forked from AsterAphelion/color-from-crism
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crism.py
943 lines (720 loc) · 36.7 KB
/
crism.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
# Forked https://github.com/AsterAphelion/color-from-crism limited to VIS processing
# with improved instrument calibration for CRISM VNIR 362nm - 1053nm.
# The spectrum of map-projected targeted reduced data records (*if*mtr3.lbl/img pairs)
# in the VNIR range shows an unexplainable linear gradient reducing the reflectance (I/F)
# of plain white surface by a factor of 2 to 3 at the short wavelength VNIR spectrum end at 362nm
# compared to the long wavelength VNIR spectrum end at 1053nm.
# White surfaces like northern polar cap snow is expected to show a flat I/F spectrum,
# as can be verified by telescope observations form Earth or from other cameras in Mars orbit.
#
# For the improved calibration, the spectrum of white snow surfaces extracted from
# existing CRISM VNIR if*mtr3 images is extraced with http://crism.jhuapl.edu/JCAT as
# mtrdr_whiteflat.csv and loaded by crism.py.
#
# The image-viewer's illuminant is changed from D65 to the more common D55 of current screens.
#
# Example images shows white surface:
# frt000128f3_07_if165j_mtr3
#
# Example usage to create calibrated output file hrl000095c7_07_if182j_mtr3_VIS.png:
# python3 crism.py mtrdr_to_color --file=hrl000095c7_07_if182j_mtr3.lbl --name=hrl000095c7_07_if182j_mtr3
#
# Required input files available on https://ode.rsl.wustl.edu/mars/mapsearch
# as layers -> Derived Map-projected MTRDR: *if*_mtr3.lbl, *if*_mtr3.img
#
# This calibration is not yet complete, but already shows an improvement in the expected direction.
import rasterio
import numpy as np
import spectres as spec
import fire
#Initialize color_system.py (this segment of code by 'christian' on the SciPython blog)
#See: https://scipython.com/blog/converting-a-spectrum-to-a-colour/
#This is the core of the code, tinker at your own risk.
def xyz_from_xy(x, y):
"""Return the vector (x, y, 1-x-y)."""
return np.array((x, y, 1-x-y))
class ColourSystem:
"""A class representing a colour system.
A colour system defined by the CIE x, y and z=1-x-y coordinates of
its three primary illuminants and its "white point"."""
# The CIE colour matching function for 380 - 780 nm in 5 nm intervals
cmf = np.loadtxt('matching_functions/cie-cmf.txt', usecols=(1,2,3))
def __init__(self, red, green, blue, white):
"""Initialise the ColourSystem object.
Pass vectors (ie NumPy arrays of shape (3,)) for each of the
red, green, blue chromaticities and the white illuminant
defining the colour system."""
# Chromaticities
self.red, self.green, self.blue = red, green, blue
self.white = white
# The chromaticity matrix (rgb -> xyz) and its inverse
self.M = np.vstack((self.red, self.green, self.blue)).T
self.MI = np.linalg.inv(self.M)
# White scaling array
self.wscale = self.MI.dot(self.white)
# xyz -> rgb transformation matrix
self.T = self.MI / self.wscale[:, np.newaxis]
def xyz_to_rgb(self, xyz, out_fmt=None):
"""Transform from xyz to rgb representation of colour.
The output rgb components are normalized on their maximum
value. If xyz is out the rgb gamut, it is desaturated until it
comes into gamut."""
rgb = self.T.dot(xyz)
if np.any(rgb < 0):
# We're not in the RGB gamut: approximate by desaturating
w = - np.min(rgb)
rgb += w
return rgb
def spec_to_xyz(self, spec):
"""Convert a spectrum to an xyz point.
The spectrum must be on the same grid of points as the colour-matching
function, self.cmf: 380-780 nm in 5 nm steps."""
XYZ = np.sum(spec[:, np.newaxis] * self.cmf, axis=0)
den = np.sum(XYZ)
if den == 0.:
return XYZ
return XYZ / den
def spec_to_rgb(self, spec, out_fmt=None):
"""Convert a spectrum to an rgb value."""
xyz = self.spec_to_xyz(spec)
return self.xyz_to_rgb(xyz, out_fmt)
illuminant_D50 = xyz_from_xy(0.3457, 0.3585)
illuminant_D55 = xyz_from_xy(0.3324, 0.3474)
illuminant_D65 = xyz_from_xy(0.3127, 0.3291)
illuminant_D75 = xyz_from_xy(0.2990, 0.3149)
cs_hdtv = ColourSystem(red=xyz_from_xy(0.67, 0.33),
green=xyz_from_xy(0.21, 0.71),
blue=xyz_from_xy(0.15, 0.06),
white=illuminant_D55)
cs_smpte = ColourSystem(red=xyz_from_xy(0.63, 0.34),
green=xyz_from_xy(0.31, 0.595),
blue=xyz_from_xy(0.155, 0.070),
white=illuminant_D55)
cs_srgb = ColourSystem(red=xyz_from_xy(0.64, 0.33),
green=xyz_from_xy(0.30, 0.60),
blue=xyz_from_xy(0.15, 0.06),
white=illuminant_D55)
##Defining a few internal functions to help us on our journey.
