-
Notifications
You must be signed in to change notification settings - Fork 1
/
analyzeAggregatedDataSets.R
229 lines (195 loc) · 7.33 KB
/
analyzeAggregatedDataSets.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#remove old objects for safety resons
rm(list=ls(all=TRUE))
#set seed to make analysis reproducible if any pseudo random number generator is used by any function
set.seed(123)
#utility function to glue together text without separator
glue<-function(...){paste(...,sep="")}
#read the local paths to different directories from an external file
source("workingDir.R")
#change to the data directory
setwd(dataDir)
#Automatically remove inputs without variance:
calculate.variance<-function(x){
var(as.numeric(x), na.rm = TRUE)
}
maxN<-50000
min.num.bad.exit<- 100
num.trees <- 5000
#/data$ head AggregatedDataSet2008.txt
#"113.128.138.3" FALSE "0" "113.128.138.3" 14.6153846153846 "9001" "0.2.0.32" "0" "1" "0" "0" "0" "0" "1" "0" "0" "1" 13
header<-c(
"IP",
"BadExit",
"isSybill",
"IP",
"Bandwidth",
"Port",
"Version",
"Authority",
"Exit",
"Fast",
"Guard",
"HSDir",
"NoEdConsensus",
"Running",
"Stable",
"V2Dir",
"Valid",
"num.observations")
# variables to store the matrixes for the final outputs
glm.d<-NULL
glm.rownames<-c("Year", "Bandwidth", "Fast","Guard","HSDir","Stable","V2Dir","Num Observations","Null Deviance","Residual Deviance","R2")
glm.d<-cbind(glm.d,glm.rownames)
gbm.d<-NULL
gbm.rownames<-c("Year","Fast", "num.observations", "Bandwidth","V2Dir","Port","Version","Guard","Stable","HSDir")
gbm.d<-cbind(gbm.d,gbm.rownames)
check.significance<-function(x){
return(ifelse(x!="",ifelse(x<0.05,"+","-"),"N/A"))
}
glm.create.frame<-function(inputmodel,year){
p.values <- inputmodel$coefficients[,4]
z<-c(year)
z[2]=check.significance(p.values["Bandwidth"])
z[3]=check.significance(p.values["Fast1"])
z[4]=check.significance(p.values["Guard1"])
z[5]=check.significance(p.values["HSDir1"])
z[6]=check.significance(p.values["Stable1"])
z[7]=check.significance(p.values["V2Dir1"])
z[8]=check.significance(p.values["num.observations"])
z[9]=round(inputmodel$null.deviance,1)
z[10]=round(inputmodel$deviance,1)
z[11]=glue((as.character(round(1-(inputmodel$deviance/inputmodel$null.deviance),3))*100),"%")
return(z)
}
gbm.create.frame<-function(inputmodel,year,digits){
z<-c(year)
z[2]=round(inputmodel["Fast",]$rel.inf,digits)
z[3]=round(inputmodel["num.observations",]$rel.inf,digits)
z[4]=round(inputmodel["Bandwidth",]$rel.inf,digits)
z[5]=round(inputmodel["V2Dir",]$rel.inf,digits)
z[6]=round(inputmodel["Port",]$rel.inf,digits)
z[7]=round(inputmodel["Version",]$rel.inf,digits)
z[8]=round(inputmodel["Guard",]$rel.inf,digits)
z[9]=round(inputmodel["Stable",]$rel.inf,digits)
z[10]=round(inputmodel["HSDir",]$rel.inf,digits)
return(z)
}
#Now let's run this analysis for all years:
for(year in seq(2008,2017)){
setwd(dataDir)
fileName<-glue("AggregatedDataSet",year,".txt")
d<-read.table(fileName, header=FALSE, sep=" ",
stringsAsFactors=FALSE,comment.char="")
names(d)<-header
d<-d[,-1]
#set correct data type for inputs
d$isSybill <- as.factor(d$isSybill)
d$Exit <- as.factor(d$Exit)
d$BadExit <- as.factor(d$BadExit)
d$Port <- as.factor(d$Port)
d$Version <- as.factor(d$Version)
d$Bandwidth <- as.numeric(d$Bandwidth)
d$IP <- as.factor(d$IP)
d$Authority <- as.factor(d$Authority)
d$Fast <- as.factor(d$Fast)
d$Guard <- as.factor(d$Guard)
d$HSDir <- as.factor(d$HSDir)
d$NoEdConsensus <- as.factor(d$NoEdConsensus)
d$Running <- as.factor(d$Running)
d$Stable <- as.factor(d$Stable)
d$V2Dir <- as.factor(d$V2Dir)
d$Valid <- as.factor(d$Valid)
index.Exit<-which(names(d)=="Exit")
#only select nodes which are configured as exit nodes
d<-d[d$Exit==1,]
#take a subsample of the observations which don't have the "BadExit" flag:
indicesBad<-which(d$BadExit==TRUE)
indicesGood<-which(d$BadExit==FALSE)
if(length(indicesBad) > min.num.bad.exit){
#I want to have a balanced sample!
