Skip to content

jasondavies/bloomfilter.js

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bloom Filter

This JavaScript bloom filter implementation uses the non-cryptographic Fowler–Noll–Vo hash function for speed.

Usage

const bloom = new BloomFilter(
  32 * 256, // number of bits to allocate.
  16        // number of hash functions.
);

// Add some elements to the filter.
bloom.add("foo");
bloom.add("bar");

// Test if an item is in our filter.
// Returns true if an item is probably in the set,
// or false if an item is definitely not in the set.
bloom.test("foo");
bloom.test("bar");
bloom.test("blah");

// Serialisation. Note that bloom.buckets may be a typed array,
// so we convert to a normal array first.
const array = [].slice.call(bloom.buckets);
const json = JSON.stringify(array);

// Deserialisation. Note that the any array-like object is supported, but
// this will be used directly, so you may wish to use a typed array for
// performance.
const bloom = new BloomFilter(array, 16);

// Automatically pick {m, k} based on number of elements and target false
// positive error rate.
const bloom = BloomFilter.withTargetError(1_000_000, 1e-6);

Implementation

Although the bloom filter requires k hash functions, we can simulate this using enhanced double hashing with a single 64-bit FNV-1a hash computation for performance. The 64-bit hash is split into two 32-bit halves to obtain the two independent hash functions required for enhanced double hashing.

Thanks to Will Fitzgerald for his help and inspiration with the hashing optimisation.

About

JavaScript bloom filter using FNV for fast hashing

Resources

License

Stars

Watchers

Forks

Packages

No packages published