#Some frequently-used few-liner functions
def find_band(array, value):
"""One-liner to find the index value of the nearest band to a given
wavelength value."""
idx = (np.abs(array - value)).argmin()
return idx
def quicknorm(data):
data = (data-np.amin(data))/np.amax(data)
return data
def calculate_luminance(weights, cube):
"""Function to calculate an image through a filter given the filter transmission properties
(weights) from a cube."""
##Design philosophy: I am integrating the filter bandpass by first multiplying each cube channel
#by the filter transmission at that channel, then summing the result. To maintain the relative
#brighnesses of each filter, I then find the average I/F value for the wavelength range spanned by
#the cube, and then add an offset value to the calculated filter.
#This is mostly to make sure that the weights work for low transmission filters. Setup for later
#before we modify the weights variable for filter integration.
if np.amax(weights) < 0.05:
weights = weights * 100
short = np.where(weights >= 0.05)[0][0]
long = np.where(weights >= 0.05)[0][-1]
weights = weights / 100
else:
short = np.where(weights >= 0.05)[0][0]
long = np.where(weights >= 0.05)[0][-1]
if short == long:
long += 1
#Now integrate the filter
weights = weights/np.sum(weights)
lumin = np.average(cube, axis=2, weights=weights)
#Apply offset to "true" I/F
lumin += (np.mean(cube[:,:,short:long]) - np.mean(lumin))
return(lumin)
def convert_uint16(cube):
"""Converts cube data (float format) to 16-bit unsigned integer."""
cube = cube * 65535
cube = cube.astype(np.uint16)
return(cube)
#MTRDR pre-processing functions
def modify_mtrdr_axis():
"""Crops the image cube to the given wavelength range."""
mtrdr_axis = np.genfromtxt("matching_functions/mtrdr_axis.tab", delimiter=",")
mtrdr_axis = mtrdr_axis[:,2]
#Fill in the gaps where bad bands are present
#Blue gap - 380-436 nm
add_waves = np.linspace(377.58, 429.62, num=9)
add_waves = np.around(add_waves, decimals=2)
mtrdr_axis = np.concatenate((add_waves, mtrdr_axis))
#NIR bad bands 637-710 nm
bad_band_fill = np.linspace(637.96, 703.1, num=10)
bad_band_fill = np.around(bad_band_fill, decimals=2)
mtrdr_axis = np.insert(mtrdr_axis, 40, bad_band_fill, axis=0)
return(mtrdr_axis)
def mtrdr_crop_bands(image_cube, wave_list):
"""Crops the image cube to the given wavelength range."""
mtrdr_axis = modify_mtrdr_axis()
short = find_band(mtrdr_axis, wave_list[0])
long = find_band(mtrdr_axis, wave_list[1])
crop_cube = image_cube[short:long, :, :]
return(crop_cube)
def mtrdr_color_matching(wave_list):
"""Adjusts the CIE color matching function to span the given wavelength range."""
#Import CIE color matching function
#Index 0 - wavelengths, Index 1 - red matching function
#Index 2 - green matching function, Index 3 - blue matching function
cie_matrix = np.genfromtxt("matching_functions/cie-cmf.txt")
#Import tab-delimited file of wavelength axis
mtrdr_axis = modify_mtrdr_axis()
#Find mtrdr axis indices with closest values to user-specified values.
short = find_band(mtrdr_axis, wave_list[0])
long = find_band(mtrdr_axis, wave_list[1])
##Now use normalization to rescale wavelength axis of CIE color matching functions
#to user-specified wavelength range...
cie_matrix[:,0] = (mtrdr_axis[long] - mtrdr_axis[short]) / (cie_matrix[-1,0] - cie_matrix[0,0]) * (cie_matrix[:,0]-cie_matrix[-1,0]) + mtrdr_axis[long]
#..then resample CIE function values using MTRDR axis values
red = spec.spectres(mtrdr_axis[short:long], cie_matrix[:,0], cie_matrix[:,1], fill=0, verbose=False)
green = spec.spectres(mtrdr_axis[short:long], cie_matrix[:,0], cie_matrix[:,2], fill=0, verbose=False)
blue = spec.spectres(mtrdr_axis[short:long], cie_matrix[:,0], cie_matrix[:,3], fill=0, verbose=False)
#Concatenate the results
new_mat = np.stack([red, green, blue], axis=-1)
return(new_mat)
def format_mtrdr(cube):
"""Prepare MTRDR data cube for color production by filling in missing bands."""