#Therefore I retain all observations with the flag BadExit,
#and I randomly sample the same number of observation from the subset
#of
N<-length(indicesBad)
if(N > maxN){
N <- maxN;
indicesBad<-sample(indicesBad, size = N, replace = FALSE);
}
samplesGood <- sample(indicesGood, size = N, replace = FALSE);
sampleIndices <- sort(c(samplesGood, indicesBad));
#create subset for modelling of BadExit flag
dx<-d[sampleIndices,]
#Check factor port
pc<-table(dx$Port)
ports.restricted<-names(pc[pc>3])
dx$Port <- as.factor(ifelse(dx$Port %in% ports.restricted, ports.restricted, "000"))
numOfFactors<-length(levels(dx$Port))
if(numOfFactors>1024){
stop("There are more than 1024 factor levels / ports! Thus the influence of the ports has to be ignored.")
}
#Check factor version
pc<-table(dx$Version)
version.restricted<-names(pc[pc>3])
dx$Version <- as.factor(ifelse(dx$Version %in% version.restricted, version.restricted, "000"))
numOfFactors<-length(levels(dx$Version))
if(numOfFactors>1024){
stop("There are more than 1024 factor levels / versions!")
}
predictors<-names(dx)[-c(1:3,12,17)]
for(predictor in predictors){
#set correct data type for inputs
if(mode(predictor)=="character"){
eval(parse(text=glue(
"dx$",predictor,"<-factor(dx$",predictor,")"
)))
}
}
dx$Bandwidth<-as.numeric(dx$Bandwidth)
variances<-as.numeric(lapply(dx[,3:16], calculate.variance))
positive.variances <-ifelse(is.na(variances),FALSE,variances>0.01)
indices<-c(rep(TRUE,2), positive.variances, TRUE)
dx<-dx[,indices]
#fit the full model without Version and Port
index.Port<-which(names(d)=="Port")
index.Version<-which(names(d)=="Version")
index.IP<-which(names(d)=="IP")
index.isSybill<-which(names(d)=="isSybill")
m1.glm <- glm(BadExit ~ . , family= binomial(), data=dx[,-c(index.Port,index.Version,index.IP,index.isSybill)])
setwd(dataDir)
fileName<-glue("GLM_FullModel_Summary_Aggregated_",year,".txt")
sink(fileName)
print(summary(m1.glm))
sink()
glm.d<-cbind(glm.d,glm.create.frame(summary(m1.glm),year))
#************************************************************************************************
#Fit gbm model
require("gbm")
m2.gbm <- gbm ((as.numeric(BadExit)-1) ~ . ,
distribution="bernoulli",
verbose=FALSE,
interaction.depth=3,#6
shrinkage=0.001,#0.001
n.trees = num.trees,#3000
cv.folds=10,
data=dx[,-c(index.IP,index.isSybill)])
# check performance using 5-fold cross-validation
best.iter <- gbm.perf(m2.gbm, method="cv")
ri<-summary(m2.gbm, n.trees=best.iter, plotit=FALSE)
outputFileName<-glue("VariableImportanceBoostedRegressionTrees_BadExit_agg_",year,".txt")
setwd(dataDir)
write.table(ri, file=outputFileName,append=FALSE,col.names=FALSE)
gbm.d<-cbind(gbm.d,gbm.create.frame(summary(m2.gbm, plotit=FALSE),year,1))
}
}
# save tables to latex file
require(xtable)
colnames(glm.d)<- as.character(unlist(glm.d[1,]))
glm.d<-glm.d[-1,]
glm.d[8,c(2:4)]<-round(as.numeric(glm.d[8,c(2:4)]),2)
glm.d[9,c(2:4)]<-round(as.numeric(glm.d[9,c(2:4)]),2)
glm.d[10,c(2:4)]<-round(as.numeric(glm.d[10,c(2:4)]),2)
colnames(gbm.d)<- as.character(unlist(gbm.d[1,]))
gbm.d<-gbm.d[-1,]
setwd(dataDir)
print.xtable(xtable(glm.d), type="latex", file="glmtable.tex")
print.xtable(xtable(gbm.d), type="latex", file="gbmtable.tex")