSEnhanced.pth":
voicecraft_model = "gigaHalfLibri330M_TTSEnhanced_max16s.pth"
if task == "zero-shot text-to-speech":
assert (
cut_off_sec < audio_dur
), f"cut_off_sec {cut_off_sec} is larger than the audio duration {audio_dur}"
prompt_end_frame = int(cut_off_sec * info.sample_rate)
idx = find_closest_cut_off_word(state["word_bounds"], cut_off_sec)
orig_transcript_until_cutoff_time = " ".join(
[word_bound["word"] for word_bound in state["word_bounds"][: idx + 1]]
)
else:
edit_type = task.split("-")[-1]
orig_span, new_span = get_span(
orig_transcript, target_transcript, edit_type
)
if orig_span[0] > orig_span[1]:
RuntimeError(f"example {audio_fn} failed")
if orig_span[0] == orig_span[1]:
orig_span_save = [orig_span[0]]
else:
orig_span_save = orig_span
if new_span[0] == new_span[1]:
new_span_save = [new_span[0]]
else:
new_span_save = new_span
orig_span_save = ",".join([str(item) for item in orig_span_save])
new_span_save = ",".join([str(item) for item in new_span_save])
start, end = get_mask_interval_from_word_bounds(
state["word_bounds"], orig_span_save, edit_type
)
# span in codec frames
morphed_span = (
max(start - left_margin, 1 / codec_sr),
min(end + right_margin, audio_dur),
) # in seconds
mask_interval = [
[round(morphed_span[0] * codec_sr), round(morphed_span[1] * codec_sr)]
]
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
decode_config = {
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"stop_repetition": stop_repetition,
"kvcache": kvcache,
"codec_audio_sr": codec_audio_sr,
"codec_sr": codec_sr,
"silence_tokens": silence_tokens,
}
if task == "zero-shot text-to-speech":
decode_config["sample_batch_size"] = sample_batch_size
_, gen_audio = inference_one_sample(
self.models[voicecraft_model],
self.ckpt[voicecraft_model]["config"],
self.phn2num[voicecraft_model],
self.text_tokenizer,
self.audio_tokenizer,
audio_fn,
orig_transcript_until_cutoff_time.strip()
+ " "
+ target_transcript.strip(),
self.device,
decode_config,
prompt_end_frame,
)
else:
_, gen_audio = inference_one_sample_editing(
self.models[voicecraft_model],
self.ckpt[voicecraft_model]["config"],
self.phn2num[voicecraft_model],
self.text_tokenizer,
self.audio_tokenizer,
audio_fn,
target_transcript,
mask_interval,
self.device,
decode_config,
)
# save segments for comparison
gen_audio = gen_audio[0].cpu()
out = "/tmp/out.wav"
torchaudio.save(out, gen_audio, codec_audio_sr)
return ModelOutput(
generated_audio=Path(out), whisper_transcript_orig_audio=whisper_transcript
)
def seed_everything(seed):
os.environ["PYTHONHASHSEED"] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def get_transcribe_state(segments):
words_info = [word_info for segment in segments for word_info in segment["words"]]
return {
"transcript": " ".join([segment["text"].strip() for segment in segments]),
"word_bounds": [
{"word": word["word"], "start": word["start"], "end": word["end"]}
for word in words_info
],
}
def find_closest_cut_off_word(word_bounds, cut_off_sec):
min_distance = float("inf")
for i, word_bound in enumerate(word_bounds):
distance = abs(word_bound["start"] - cut_off_sec)
if distance < min_distance:
min_distance = distance
if word_bound["end"] > cut_off_sec:
break
return i
def get_mask_interval_from_word_bounds(word_bounds, word_span_ind, editType):
tmp = word_span_ind.split(",")
s, e = int(tmp[0]), int(tmp[-1])
start = None
for j, item in enumerate(word_bounds):
if j == s:
if editType == "insertion":
start = float(item["end"])
else:
start = float(item["start"])
if j == e:
if editType == "insertion":
end = float(item["start"])
else:
end = float(item["end"])
assert start is not None
break
return (start, end)