##Grab the modified MTRDR axis. To document some index values I'm using in this function:
#Indices 0-9 in this axis represent the 377-436 nm channels, which need to be calculated
#through extrapolation and are needed to produce the blue channel in the color output.
#Indices 40-50 represent the missing 631-709 nm channels, needed to produce the red channel
#in the color output.
mtrdr_axis = modify_mtrdr_axis()
##Extrapolate the missing bands (377-436 nm) necessary for blue. To do this, I am
#creating a dummy channel by averaging the values from the first six bands. This creates
#an array of 9 copies of the average of the first 6 valid bands. Later I will subtract
#a slope constant subtracted from each band to extrapolate the radiance of each band in
#this wavelength range.
interp_channel = np.average(cube[0:6], axis=0)
interp_channel = np.tile(interp_channel, (9,1,1))
#Band-to-band noise is reduced by calculating the slope from three channel pairs and
#averaging the result. This step produces a blue slope for each pixel in the image.
slope = (cube[2] - cube[6]) / (mtrdr_axis[6] - mtrdr_axis[2])
slope2 = (cube[1] - cube[5]) / (mtrdr_axis[5] - mtrdr_axis[1])
slope3 = (cube[0] - cube[4]) / (mtrdr_axis[4] - mtrdr_axis[0])
slope = (slope + slope2 + slope3) / 3
#Next, we tile the slope so that the array shape matches the number of bands we need to
#fill in, then multiply the slope by the distance from the first good band. The resulting
#array is then added to the dummy bands to produce the extrapolated data array.
slope = np.tile(slope, (9,1,1))
multiplier = mtrdr_axis[9] - mtrdr_axis[0:9]
multiplier = multiplier[:, np.newaxis, np.newaxis]
slope = slope * multiplier
interp_channel += slope
cube = np.concatenate((interp_channel, cube), axis=0)
#Now repeat the process to fill in the VIS-NIR bad bands.
interp_channel = np.tile(cube[39], (10,1,1))
slope = (cube[37] - cube[40])/(mtrdr_axis[50] - mtrdr_axis[39])
slope2 = (cube[38] - cube[41])/(mtrdr_axis[51]- mtrdr_axis[38])
slope3 = (cube[39] - cube[42])/(mtrdr_axis[52]- mtrdr_axis[37])
slope = (slope + slope2 + slope3) / 3
slope = np.tile(slope, (10, 1, 1))
multiplier = mtrdr_axis[40:50] - mtrdr_axis[39]
multiplier = multiplier[:, np.newaxis, np.newaxis]
slope = slope * multiplier
interp_channel += slope
#Now to insert the VIS-NIR bad bands into the array. This might be faster and more
#memory efficient using np.insert, but my brain hurts trying to figure out that function.
#So for now, using the inefficient way.
#Blue side of the bad bands
short = cube[0:40]
#Red side of the bad bands
long = cube[40::]
intermed = np.concatenate((short, interp_channel), axis=0)
cube = np.concatenate((intermed, long), axis=0)
return(cube)
def color_from_cube(cube, cs, mode="raw"):
"""Core functionality for calculating human perceptual color from CRISM MTRDR."""
#Transpose array to put the wavelength axis last - personal preference
cube = cube.transpose(1,2,0)
#We will lose luminance data once we calculate chromaticity, so before transforming the shape
#of the data cube, I'm going to calculate luminance images by scaling the brightness of each band
#by the CIE scaling factor at that band, then integrating across the entire wavelength range.
#I'm doing this step here because when calculating color from spacecraft filters in other functions
#the data cubes remain three-dimensional. It's easier to run this step here while the cube is still
#three-dimensional than it is to add a dimensionality argument to calculate_luminance() and specify
#the dimensionality of the data every time.
