-
Notifications
You must be signed in to change notification settings - Fork 0
/
plots.py
210 lines (170 loc) · 7.93 KB
/
plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import matplotlib.pylab as plt
import numpy as np
from utils import read_parameters
import os
class ParameterPlot(object):
def __init__(self, parameters, names=["s_max", "rg", "k", "fr"]):
self.num_param = len(names)
self.parameters = parameters
self.names = names
def plot(self):
if os.path.exists("plots") == False:
os.mkdir("plots")
fig = plt.figure()
fig.subplots_adjust(hspace=0.4, wspace=0.4)
for i in range(self.num_param):
ax = fig.add_subplot(np.ceil(self.num_param/2), 2, i+1)
ax.hist(self.parameters[:, i], bins=50)
ax.set_xlabel(self.names[i])
plt.savefig("plots/param_dist.png")
class OutputPlot(object):
def __init__(self, q_obs, area, output):
self.q_obs = q_obs
self.output = output
self.area = area
self.var = ["q_sim", "et", "pot_et", "precipitation", "snow", "rainfall", "melt",
"snow_cover", "soil_storage", "q_surf" ,"groundwater_storage", "q_gw","temp", "temp_min", "temp_max"]
self.x = np.arange(self.output.shape[0])
self.right= self.x[-1]
self.c0 = "#1f77b4"
self.c1 = "#ff7f0e"
self.c2 = "#2ca02c"
self.c3 = "#d62728"
self.linewidth = 0.5
if os.path.exists("plots") == False:
os.mkdir("plots")
def plot_variables(self):
self.et = self.output[:,1]
self.pet = self.output[:,2]
self.precipitation = self.output[:,3]
self.snow = self.output[:,4]
self.rain = self.output[:,5]
self.melt = self.output[:,6]
self.snow_cover = self.output[:,7]
self.snow_fraction = self.snow_cover/self.area
self.temp_min = self.output[:,12]
self.temp = self.output[:,13]
self.temp_max = self.output[:,14]
fig, ((ax1,ax2),(ax3,ax4),(ax5,ax6)) = plt.subplots(3,2, figsize = (10,10))
plt.subplots_adjust(wspace = 0.5, hspace = 0.75)
ax1.plot(self.x, self.temp_min, linewidth = self.linewidth, label = "$T_{min}$")
ax1.plot(self.x, self.temp, linewidth = self.linewidth, label = "$T_{av}$")
ax1.plot(self.x, self.temp_max, linewidth = self.linewidth, label = "$T_{max}$")
ax1.set_xlim(left = 0, right =self.right)
ax1.set_ylabel("Temp [$\degree$C]")
ax1.set_title("Daily $T_{min}$, $T_{av}$, and $T_{max}$")
ax1.legend()
ax2.plot(self.x, self.precipitation, linewidth = self.linewidth, label = "P")
ax2.plot(self.x, self.rain, linewidth = self.linewidth, label = "R")
ax2.plot(self.x, self.snow, linewidth = self.linewidth, label = "S")
ax2.set_ylim(bottom =0)
ax2.set_xlim(left = 0, right =self.right)
ax2.set_ylabel("[mm/day]")
ax2.set_title("Daily Precipitation Rain and Snow")
ax2.legend()
ax3.plot(self.x, self.pet, linewidth = self.linewidth, label = "PET")
ax3.plot(self.x, self.et, linewidth = self.linewidth, label = "ET")
ax3.set_xlim(left = 0, right =self.right)
ax3.set_ylim(bottom =0)
ax3.set_xlim(left = 0, right =self.right)
ax3.set_ylabel("[mm/day]")
ax3.set_title("Daily Actual and Potential Evapotranspiration")
ax3.legend()
ax4.plot(self.x, self.melt, linewidth = self.linewidth)
ax4.set_xlim(left = 0, right =self.right)
ax4.set_ylim(bottom =0)
ax4.set_xlim(left = 0, right =self.right)
ax4.set_ylabel("[mm/day]")
ax4.set_title("Daily Snow Melt")
ax5.plot(self.x, self.snow_cover, linewidth = self.linewidth)
ax5.set_xlim(left = 0, right =self.right)
ax5.set_ylim(bottom =0)
ax5.set_xlim(left = 0, right =self.right)
ax5.set_ylabel("[mm]")
ax5.set_title("Snow Cover")
ax6.plot(self.x, self.snow_fraction, linewidth = self.linewidth)
