forked from ethanfetaya/NRI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_enc.py
255 lines (217 loc) · 9.31 KB
/
train_enc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from __future__ import division
from __future__ import print_function
import time
import argparse
import pickle
import os
import torch.optim as optim
from torch.optim import lr_scheduler
from utils import *
from modules import *
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--epochs', type=int, default=500,
help='Number of epochs to train.')
parser.add_argument('--batch-size', type=int, default=128,
help='Number of samples per batch.')
parser.add_argument('--lr', type=float, default=0.0005,
help='Initial learning rate.')
parser.add_argument('--hidden', type=int, default=512,
help='Number of hidden units.')
parser.add_argument('--num-atoms', type=int, default=5,
help='Number of atoms in simulation.')
parser.add_argument('--num-classes', type=int, default=2,
help='Number of edge types.')
parser.add_argument('--encoder', type=str, default='mlp',
help='Type of path encoder model (mlp or cnn).')
parser.add_argument('--no-factor', action='store_true', default=False,
help='Disables factor graph model.')
parser.add_argument('--suffix', type=str, default='_springs',
help='Suffix for training data (e.g. "_charged".')
parser.add_argument('--dropout', type=float, default=0.5,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='How many batches to wait before logging.')
parser.add_argument('--edge-types', type=int, default=2,
help='The number of edge types to infer.')
parser.add_argument('--dims', type=int, default=4,
help='The number of dimensions (position + velocity).')
parser.add_argument('--timesteps', type=int, default=49,
help='The number of time steps per sample.')
parser.add_argument('--save-folder', type=str, default='logs',
help='Where to save the trained model.')
parser.add_argument('--lr-decay', type=int, default=200,
help='After how epochs to decay LR by a factor of gamma')
parser.add_argument('--gamma', type=float, default=0.5,
help='LR decay factor')
parser.add_argument('--motion', action='store_true', default=False,
help='Use motion capture data loader.')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
args.factor = not args.no_factor
print(args)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
log = None
# Save model and meta-data. Always saves in a new folder.
if args.save_folder:
exp_counter = 0
save_folder = '{}/exp{}/'.format(args.save_folder, exp_counter)
while os.path.isdir(save_folder):
exp_counter += 1
save_folder = os.path.join(args.save_folder,
'exp{}'.format(exp_counter))
os.mkdir(save_folder)
meta_file = os.path.join(save_folder, 'metadata.pkl')
model_file = os.path.join(save_folder, 'encoder.pt')
log_file = os.path.join(save_folder, 'log.txt')
log = open(log_file, 'w')
pickle.dump({'args': args}, open(meta_file, "wb"))
else:
print("WARNING: No save_folder provided!" +
"Testing (within this script) will throw an error.")
train_loader, valid_loader, test_loader, loc_max, loc_min, vel_max, vel_min = load_data(
args.batch_size, args.suffix)
# Generate off-diagonal interaction graph
off_diag = np.ones([args.num_atoms, args.num_atoms]) - np.eye(args.num_atoms)
rel_rec = np.array(encode_onehot(np.where(off_diag)[0]), dtype=np.float32)
rel_send = np.array(encode_onehot(np.where(off_diag)[1]), dtype=np.float32)
rel_rec = torch.FloatTensor(rel_rec)
rel_send = torch.FloatTensor(rel_send)
if args.encoder == 'mlp':
model = MLPEncoder(args.timesteps * args.dims, args.hidden,
args.edge_types,
args.dropout, args.factor)
elif args.encoder == 'cnn':
model = CNNEncoder(args.dims, args.hidden, args.edge_types,
args.dropout, args.factor)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.lr_decay,
gamma=args.gamma)
