diff --git a/.github/workflows/deploy-docs.yml b/.github/workflows/deploy-docs.yml index 2133ad68..b42795f0 100644 --- a/.github/workflows/deploy-docs.yml +++ b/.github/workflows/deploy-docs.yml @@ -24,7 +24,7 @@ jobs: shell: bash -l {0} run: | set -e - jupyter-book build jupyterbook + jupyter-book build jupyterbook --builder linkcheck - name: GitHub Pages action if: github.ref == 'refs/heads/main' diff --git a/jupyterbook/_config.yml b/jupyterbook/_config.yml index c1ba15b6..9e60c5ea 100644 --- a/jupyterbook/_config.yml +++ b/jupyterbook/_config.yml @@ -35,6 +35,7 @@ parse: - substitution myst_url_schemes: [mailto, http, https] # URI schemes that will be recognized as external URLs in Markdown links + myst_dmath_double_inline: true # Allow display math ($$) within an inline context ####################################################################################### # HTML-specific settings @@ -55,7 +56,7 @@ html: (240) 533-9444 google_analytics_id: "G-546J258RCJ" home_page_in_navbar: false # Whether to include your home page in the left Navigation Bar - baseurl: "" # The base URL where your book will be hosted. Used for creating image previews and social links. e.g.: https://mypage.com/mybook/ + baseurl: "https://ioos.github.io/ioos_code_lab/" # The base URL where your book will be hosted. Used for creating image previews and social links. e.g.: https://mypage.com/mybook/ comments: hypothesis: false utterances: false @@ -83,4 +84,18 @@ repository: # Advanced and power-user settings sphinx: config: + linkcheck_anchors_ignore: ["aboutPanel", "searchPanel", "!forum/ioos_tech"] html_show_copyright: false + myst_heading_anchors: 3 + nb_mime_priority_overrides: [ + ["html", "application/vnd.jupyter.widget-view+json", 10], + ["html", "application/javascript", 20], + ["html", "text/html", 30], + ["html", "image/svg+xml", 40], + ["html", "image/png", 50], + ["html", "image/gif", 60], + ["html", "image/jpeg", 70], + ["html", "text/markdown", 80], + ["html", "text/latex", 90], + ["html", "text/plain", 100] + ] diff --git a/jupyterbook/content/Video_Demo_Markdown/ioos.md b/jupyterbook/content/Video_Demo_Markdown/ioos.md index ac9b6d8b..5ec3dc7b 100644 --- a/jupyterbook/content/Video_Demo_Markdown/ioos.md +++ b/jupyterbook/content/Video_Demo_Markdown/ioos.md @@ -9,5 +9,4 @@ align: center ``` - [COMT Tutorial](https://www.youtube.com/watch?v=Dqc1C1HeemQ) -- [IOOS EDS Demo](https://nccospublicstor.blob.core.windows.net/ioos/ioos_demo_1280.mp4) - [MBON Portal Tutorial](https://www.youtube.com/watch?v=ZITqDRa6u9c) diff --git a/jupyterbook/content/code_gallery/data_access_notebooks/2016-10-12-fetching_data.ipynb b/jupyterbook/content/code_gallery/data_access_notebooks/2016-10-12-fetching_data.ipynb index e94c7ca8..cf066698 100644 --- a/jupyterbook/content/code_gallery/data_access_notebooks/2016-10-12-fetching_data.ipynb +++ b/jupyterbook/content/code_gallery/data_access_notebooks/2016-10-12-fetching_data.ipynb @@ -51,7 +51,7 @@ "Updated: 2022-05-26\n", "\n", "In this post we will use `erddapy` to find and download data from the\n", - "[Center for Operational Oceanographic Products and Services (CO-OPS)](https://opendap.co-ops.nos.noaa.gov/erddap/) ERDDAP server.\n", + "[Center for Operational Oceanographic Products and Services (CO-OPS)](https://opendap.co-ops.nos.noaa.gov/erddap/index.html) ERDDAP server.\n", "\n", "Here we will fetch data during the [hurricane Matthew](https://en.wikipedia.org/wiki/Hurricane_Matthew) passage over the southeast states from 2016-10-05 to 2016-10-12. The first step is to instantiate the server object and then add the constraints for our query." ] @@ -78,7 +78,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The geographical bounding box includes all the states in the [SECOORA](http://secoora.org/) region: Florida, Georgia, South and North Carolina." + "The geographical bounding box includes all the states in the [SECOORA](https://secoora.org/) region: Florida, Georgia, South and North Carolina." ] }, { @@ -1691,7 +1691,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.0" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_access_notebooks/2016-11-15-glider_data_example.ipynb b/jupyterbook/content/code_gallery/data_access_notebooks/2016-11-15-glider_data_example.ipynb index 34eda694..0b0b1d8a 100644 --- a/jupyterbook/content/code_gallery/data_access_notebooks/2016-11-15-glider_data_example.ipynb +++ b/jupyterbook/content/code_gallery/data_access_notebooks/2016-11-15-glider_data_example.ipynb @@ -50,7 +50,7 @@ "\n", "Updated: 2022-05-25\n", "\n", - "In this notebook we demonstrate how to obtain and plot glider data using cf-xarray . We will explore data from the Rutgers University RU29 [Challenger](http://challenger.marine.rutgers.edu) glider that was launched from Ubatuba, Brazil on June 23, 2015 to travel across the Atlantic Ocean. After 282 days at sea, the Challenger was picked up off the coast of South Africa, on March 31, 2016. For more information on this ground breaking excusion see: [https://marine.rutgers.edu/main/announcements/the-challenger-glider-mission-south-atlantic-mission-complete](https://marine.rutgers.edu/main/announcements/the-challenger-glider-mission-south-atlantic-mission-complete)\n", + "In this notebook we demonstrate how to obtain and plot glider data using cf-xarray . We will explore data from the Rutgers University RU29 [Challenger](https://challenger.marine.rutgers.edu/) glider that was launched from Ubatuba, Brazil on June 23, 2015 to travel across the Atlantic Ocean. After 282 days at sea, the Challenger was picked up off the coast of South Africa, on March 31, 2016. For more information on this ground breaking excusion see: [https://marine.rutgers.edu/announcements/the-challenger-glider-mission-south-atlantic-mission-complete](https://marine.rutgers.edu/announcements/the-challenger-glider-mission-south-atlantic-mission-complete)\n", "\n", "Data collected from this glider mission are available on the IOOS Glider DAC THREDDS via OPeNDAP." ] @@ -906,7 +906,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.0" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_access_notebooks/2016-12-20-searching_glider_deployments.ipynb b/jupyterbook/content/code_gallery/data_access_notebooks/2016-12-20-searching_glider_deployments.ipynb index 9b3bd867..4d3ca59d 100644 --- a/jupyterbook/content/code_gallery/data_access_notebooks/2016-12-20-searching_glider_deployments.ipynb +++ b/jupyterbook/content/code_gallery/data_access_notebooks/2016-12-20-searching_glider_deployments.ipynb @@ -50,9 +50,9 @@ "\n", "Modified: 2023-09-04\n", "\n", - "IOOS provides an [`API`](https://en.wikipedia.org/wiki/Application_programming_interface) for getting information on all the glider deployments available in the [Glider DAC](https://gliders.ioos.us/index.html).\n", + "IOOS provides an [`API`](https://en.wikipedia.org/wiki/Application_programming_interface) for getting information on all the glider deployments available in the [Glider DAC](https://gliders.ioos.us/).\n", "\n", - "The raw JSON can be accessed at [https://data.ioos.us/gliders/providers/api/deployment](https://data.ioos.us/gliders/providers/api/deployment) and it is quite simple to parse it with Python.\n", + "The raw JSON can be accessed at [https://gliders.ioos.us/providers/api/deployment](https://gliders.ioos.us/providers/api/deployment) and it is quite simple to parse it with Python.\n", "\n", "First, lets check how many glider deployments exist in the Glider DAC." ] diff --git a/jupyterbook/content/code_gallery/data_access_notebooks/2017-03-21-ERDDAP_IOOS_Sensor_Map.ipynb b/jupyterbook/content/code_gallery/data_access_notebooks/2017-03-21-ERDDAP_IOOS_Sensor_Map.ipynb index d02281dc..4a706d3b 100644 --- a/jupyterbook/content/code_gallery/data_access_notebooks/2017-03-21-ERDDAP_IOOS_Sensor_Map.ipynb +++ b/jupyterbook/content/code_gallery/data_access_notebooks/2017-03-21-ERDDAP_IOOS_Sensor_Map.ipynb @@ -52,7 +52,7 @@ "\n", "Web Map Services are a great way to find data you may be looking for in a particular geographic area.