ax6.set_xlim(left = 0, right =self.right)
ax6.set_ylim(bottom =0)
ax6.set_xlim(left = 0, right =self.right)
ax6.set_ylabel("[mm]")
ax6.set_title("Snow Cover Fraction")
plt.savefig("plots/variables.png")
def plot_runoff(self):
self.soil_storage = self.output[:,8]
self.surface_runoff = self.output[:,9]
self.groundwater_storage = self.output[:,10]
self.groundwater_runoff = self.output[:,11]
fig, (ax1, ax3) = plt.subplots(2,1, figsize=(8,8))
plt.subplots_adjust(hspace = 0.5)
ax2 = ax1.twinx()
ax4 = ax3.twinx()
ax1.plot(self.x, self.soil_storage, linewidth = self.linewidth, label = "$S_{soil}$", color = self.c0)
ax1.set_ylabel("$S_{soil}$ [mm]")
ax1.set_ylim(bottom = 0, top = 40)
ax1.set_xlim(left = 0, right = self.right)
ax1.legend(loc = "upper left")
ax2.plot(self.x, self.surface_runoff, linewidth = self.linewidth, label = "$Q_{surf}$", color = self.c1)
ax2.set_ylabel("$Q_{surf}$ [mm]")
ax2.set_ylim(bottom = 0, top = 10)
ax2.set_xlim(left = 0, right = self.right)
ax2.legend(loc = "upper right")
ax2.set_title("Soil Storage and Surface Runoff")
ax3.plot(self.x,self.groundwater_storage, linewidth = self.linewidth, label = "$S_{groundwater}$", color = self.c0)
ax3.set_ylabel("$S_{groundwater}$ [mm]")
ax3.set_ylim(bottom = 0, top = 220)
ax3.set_xlim(left = 0,right = self.right)
ax3.legend(loc = "upper left")
ax4.plot(self.x,self.groundwater_runoff, linewidth = self.linewidth, label = "$Q_{groundwater}$", color = self.c1)
ax4.set_ylabel("$Q_{groundwater}$ [mm]")
ax4.set_ylim(bottom = 0, top = 20)
ax4.set_xlim(left = 0, right = self.right)
ax4.legend(loc = "upper right")
ax4.set_title("Groundwater Storage and Groundwater Runoff")
plt.savefig("plots/runoff.png")
def plot_q(self):
self.q_sim = self.output[:,0]
fig, ax = plt.subplots(1,1 , figsize = (8,4))
ax.plot(self.x,self.q_sim, color = self.c0, linewidth = self.linewidth, label = "$Q_{sim}$")
ax.plot(self.x, self.q_obs, color = self.c1, linewidth = self.linewidth, label = "$Q_{obs}$")
ax.set_ylabel("Q [mm/day]")
ax.set_xlabel("Day (Julian)")
ax.set_xlim(left = 0 , right = self.right)
ax.set_ylim(bottom = 0)
ax.set_title("Observed and Simulated Runoff")
ax.legend()
plt.savefig("plots/q.png")
def plot_percentile(self):
self.q_sim = self.output[:,0]
num_points = 101
y = np.zeros(num_points)
perc_sim = np.zeros(num_points)
perc_obs = np.zeros(num_points)
for i in range(num_points):
perc_sim[i] = np.percentile(self.q_sim,i*101/num_points)
perc_obs[i] = np.percentile(self.q_obs,i*101/num_points)
y[i] = i*101/num_points/100
fig, ax = plt.subplots(figsize = (6,4))
ax.plot(perc_sim,y, label = "Simulated Runoff")
ax.plot(perc_obs,y, label = "Observed Runoff")
ax.legend()
ax.set_ylim(bottom = 0, top = 1)
ax.set_xlim(left = 0)
ax.set_xlabel("Discharge [mm/day]")
ax.set_ylabel("F Cumulative")
ax.set_title("Cumulative frequency distribution")
plt.savefig("plots/percentile.png")
def plot_scatter(self):
self.q_sim = self.output[:,0]
fig, ax = plt.subplots(1,1, figsize = (6,6))
x_values = [1e-3, 1e4]
y_values = [1e-3, 1e4]
ax.plot(x_values, y_values, color = "k", linestyle = "--", alpha = 0.5)
ax.scatter(self.q_obs,self.q_sim, marker = "o",s=1, color = "b")
ax.set_xscale("log")
ax.set_yscale("log")
ax.set_xlim(left = 1e-3, right=1e4)
ax.set_ylim(bottom = 1e-3, top=1e4)
ax.set_xlabel("$Q_{obs}$ [mm/day]")
ax.set_ylabel("$Q_{sim}$ [mm/day]")
ax.set_title("Scatter plot of Simulated vs Observed Discharge")
plt.savefig("plots/scatter.png")