-
Notifications
You must be signed in to change notification settings - Fork 3
/
chatbot.py
574 lines (406 loc) · 18.2 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
import os
import numpy as np
import matplotlib.pyplot as plt
from gtts import gTTS
import argparse
from keras.layers import Bidirectional, Concatenate, Permute, Dot, Input, LSTM, Multiply , Embedding
from keras.layers import RepeatVector, Dense, Activation, Lambda
from keras.optimizers import Adam
from keras.utils import to_categorical
from keras.models import load_model, Model
import keras.backend as K
# %matplotlib inline
## Gensim
import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel
from gensim.models.ldamodel import LdaModel
import tensorflow as tf
#import tensorflow_addons as tfa
print(tf.__version__)
from sklearn.model_selection import train_test_split
import json
import os
import pickle
import io
import re
import unicodedata
import urllib3
import shutil
import zipfile
import itertools
from string import digits
import matplotlib.ticker as ticker
import unicodedata
import time
import speech_recognition as sr
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
def preprocess_sentence(sentence):
num_digits= str.maketrans('','', digits)
sentence= sentence.lower()
sentence= re.sub(" +", " ", sentence)
sentence= re.sub("'", '', sentence)
sentence= sentence.translate(num_digits)
sentence= re.sub(r"([?.!,¿])", r" \1 ", sentence)
sentence = sentence.rstrip().strip()
sentence = "<start> " + sentence + " <end>"
return sentence
max_len = 20
trunc_token = 'post'
oov_tok = "<OOV>"
word_index = pickle.load(open(os.getcwd() + "/dic/word_index.pkl", "rb"))
index_word = pickle.load(open(os.getcwd() + "/dic/index_word.pkl", "rb"))
# word_index = json.load( open( os.getcwd() + "/dic/word_index.json" ) )
# index_word = json.load( open( os.getcwd() + "/dic/index_word.json" ) )
# print(type(word_index))
# print(index_word[10])
# embeddingMatrix
path = os.getcwd() + '/lda_checkpoint/topic_model.lda'
lda_model = LdaModel.load(path)
import spacy
nlp = spacy.load('en', disable=['parser', 'ner'])
# !python3 -m spacy download en
class LDA(tf.keras.layers.Layer):
def __init__(self, lda_model,index_to_word):
super(LDA, self).__init__(trainable= False, dynamic = True)
self.lda_model = lda_model
self.index_to_word = index_to_word
def build(self, input_shape):
return
def gensim_preprocess(self ,lda_model , data):
data = [re.sub('\S*@\S*\s?', '', sent) for sent in data]
data = [re.sub('\s+', ' ', sent) for sent in data]
data = [re.sub("\'", "", sent) for sent in data]
new = []
for line in data:
new.append(gensim.utils.simple_preprocess(str(line), deacc=True))
allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']
texts_out = []
for sent in new:
doc = nlp(" ".join(sent))
texts_out.append([token.lemma_ for token in doc if token.pos_ in allowed_postags])
# print(texts_out)
corpus = [lda_model.id2word.doc2bow(line) for line in texts_out]
return corpus
def get_config(self):
return {
'lda_model' : self.lda_model,
'index_to_word' : self.index_to_word,
}
def call(self, inp):
batch_size , time_steps = inp.shape
data = []
for i in range(batch_size):
line = ""
for j in range(1,time_steps):
if inp[i][j].numpy() != 0:
if index_word[int(inp[i][j].numpy())] == '<end>':
break;
line = line + self.index_to_word[int(inp[i][j].numpy())]
data.append(line)
data = self.gensim_preprocess(self.lda_model ,data)
predictions = self.lda_model.get_document_topics(data , minimum_probability = 0.0)