# as humans are viewing the image,
# no artifical simulation of the human vision system via CIE cmf is needed.
# Evalulating results with flat cmf replacement.
#weights = cs.cmf.copy()
weights = np.ones([61,3])
# CRISM VNIR 362nm - 1053nm calibration correction,
# quantized into crism.py internal convention of starting at 380nm in 5 nm intervals.
# Based on white surface spectrum saved saved with http://crism.jhuapl.edu/JCAT
# for example from north polar snow surfaces in frt000128f3_07_if165j_mtr3.img.
w = 380
dw = 5
whiteflatraw = np.genfromtxt("mtrdr_whiteflat.csv", delimiter=",")
whiteflatraw = whiteflatraw[:, [1,2]]
whiteflatraw_bands = whiteflatraw[:, 0]
cube_bands = cube.shape[2]
whiteflat = np.zeros(cube_bands, dtype=float)
whiteflatraw_max = 0
for i in range(0, cube_bands):
whiteflat[i] = whiteflatraw[find_band(whiteflatraw_bands, w)][1]
whiteflatraw_max = max(whiteflat[i], whiteflatraw_max)
w = w + dw
whiteflat = whiteflatraw_max / whiteflat
for i in range(0, cube_bands):
cube[:,:,i] = whiteflat[i] * cube[:,:,i]
blu_lumin = calculate_luminance(weights[:,0], cube)
grn_lumin = calculate_luminance(weights[:,1], cube)
red_lumin = calculate_luminance(weights[:,2], cube)
#Merge luminance cubes together, then perform a contrast stretch. Adding 2% buffers to the minimum
#and maximum values to avoid histogram clipping.
lumin = np.stack((blu_lumin, grn_lumin, red_lumin), axis=0)
lumin = (lumin - (np.amin(lumin) - (0.02*np.amin(lumin)))) / ((np.amax(lumin) + (0.02*np.amax(lumin))))
#Now reshape the data array so that it's one dimensional and runs more quickly in the loop that
#calculates chromaticity values (I'm not sure if the chromaticity calculation can be set up to take
#advantge of broadcasting ufuncs.
rows = cube.shape[0]
cols = cube.shape[1]
pixels = rows*cols
cube = cube.reshape(pixels, cube.shape[2])
#Create a new cube to handle the interpolated color data
clone_cube = np.empty((cube.shape[0], 3))
#Convert the wavelength range to RGB values. If this can be broadcast this would
#run much more quickly.
# todo: this operation can be done must faster with numpy and broadcasting ufuncs
for pixel in range(0, pixels):
clone_cube[pixel] = cs.spec_to_rgb(cube[pixel])
#When chromaticity values integrate outside of the [0-1] range, they need to be scaled back to
#that range to be displayed within the chosen colorspace. The ColourSystem class as written by
#"Christian" normalized on a per-pixel basis, which destroys relative color information. This was
#dealt with by removing a normalization statement from the xyz_to_rgb function within the class
#definition.
#We still need to normalize back to the [0-1 range], which we're doing here with the quicknorm()
#function. "Raw" normalization preserves the relative color channel brightnesses by simply stretching
#between the highest chromaticity(typically red) and lowest chromaticity (typically blue) values.
#"WB" independently normalizes each color channel, similar to the output provided in the official
#CRISM parameter products.
if mode=="raw":
clone_cube = quicknorm(clone_cube)
if mode=="wb":
for channel in range(0, clone_cube.shape[1]):
clone_cube[:,channel] = quicknorm(clone_cube[:,channel])
#Reshape pixels back to original x,y orientation
cube = clone_cube.reshape(rows, cols, 3).transpose(2, 0, 1)
#Add luminance data to cube
cube[0,:,:] = cube[0,:,:] * lumin[0]
cube[1,:,:] = cube[1,:,:] * lumin[1]
cube[2,:,:] = cube[2,:,:] * lumin[2]
#Convert to unsigned 16-bit
cube = convert_uint16(cube)
return(cube)
def mtrdr_to_color(file, name, standard_params=True, new_params=None):
"""Function to produce perceptually-accurate color from CRISM MTRDR data."""
with rasterio.open(file) as src:
profile = src.profile
img = src.read()
cs = cs_srgb
#Make null values = 0 so that it doesn't break when doing rgb conversion
#Also need to convert the null pixels outside of image to 0.
img[img < 0] = 0
img[img >= 1] = 0
img = format_mtrdr(img)
profile.update(
dtype = rasterio.uint16,
count = 3,
driver = 'PNG'
)
if standard_params == True:
process_list = ["VIS"]
mode_list = ["raw"]
for param, mode in zip(process_list, mode_list):
if param == "VIS":
#Imitate VIS browse product summarizing wavelength range from 380 to 780 nm
wave_range = [380, 780]
if param == "FAL":
#Imitate FAL browse product summarizing wavelength range from 1.01 to 2.60 microns
wave_range = [1010, 2600]
if param == "FEM":
#Integrate over 750 nm to 1200nm to capture variability in Fe oxidation state/mineralogy
wave_range = [750, 1200]
if param == "MAF":
#Integrate over 800 nm to 2 micron wavelength range capturing variability in
#primary basaltic minerals.
wave_range = [800, 2000]
if param == "PHY":
#Integrate over 1.8 to 2.3 micron wavelength range capturing variability in
#clay mineralogy.