\n", "\n", - "Suppose you are exploring the [IOOS Sensor Map](https://sensors.ioos.us/#map),\n", + "Suppose you are exploring the [IOOS Sensor Map](https://sensors.ioos.us/),\n", "you select Oxygen and click on the only returned value, the Moss Landing Marine Laboratories (MLML) station.\n", "\n", "![sensor_map.png](https://user-images.githubusercontent.com/950575/178321765-74ed0562-b942-4d97-af8b-85158bc6488c.png)\n", @@ -460,7 +460,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.5" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_access_notebooks/2017-06-12-NCEI_RA_archive_history.ipynb b/jupyterbook/content/code_gallery/data_access_notebooks/2017-06-12-NCEI_RA_archive_history.ipynb index 8c2421fe..1635c73a 100644 --- a/jupyterbook/content/code_gallery/data_access_notebooks/2017-06-12-NCEI_RA_archive_history.ipynb +++ b/jupyterbook/content/code_gallery/data_access_notebooks/2017-06-12-NCEI_RA_archive_history.ipynb @@ -50,11 +50,9 @@ "\n", "Created: 2017-06-12\n", "\n", - "IOOS regional associations archive their non-federal observational data with NOAA's National Center for Environmental Information (NCEI). In this notebook we will use the [RESTful](https://github.com/Esri/geoportal-server/wiki/REST-API-Syntax) services of the [NCEI geoportal](https://www.ncei.noaa.gov/metadata/geoportal/#searchPanel) to collect metadata from the archive packages found in the NCEI archives. The metadata information are stored in [ISO 19115-2](https://wiki.earthdata.nasa.gov/display/NASAISO/ISO+19115-2) xml files which the NCEI geoportal uses for discovery of Archival Information Packages (AIPs). This example uses the ISO metadata records to display publication information as well as plot the time coverage of each AIP at NCEI which meets the search criteria.\n", + "IOOS regional associations archive their non-federal observational data with NOAA's National Center for Environmental Information (NCEI). In this notebook we will use the [RESTful](https://github.com/Esri/geoportal-server/wiki/REST-API-Syntax) services of the [NCEI geoportal](https://www.ncei.noaa.gov/metadata/geoportal) to collect metadata from the archive packages found in the NCEI archives. The metadata information are stored in [ISO 19115-2](https://wiki.earthdata.nasa.gov/display/NASAISO/ISO+19115-2) xml files which the NCEI geoportal uses for discovery of Archival Information Packages (AIPs). This example uses the ISO metadata records to display publication information as well as plot the time coverage of each AIP at NCEI which meets the search criteria.\n", "\n", - "First we update the namespaces dictionary from owslib to include the appropriate namespace reference for gmi and gml.\n", - "\n", - "For more information on ISO Namespaces see: https://geo-ide.noaa.gov/wiki/index.php?title=ISO_Namespaces" + "First we update the namespaces dictionary from owslib to include the appropriate namespace reference for gmi and gml." ] }, { @@ -103,9 +101,9 @@ "source": [ "## Next we generate a geoportal query and georss feed\n", "\n", - "To find more information about how to compile a geoportal query, have a look at [REST API Syntax](https://github.com/Esri/geoportal-server/wiki/REST-API-Syntax) and the [NCEI Search Tips](https://www.nodc.noaa.gov/search/granule/catalog/searchtips/searchtips.page) for the [NCEI geoportal](https://data.nodc.noaa.gov/geoportal/catalog/search/search.page). The example provided is specific to the NCEI-IOOS data pipeline project and only searches for non-federal timeseries data collected by each Regional Association.\n", + "To find more information about how to compile a geoportal query, have a look at [REST API Syntax](https://github.com/Esri/geoportal-server/wiki/REST-API-Syntax) and the [NCEI Search Tips](https://www.ncei.noaa.gov/metadata/geoportal/#aboutPanel) for the [NCEI geoportal](https://www.ncei.noaa.gov/metadata/geoportal/#searchPanel). The example provided is specific to the NCEI-IOOS data pipeline project and only searches for non-federal timeseries data collected by each Regional Association.