x = []
for i in range(batch_size):
x.append((tf.convert_to_tensor(list(predictions[i]),dtype='float32'))[:,1])
x = tf.convert_to_tensor(x ,dtype='float32')
return x
def compute_output_shape(self, input_shape):
return (batch_size, 20)
BATCH_SIZE = 1
embedding_dim = 50
units = 128
vocab_inp_size = len(word_index)+1
vocab_tar_size = len(word_index)+1
# tf.keras.backend.set_floatx('float64')
class Encoder(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, enc_units, batch_sz, lda_model , index_word):
super(Encoder, self).__init__()
self.batch_sz = batch_sz
self.enc_units = enc_units
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim , weights =[embeddingMatrix], trainable=False)
self.gru = tf.keras.layers.GRU(self.enc_units,
return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform')
self.topic_awareness = LDA(lda_model = lda_model , index_to_word = index_word)
def call(self, x, hidden):
topic_vector = self.topic_awareness.call(x)
x = self.embedding(x)
output, state = self.gru(x, initial_state = hidden)
return output, state, topic_vector
def initialize_hidden_state(self):
return tf.zeros((self.batch_sz, self.enc_units))
encoder = Encoder(vocab_inp_size, embedding_dim, units, BATCH_SIZE , lda_model , index_word)
class BahdanauAttention(tf.keras.layers.Layer):
def __init__(self, units):
super(BahdanauAttention, self).__init__()
self.W1 = tf.keras.layers.Dense(units)
self.W2 = tf.keras.layers.Dense(units)
self.V = tf.keras.layers.Dense(1)
def call(self, query, values):
# query hidden state shape == (batch_size, hidden size)
# query_with_time_axis shape == (batch_size, 1, hidden size)
# values shape == (batch_size, max_len, hidden size)
# we are doing this to broadcast addition along the time axis to calculate the score
query_with_time_axis = tf.expand_dims(query, 1)
# score shape == (batch_size, max_length, 1)
# we get 1 at the last axis because we are applying score to self.V
# the shape of the tensor before applying self.V is (batch_size, max_length, units)
score = self.V(tf.nn.tanh(
self.W1(query_with_time_axis) + self.W2(values)))
# attention_weights shape == (batch_size, max_length, 1)
attention_weights = tf.nn.softmax(score, axis=1)
# context_vector shape after sum == (batch_size, hidden_size)
context_vector = attention_weights * values
context_vector = tf.reduce_sum(context_vector, axis=1)
return context_vector, attention_weights
class Decoder(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz):
super(Decoder, self).__init__()
self.batch_sz = batch_sz
self.dec_units = dec_units
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim , , weights =[embeddingMatrix], trainable=False)
self.gru = tf.keras.layers.GRU(self.dec_units,
return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform')
self.fc = tf.keras.layers.Dense(vocab_size , activation = "softmax")
# used for attention
self.attention = BahdanauAttention(self.dec_units)
def call(self, x, hidden, enc_output ,topic_vector):
# enc_output shape == (batch_size, max_length, hidden_size)
attention_vector, attention_weights = self.attention(hidden, enc_output)
context_vector = tf.concat([attention_vector, topic_vector], axis = -1)
# x shape after passing through embedding == (batch_size, 1, embedding_dim)
x = self.embedding(x)
# x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)
x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)
# passing the concatenated vector to the GRU
output, state = self.gru(x , initial_state = hidden)