wave_range = [1800, 2300]
if param == "FAR":
#Integrate over the longwave detector (2.8 microns to 3.6 microns)
wave_range = [2800, 3900]
if param == "CAR":
#Integrate from 2.8 microns to 3.4 microns capturing region of water and carbonate
wave_range = [2900, 3400]
cube = mtrdr_crop_bands(img, wave_range)
ColourSystem.cmf = mtrdr_color_matching(wave_range)
cube = color_from_cube(cube, cs, mode=mode)
#Export PNG file
with rasterio.open(name+"_"+param+".png", 'w', **profile) as out:
out.write(cube)
if new_params != None:
for item in new_params:
if len(item) != 2:
print("Error: Wavelength list appears to be incorrectly formatted.")
print("New parameters should be in form [[wave1, wave2], [wave1, wave2], ...]")
else:
cube = mtrdr_crop_bands(img, item)
ColourSystem.cmf = mtrdr_color_matching(item)
cube = color_from_cube(cube, cs, mode=mode)
with rasterio.open(name+"_"+str(item[0])+"_"+str(item[1])+".png", 'w', **profile) as out:
out.write(cube)
pass
def mtrdr_to_cassis(file, fname, color="IPB"):
##Data I/O and formatting
with rasterio.open(file) as src:
profile = src.profile
cube = src.read()
cube = format_mtrdr(cube)
cube = mtrdr_crop_bands(cube, [380, 1100])
cube = cube.transpose(1,2,0)
cube = np.ma.masked_values(cube, 65535)
#Developer note: CaSSIS filter responses are stored in the following order:
#[0] - MTRDR wavelength; [1] - Blue; [2] - PAN; [3] - Red; [4] - NIR
#Filter information retrieved from the Spanish Virtual Observatory Filter Profile Repository
filter_response = np.genfromtxt("matching_functions/cassis-response-mtrdr.txt", delimiter="\t")
##Calculate filter images filters via integration
blu = calculate_luminance((filter_response[:, 1]), cube)
pan = calculate_luminance((filter_response[:, 2]), cube)
red = calculate_luminance((filter_response[:, 3]), cube)
nir = calculate_luminance((filter_response[:, 4]), cube)
if color == "IPB":
export = np.stack((nir, pan, blu))
elif color == "IRB":
export = np.stack((red, pan, blu))
elif color == "ENH":
enh_red = red/pan
enh_grn = pan/blu
enh_blu = pan/nir
enh_red += np.average(enh_grn) - np.average(enh_red)
enh_blu += np.average(enh_grn) - np.average(enh_blu)
export = np.stack((enh_red, enh_grn, enh_blu))
else:
print("Invalid color keyword, use 'IPB', 'IRB', or 'ENH'.")
export = (export - (np.amin(export) - (0.02*np.amin(export)))) / ((np.amax(export) + (0.02*np.amax(export))))
export = convert_uint16(export)
#Update profile for color export
profile.update(
dtype = rasterio.uint16,
count = 3,
driver = 'PNG'
)
with rasterio.open(fname+"_"+color+".png", 'w', **profile) as out:
out.write(export)
return
def mtrdr_to_hirise(file, fname, color="IRB"):
##Data I/O and formatting
with rasterio.open(file) as src:
profile = src.profile
cube = src.read()
cube = format_mtrdr(cube)
cube = mtrdr_crop_bands(cube, [380, 1100])
cube = cube.transpose(1,2,0)
cube = np.ma.masked_values(cube, 65535)
#Developer note: HiRISE filter responses are stored in the following order:
#[0] - MTRDR wavelength; [1] - NIR; [2] - Red; [3] - Blue-Green
#Filter information retrieved from the Spanish Virtual Observatory Filter Profile Repository
filter_response = np.genfromtxt("matching_functions/hirise-response-mtrdr.txt", delimiter="\t")
##Calculate filter images filters via integration
nir = calculate_luminance((filter_response[:, 1]), cube)
red = calculate_luminance((filter_response[:, 2]), cube)
bgr = calculate_luminance((filter_response[:, 3]), cube)
if color == "IRB":
export = np.stack((nir, red, bgr))
elif color == "RGB":
#If RGB is requested, calculate synthetic blue filter according to HiRISE team formula
blu = (bgr * 2) - (red * 0.3)
#The blue channel tends to be bright, so applying an offset to simulate the I/F of blue
#light in CRISM.