# Linear indices of an upper triangular mx, used for loss calculation
triu_indices = get_triu_offdiag_indices(args.num_atoms)
if args.cuda:
model.cuda()
rel_rec = rel_rec.cuda()
rel_send = rel_send.cuda()
triu_indices = triu_indices.cuda()
rel_rec = Variable(rel_rec)
rel_send = Variable(rel_send)
best_model_params = model.state_dict()
def train(epoch, best_val_accuracy):
t = time.time()
loss_train = []
acc_train = []
loss_val = []
acc_val = []
model.train()
scheduler.step()
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data, rel_rec, rel_send)
# Flatten batch dim
output = output.view(-1, args.num_classes)
target = target.view(-1)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
pred = output.data.max(1, keepdim=True)[1]
correct = pred.eq(target.data.view_as(pred)).cpu().sum()
acc = correct / pred.size(0)
loss_train.append(loss.data[0])
acc_train.append(acc)
model.eval()
for batch_idx, (data, target) in enumerate(valid_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(
target, volatile=True)
output = model(data, rel_rec, rel_send)
# Flatten batch dim
output = output.view(-1, args.num_classes)
target = target.view(-1)
loss = F.cross_entropy(output, target)
pred = output.data.max(1, keepdim=True)[1]
correct = pred.eq(target.data.view_as(pred)).cpu().sum()
acc = correct / pred.size(0)
loss_val.append(loss.data[0])
acc_val.append(acc)
print('Epoch: {:04d}'.format(epoch),
'loss_train: {:.10f}'.format(np.mean(loss_train)),
'acc_train: {:.10f}'.format(np.mean(acc_train)),
'loss_val: {:.10f}'.format(np.mean(loss_val)),
'acc_val: {:.10f}'.format(np.mean(acc_val)),
'time: {:.4f}s'.format(time.time() - t))
if args.save_folder and np.mean(acc_val) > best_val_accuracy:
torch.save(model.state_dict(), model_file)
print('Best model so far, saving...')
print('Epoch: {:04d}'.format(epoch),
'loss_train: {:.10f}'.format(np.mean(loss_train)),
'acc_train: {:.10f}'.format(np.mean(acc_train)),
'loss_val: {:.10f}'.format(np.mean(loss_val)),
'acc_val: {:.10f}'.format(np.mean(acc_val)),
'time: {:.4f}s'.format(time.time() - t), file=log)
log.flush()
return np.mean(acc_val)
def test():
t = time.time()
loss_test = []
acc_test = []
model.eval()
model.load_state_dict(torch.load(model_file))
for batch_idx, (data, target) in enumerate(test_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(
target, volatile=True)
# Limit to same length as train sequence
data = data[:, :, :args.timesteps, :].contiguous()
output = model(data, rel_rec, rel_send)
# Flatten batch dim
output = output.view(-1, args.num_classes)
target = target.view(-1)
loss = F.cross_entropy(output, target)
pred = output.data.max(1, keepdim=True)[1]
correct = pred.eq(target.data.view_as(pred)).cpu().sum()
acc = correct / pred.size(0)
loss_test.append(loss.data[0])
acc_test.append(acc)
print('--------------------------------')
print('--------Testing-----------------')
print('--------------------------------')
print('loss_test: {:.10f}'.format(np.mean(loss_test)),
'acc_test: {:.10f}'.format(np.mean(acc_test)))
if args.save_folder:
print('--------------------------------', file=log)
print('--------Testing-----------------', file=log)
print('--------------------------------', file=log)
print('loss_test: {:.10f}'.format(np.mean(loss_test)),
'acc_test: {:.10f}'.format(np.mean(acc_test)), file=log)
log.flush()
return np.mean(acc_test)
# Train model
t_total = time.time()
best_val_accuracy = -1.
best_epoch = 0
for epoch in range(args.epochs):
val_acc = train(epoch, best_val_accuracy)
if val_acc > best_val_accuracy:
best_val_accuracy = val_acc
best_epoch = epoch
print("Optimization Finished!")
print("Best Epoch: {:04d}".format(best_epoch))
if args.save_folder:
print("Best Epoch: {:04d}".format(best_epoch), file=log)
log.flush()
test()
if log is not None:
print(save_folder)
log.close()
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))