# output shape == (batch_size * 1, hidden_size)
output = tf.reshape(output, (-1, output.shape[2]))
# output shape == (batch_size, vocab)
x = self.fc(output)
return x, state, attention_weights
decoder = Decoder(vocab_tar_size , embedding_dim, units, BATCH_SIZE)
optimizer = tf.keras.optimizers.Adam()
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
# if not os.path.exists(checkpointdir):
# os.mkdir(checkpoint_dir)
checkpoint = tf.train.Checkpoint(optimizer=optimizer,
encoder=encoder,
decoder=decoder)
try:
status = checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
print("Checkpoint found at {}".format(tf.train.latest_checkpoint(checkpoint_dir)))
except:
print("No checkpoint found at {}".format(checkpoint_dir))
def evaluate(sentence):
attention_plot = np.zeros((max_len, max_len))
sentence = preprocess_sentence(sentence)
inputs = [word_index[i] for i in sentence.split(' ')]
inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs],
maxlen=max_len,
padding='post')
inputs = tf.convert_to_tensor(inputs)
result = ''
hidden = [tf.zeros((1, units))]
enc_out, enc_hidden , topic_vector = encoder(inputs, hidden)
dec_hidden = enc_hidden
dec_input = tf.expand_dims([word_index['<start>']], 0)
for t in range(max_len):
predictions, dec_hidden, attention_weights = decoder(dec_input,
dec_hidden,
enc_out , topic_vector)
# storing the attention weights to plot later on
attention_weights = tf.reshape(attention_weights, (-1, ))
attention_plot[t] = attention_weights.numpy()
predicted_id = tf.argmax(predictions[0]).numpy()
result += index_word[predicted_id] + ' '
if index_word[predicted_id] == '<end>':
return result, sentence, attention_plot
# the predicted ID is fed back into the model
dec_input = tf.expand_dims([predicted_id], 0)
return result, sentence, attention_plot
# function for plotting the attention weights
def plot_attention(attention, sentence, predicted_sentence):
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(1, 1, 1)
ax.matshow(attention, cmap='viridis')
fontdict = {'fontsize': 14}
ax.set_xticklabels([''] + sentence, fontdict=fontdict, rotation=90)
ax.set_yticklabels([''] + predicted_sentence, fontdict=fontdict)
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
plt.show()
def response(sentence):
result, sentence, attention_plot = evaluate(sentence)
x =0
# print('Input: %s' % (sentence))
if debug == True:
print('Response: {}'.format(result)
return result
# attention_plot = attention_plot[:len(result.split(' ')), :len(sentence.split(' '))]
# plot_attention(attention_plot, sentence.split(' '), result.split(' '))
batch_size = 1
Ty = 20
# def beam_search_decoder(sentence , beam_width = 3):
# sentence = preprocess_sentence(sentence)
# inputs = [word_index[i] for i in sentence.split(' ')]
# inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs],
# maxlen=max_len,
# padding='post')
# inputs = tf.convert_to_tensor(inputs)
# predictions = [([],0)] * beam_width
# # predictions = tf.convert_to_tensor(predictions)
# enc_hidden = tf.zeros((1,units))
# encoder_output , encoder_hidden , topic_vector = encoder(inputs , enc_hidden)
# decoder_hidden = [encoder_hidden] * 3
# # decoder_hidden = [decoder_hidden] * beam_width
# decoder_input = [tf.expand_dims([word_index['<start>'] ], 0)] * beam_width
# # print("decoder_input" ,decoder_input[0])
# print("decoder_hiddem:{} \n decoder_input: {} \n encoder_hidden :{} \n topic_vector {} \n".format(decoder_hidden[0].shape , decoder_input[0].shape , encoder_output.shape , topic_vector.shape))