blu += np.average(cube[:,:,0:10]) - np.average(blu)
export = np.stack((red, bgr, blu))
elif color == "ENH":
enh_red = nir/red
enh_grn = nir/bgr
enh_blu = red/bgr
enh_red += np.average(enh_grn) - np.average(enh_red)
enh_blu += np.average(enh_grn) - np.average(enh_blu)
export = np.stack((enh_red, enh_grn, enh_blu))
else:
print("Invalid color keyword, use 'IRB' or 'RGB'.")
export = (export - (np.amin(export) - (0.02*np.amin(export)))) / ((np.amax(export) + (0.02*np.amax(export))))
export = convert_uint16(export)
#Update profile for color export
profile.update(
dtype = rasterio.uint16,
count = 3,
driver = 'PNG'
)
with rasterio.open(fname+"_"+color+".png", 'w', **profile) as out:
out.write(export)
return
def mtrdr_to_hrsc(file, fname, color="IGB", lumin=False):
##Data I/O and formatting
with rasterio.open(file) as src:
profile = src.profile
cube = src.read()
cube = format_mtrdr(cube)
cube = mtrdr_crop_bands(cube, [380, 1100])
cube = cube.transpose(1,2,0)
cube = np.ma.masked_values(cube, 65535)
#Developer note: HRSC filter responses are stored in the following order:
#[0] - MTRDR wavelength; [1] - Nadir; [2] - NIR; [3] - Red; [4] - Green; [5] - Blue;
#[6] - Photometry; [7] - Stereo
#Approximately 15% of the light entering the HRSC blue filter in the N-UV is not visible
#to CRISM, so the filter response is a little different from reality.
#Filter information retrieved from the Spanish Virtual Observatory Filter Profile Repository
filter_response = np.genfromtxt("matching_functions/hrsc-response-mtrdr.txt", delimiter="\t")
##Calculate filter images filters via integration
nad = calculate_luminance((filter_response[:, 1]), cube)
nir = calculate_luminance((filter_response[:, 2]), cube)
red = calculate_luminance((filter_response[:, 3]), cube)
grn = calculate_luminance((filter_response[:, 4]), cube)
blu = calculate_luminance((filter_response[:, 5]), cube)
pho = calculate_luminance((filter_response[:, 6]), cube)
ste = calculate_luminance((filter_response[:, 7]), cube)
if color == "IGB":
export = np.stack((nir, grn, blu))
elif color == "IRB":
export = np.stack((nir, red, blu))
elif color == "RGB":
export = np.stack((red, grn, blu))
else:
print("Invalid color keyword, use 'IGB', 'IRB', or 'RGB'.")
export = (export - (np.amin(export) - (0.02*np.amin(export)))) / ((np.amax(export) + (0.02*np.amax(export))))
export = convert_uint16(export)
#Update profile for color export
profile.update(
dtype = rasterio.uint16,
count = 3,
driver = 'PNG'
)
with rasterio.open(fname+"_"+color+".png", 'w', **profile) as out:
out.write(export)
if lumin == False:
return
filter_list = [nad, nir, red, grn, blu, pho, ste]
filter_names = ["ND", "IR", "RED", "GRN", "BLU", "P1", "S1"]
profile.update(
dtype = rasterio.uint16,
count = 1,
driver = 'PNG'
)
for item, name in zip(filter_list, filter_names):
item = np.expand_dims(item, 0)
item = convert_uint16(item)
with rasterio.open(fname+"_"+name+".png", 'w', **profile) as out:
out.write(item)
return
def mtrdr_to_mastcam(file, fname, narrowband=True):
##Data I/O and formatting
with rasterio.open(file) as src:
profile = src.profile
cube = src.read()
cube = format_mtrdr(cube)
cube = mtrdr_crop_bands(cube, [380, 1200])
cube = cube.transpose(1,2,0)
cube = np.ma.masked_values(cube, 65535)
#Developer note: Mastcam filter responses are stored in the following order:
#[0] - wavelength
#[1-4] - bayer filters (blue, green, red)
#[4] - Left IR-bandcut
#[5-12] - Left narrowband filters (L1-L7)
#[12] - Right IR-bandcut
#[13:] - Right narrowband filters (R1-R7)
filter_response = np.genfromtxt("matching_functions/mastcam-response-mtrdr.txt", delimiter="\t")
##Calculate filter images filters via integration
blue = calculate_luminance((filter_response[:, 1] * filter_response[:, 4]), cube)
green = calculate_luminance((filter_response[:, 2] * filter_response[:,4]), cube)
red = calculate_luminance((filter_response[:, 3] * filter_response[:,4]), cube)
export = np.stack((red, green, blue))
export = (export - (np.amin(export) - (0.02*np.amin(export)))) / ((np.amax(export) + (0.02*np.amax(export))))
filter_name = "RGB"
export = convert_uint16(export)
#Update profile for color export
profile.update(
dtype = rasterio.uint16,
count = 3,
driver = 'PNG'
)
with rasterio.open(fname+"_"+filter_name+".png", 'w', **profile) as out:
out.write(export)
if narrowband == False:
return
#This section probably does not have the cleanest setup. Would prefer to execute this by iterating through
#filters, but MastCam narrowband filters are obtained by discarding two of the Bayer filters (see Bell
#et al. 2016 for documentation). The Bayer filters which get dropped change filter to filter, so I'm not
#sure I can cleanly iterate through this in a loop.
#The Bayer filters are effectively transparent in the NIR and are treated as identically transparent.
#Here I will emulate the interpolation by averaging the three Bayer filter bandpasses before applying
#it to the narrowband filter.
bayer_response = np.average(filter_response[:, 1:4], axis=1)
l1 = calculate_luminance((filter_response[:, 5] * filter_response[:,2]), cube)
l2 = calculate_luminance((filter_response[:, 6] * filter_response[:,1]), cube)
l3 = calculate_luminance((filter_response[:, 7] * filter_response[:,3]), cube)
l4 = calculate_luminance((filter_response[:, 8] * filter_response[:,3]), cube)
l5 = calculate_luminance((filter_response[:, 9] * bayer_response), cube)
l6 = calculate_luminance((filter_response[:, 10]* bayer_response), cube)
r1 = calculate_luminance((filter_response[:,13] * filter_response[:,2]), cube)
r2 = calculate_luminance((filter_response[:,14] * filter_response[:,1]), cube)
r3 = calculate_luminance((filter_response[:,15] * filter_response[:,3]), cube)
r4 = calculate_luminance((filter_response[:, 16]* bayer_response), cube)
r5 = calculate_luminance((filter_response[:, 17]* bayer_response), cube)
r6 = calculate_luminance((filter_response[:, 18]* bayer_response), cube)
filter_list = [l1, l2, l3, l4, l5, l6, r1, r2, r3, r4, r5, r6]
filter_names = ["L1_527nm", "L2_445nm", "L3_751nm", "L4_676nm", "L5_867nm",
"L6_1012nm", "R1_527nm", "R2_447nm", "R3_805nm", "R4_908nm",
"R5_937nm", "R6_1013nm"]
profile.update(
dtype = rasterio.uint16,
count = 1,
driver = 'PNG'
)
for item, name in zip(filter_list, filter_names):
item = np.expand_dims(item, 0)
item = convert_uint16(item)
with rasterio.open(fname+"_"+name+".png", 'w', **profile) as out:
out.write(item)
return
def mtrdr_to_mastcamz(file, fname, narrowband=True):
##Data I/O and formatting
with rasterio.open(file) as src:
profile = src.profile
cube = src.read()
cube = format_mtrdr(cube)
cube = mtrdr_crop_bands(cube, [380, 1100])
cube = cube.transpose(1,2,0)
cube = np.ma.masked_values(cube, 65535)
#Developer note: Mastcam filter responses are stored in the following order:
#[0] - wavelength
#[1-4] - bayer filters (blue, green, red)
#[4-10] - Left narrowband filters (L1-L6)
#[10:] - Right narrowband filters (R2-R7) (R1 is duplicate of L1 and not included)
#Filter responses are adapted from Hayes et al. 2021 (Pre-Flight Calibration of the Mars
#2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral Stereoscopic Imager). In-band responses
#were primarily used, with out-of-band responses added when these responses were within an
#order of magnitude of peak response.
filter_response = np.genfromtxt("matching_functions/mastcamz-response-mtrdr.txt", delimiter="\t")
##Calculate filter images filters via integration
blue = calculate_luminance(filter_response[:, 1], cube)
green = calculate_luminance(filter_response[:, 2], cube)
red = calculate_luminance(filter_response[:, 3], cube)
export = np.stack((red, green, blue))
print(export)
export = (export - (np.amin(export) - (0.02*np.amin(export)))) / ((np.amax(export) + (0.02*np.amax(export))))
filter_name = "RGB"
export = convert_uint16(export)
#Update profile for color export
profile.update(
dtype = rasterio.uint16,
count = 3,
driver = 'PNG'
)
with rasterio.open(fname+"_"+filter_name+".png", 'w', **profile) as out:
out.write(export)
if narrowband == False:
return
#Unlike the Mastcam setup, where filter calibrations did not account for the Bayer filter,
#the Mastcam-Z files provided the filter response through each of the red, green, and blue Bayer
#filters. L6 uses only the blue Bayer response, L5 the green Bayer response, and L4 and L3 the
#red Bayer response.