# for t in range(Ty):
# current_predictions = []
# for i in range(beam_width):
# out , decoder_hidden[i] , _ = decoder(decoder_input[i] , decoder_hidden[i] , encoder_output , topic_vector)
# # print("not done")
# # print(out)
# index = tf.argsort(out, axis=-1, direction='DESCENDING', stable=False, name=None)
# prob = tf.sort(out ,axis = -1 , direction = 'DESCENDING')
# # print("index: {} prob: {}".format((index[0]) , prob[0]));
# # print("done")
# # print(int(index[0][0]))
# # print(int(index[0][1]))
# # print(int(index[0][2]))
# # print("done" ,current_predictions)
# for j in range(beam_width):
# if t ==0 and i ==1 :
# continue
# # print("do nothing!")
# elif t == 0 and i ==2:
# continue
# # print("do nothing!")
# else :
# current_predictions.append((predictions[i][0] + [int(index[0][j])] , np.log(prob[0][j]) + predictions[i][1]))
# # if t == 0 and i ==0 :
# # print(current_predictions)
# # print(count)
# # print(current_predictions)
# def get_prob(pred):
# # print(pred[1])
# return pred[1]
# # print(current_predictions)
# current_predictions = sorted(current_predictions , key = get_prob , reverse =True)
# # print(current_predictions)
# predictions = current_predictions[:beam_width]
# # print(predictions)
# current_predictions = [pred[0] for pred in current_predictions]
# print(current_predictions[0])
# # print(current_predictions[1])
# decoder_input = [tf.expand_dims([tf.convert_to_tensor(pred[t])],0) for pred in current_predictions]
# print(decoder_input[0])
# output = []
# for pred , prob in predictions:
# out = []
# s = ""
# for p in pred:
# if index_word[p] != "<end>":
# s += " " + index_word[p]
# else :
# break
# output.append(s)
# prob = [pred[1] / len(output[i]) for i , pred in enumerate(predictions)]
# # for i in range(beam_width):
# print("resposne :{} \n {} \n {} ".format(output[0] , output[1] ,output[2]))
# return output , prob
def beam_search_decoder(sentence , beam_width = 3):
sentence = preprocess_sentence(sentence)
inputs = [word_index[i] for i in sentence.split(' ')]
inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs],
maxlen=max_len,
padding='post')
inputs = tf.convert_to_tensor(inputs)
predictions = []
# predictions = tf.convert_to_tensor(predictions)
enc_hidden = tf.zeros((1,128))
encoder_output , encoder_hidden , topic_vector = encoder(inputs , enc_hidden)
decoder_hidden = encoder_hidden
# decoder_hidden = [decoder_hidden] * beam_width
decoder_input = tf.expand_dims([word_index['<start>'] ], 0)
# print("decoder_input" ,decoder_input[0])
# print("decoder_hiddem:{} \n decoder_input: {} \n encoder_output :{} \n topic_vector {} \n".format(decoder_hidden.shape , decoder_input.shape , encoder_output.shape , topic_vector.shape))
out , hidden, _ = decoder(decoder_input , decoder_hidden , encoder_output , topic_vector)
index = tf.argsort(out, axis=-1, direction='DESCENDING', stable=False, name=None)
prob = tf.sort(out ,axis = -1 , direction = 'DESCENDING')
terminal_sentences, decoder_hidden, predictions = [], [], []
decoder_hidden = [hidden] * 3
# print(decoder_hidden)
for i in range(beam_width):
predictions.append(([int(index[0][i])], np.log(prob[0][i])))
# print(predictions[0][0])
decoder_input = [tf.expand_dims(tf.convert_to_tensor(pred[0]),0) for pred in predictions]
# print(decoder_input[0])
for t in range(1,Ty):
current_predictions = []
for i in range(beam_width):
out , decoder_hidden[i] , _ = decoder(decoder_input[i] , decoder_hidden[i] , encoder_output , topic_vector)
# print("once")
index = tf.argsort(out, axis=-1, direction='DESCENDING', stable=False, name=None)
prob = tf.sort(out ,axis = -1 , direction = 'DESCENDING')
for j in range(beam_width):
current_predictions.append((predictions[i][0] + [int(index[0][j])] , np.log(prob[0][j]) + predictions[i][1] , i))
def get_prob(pred):
return pred[1]
current_predictions = sorted(current_predictions , key = get_prob , reverse =True)
current_predictions = current_predictions[:beam_width]
# print("time_step {} {}".format(t ,current_predictions))
hidden = []
inputs = []
pred = []
for j in range(beam_width):
if index_word[current_predictions[j][0][t]] == "<end>":
beam_width -= 1
terminal_sentences.append((current_predictions[j][0] , current_predictions[j][1]))
else :
hidden.append(decoder_hidden[current_predictions[j][2]])
inputs.append(tf.expand_dims([tf.convert_to_tensor(current_predictions[j][0][t])],0) )
pred.append((current_predictions[j][0] , current_predictions[j][1]))
decoder_hidden = hidden
decoder_input = inputs
predictions = pred
# print(decoder_input)
if beam_width <= 0 :
break
for x in range(len(predictions)):
terminal_sentences.append((predictions[x][0],predictions[x][1]))
terminal_sentences = sorted(terminal_sentences , key = get_prob , reverse =True)
output = []
for pred , prob in terminal_sentences:
out = []
s = ""
for p in pred:
if index_word[p] != "<end>":
s += " " + index_word[p]
else :
break
output.append(s)
prob = [pred[1] / len(output[i]) for i , pred in enumerate(terminal_sentences)]
# for i in range(beam_width):
if debug == True:
print("resposne :{} {} \n {} {} \n {} {} ".format(output[0] , prob[0] , output[1] ,prob[1] ,output[2] , prob[2]))
return output , prob
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Conversational Bot')
parser.add_argument('-d', '--debug', type = bool, default= False, help='set debug value')
args = parser.parse_args()
# debug = True
debug = args.debug
while True:
result = input("> ")
out = response(result)
# beam_search_decoder(result)