#I am assuming that the NIR filters take the same approach used on Mastcam and simply treat the
#Bayer filters as more or less equally transparent for the purposes of Bayer interpolation. The
#filter response files averaged the filter responses of the convolved NIR and Bayer filters.
#Happy to change this if it is incorrect!
l1 = calculate_luminance(filter_response[:, 4], cube)
l2 = calculate_luminance(filter_response[:, 5], cube)
l3 = calculate_luminance(filter_response[:, 6], cube)
l4 = calculate_luminance(filter_response[:, 7], cube)
l5 = calculate_luminance(filter_response[:, 8], cube)
l6 = calculate_luminance(filter_response[:, 9], cube)
r2 = calculate_luminance(filter_response[:,10], cube)
r3 = calculate_luminance(filter_response[:,11], cube)
r4 = calculate_luminance(filter_response[:, 12], cube)
r5 = calculate_luminance(filter_response[:, 13], cube)
r6 = calculate_luminance(filter_response[:, 14], cube)
filter_list = [l1, l2, l3, l4, l5, l6, r2, r3, r4, r5, r6]
filter_names = ["L1_800nm", "L2_754nm", "L3_677nm", "L4_605nm", "L5_528nm",
"L6_442nm", "R2_866nm", "R3_910nm", "R4_939nm",
"R5_978nm", "R6_1022nm"]
profile.update(
dtype = rasterio.uint16,
count = 1,
driver = 'PNG'
)
for item, name in zip(filter_list, filter_names):
item = np.expand_dims(item, 0)
item = convert_uint16(item)
with rasterio.open(fname+"_"+name+".png", 'w', **profile) as out:
out.write(item)
return
def mtrdr_to_pancam(file, fname, color="RGB", narrowband=True):
##Data I/O and formatting
with rasterio.open(file) as src:
profile = src.profile
cube = src.read()
cube = format_mtrdr(cube)
cube = mtrdr_crop_bands(cube, [380, 1150])
cube = cube.transpose(1,2,0)
cube = np.ma.masked_values(cube, 65535)
#Developer note: PanCam filter responses are stored in the following order:
#[0] - MTRDR wavelength; [1:8] - L1-L7; [8:] - R1-R7
#Filter information retrieved from the Spanish Virtual Observatory Filter Profile Repository
filter_response = np.genfromtxt("matching_functions/pancam-response-mtrdr.txt", delimiter="\t")
##Calculate filter images filters via integration
l1 = calculate_luminance((filter_response[:, 1]), cube)
l2 = calculate_luminance((filter_response[:, 2]), cube)
l3 = calculate_luminance((filter_response[:, 3]), cube)
l4 = calculate_luminance((filter_response[:, 4]), cube)
l5 = calculate_luminance((filter_response[:, 5]), cube)
l6 = calculate_luminance((filter_response[:, 6]), cube)
l7 = calculate_luminance((filter_response[:, 7]), cube)
r1 = calculate_luminance((filter_response[:, 8]), cube)
r2 = calculate_luminance((filter_response[:, 9]), cube)
r3 = calculate_luminance((filter_response[:, 10]), cube)
r4 = calculate_luminance((filter_response[:, 11]), cube)
r5 = calculate_luminance((filter_response[:, 12]), cube)
r6 = calculate_luminance((filter_response[:, 13]), cube)
r7 = calculate_luminance((filter_response[:, 14]), cube)
if color == "RGB":
export = np.stack((l3, l5, l7))
elif color == "IRB":
export = np.stack((l2, l5, l7))
else:
print("Invalid color keyword, use 'RGB' or 'IRB'.")
export = (export - (np.amin(export) - (0.02*np.amin(export)))) / ((np.amax(export) + (0.02*np.amax(export))))
export = convert_uint16(export)
#Update profile for color export
profile.update(
dtype = rasterio.uint16,
count = 3,
driver = 'PNG'
)
with rasterio.open(fname+"_"+color+".png", 'w', **profile) as out:
out.write(export)
if narrowband == False:
return
filter_list = [l1, l2, l3, l4, l5, l6, l7, r1, r2, r3, r4, r5, r6, r7]
filter_names = ["L1_PAN", "L2_750nm", "L3_670nm", "L4_600nm", "L5_530nm", "L6_480nm", "L7_430nm",
"R1_430nm", "R2_750nm", "R3_800nm", "R4_860nm", "R5_900nm", "R6_930nm", "R7_980nm"]
profile.update(
dtype = rasterio.uint16,
count = 1,
driver = 'PNG'
)
for item, name in zip(filter_list, filter_names):
item = np.expand_dims(item, 0)
item = convert_uint16(item)
with rasterio.open(fname+"_"+name+".png", 'w', **profile) as out:
out.write(item)
return
if __name__ == '__main__':
fire.Fire()