\n", "\n", - "The query developed here can be updated to search for any Archival Information Packages at NCEI, therefore the user should develop the appropriate query using the [NCEI Geoportal](https://data.nodc.noaa.gov/geoportal/catalog/search/search.page) and update this portion of the code to identify the REST API of interest." + "The query developed here can be updated to search for any Archival Information Packages at NCEI, therefore the user should develop the appropriate query using the [NCEI Geoportal](https://www.ncei.noaa.gov/metadata/geoportal/#searchPanel) and update this portion of the code to identify the REST API of interest." ] }, { @@ -599,7 +597,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.0" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_access_notebooks/2017-08-01-xtractoR.ipynb b/jupyterbook/content/code_gallery/data_access_notebooks/2017-08-01-xtractoR.ipynb index 3f8230a4..b4c11c88 100644 --- a/jupyterbook/content/code_gallery/data_access_notebooks/2017-08-01-xtractoR.ipynb +++ b/jupyterbook/content/code_gallery/data_access_notebooks/2017-08-01-xtractoR.ipynb @@ -221,7 +221,7 @@ "For more information and example on the other routines see the full example from the documentation at [https://rmendels.github.io/Usingxtractomatic_3.4.0.nb.html](https://rmendels.github.io/Usingxtractomatic_3.4.0.nb.html)\n", "\n", "\n", - "PS: note that R and all the `xtractomatic` dependencies are already included in the [IOOS conda environment](http://ioos.github.io/notebooks_demos/other_resources/)." + "PS: note that R and all the `xtractomatic` dependencies are already included in the [IOOS conda environment](https://ioos.github.io/ioos_code_lab/content/ioos_installation_conda.html)." ] } ], @@ -237,7 +237,7 @@ "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", - "version": "4.0.5" + "version": "4.3.1" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_access_notebooks/2017-09-09-hurricane_irma.ipynb b/jupyterbook/content/code_gallery/data_access_notebooks/2017-09-09-hurricane_irma.ipynb index 8ed7c1c5..fb730fb4 100644 --- a/jupyterbook/content/code_gallery/data_access_notebooks/2017-09-09-hurricane_irma.ipynb +++ b/jupyterbook/content/code_gallery/data_access_notebooks/2017-09-09-hurricane_irma.ipynb @@ -54,7 +54,7 @@ "\n", "See https://tidesandcurrents.noaa.gov/quicklook/view.html?name=IRMA for the latest information on Irma.\n", "\n", - "1. http://www.nhc.noaa.gov/gis/\n", + "1. https://www.nhc.noaa.gov/gis/\n", "1. https://opendap.co-ops.nos.noaa.gov/ioos-dif-sos/\n", "\n", "First we have to download the National Hurricane Center (NHC) GIS 5 day predictions data for Irma.\n", @@ -994,7 +994,7 @@ "We can observe the sea level retreating around 10-Sep 9:00 and then a significant surge after 19:00.\n", "The lower winds at beginning of the surge is probably the eye of the hurricane.\n", "\n", - "For our interactive map we will use [`bokeh`](https://bokeh.pydata.org/en/latest) HTML plots instead of the usual raster [`matplotlib`](https://matplotlib.org) ones to enhance the user experience when exploring the graphs." + "For our interactive map we will use [`bokeh`](https://docs.bokeh.org/en/latest/) HTML plots instead of the usual raster [`matplotlib`](https://matplotlib.org) ones to enhance the user experience when exploring the graphs." ] }, { diff --git a/jupyterbook/content/code_gallery/data_access_notebooks/2017-11-30-rerddap.ipynb b/jupyterbook/content/code_gallery/data_access_notebooks/2017-11-30-rerddap.ipynb index 99a6ccd5..38653591 100644 --- a/jupyterbook/content/code_gallery/data_access_notebooks/2017-11-30-rerddap.ipynb +++ b/jupyterbook/content/code_gallery/data_access_notebooks/2017-11-30-rerddap.ipynb @@ -354,7 +354,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We can navigate to ERDDAP's [info page](http://gcoos4.tamu.edu:8080/erddap/info/fk_CREMP_yearly_revisited_DATA_v3_1996/index.html) to find the variables description. Let's check what is `organismQuantity`:\n", + "We can navigate to ERDDAP's [info page](https://gcoos4.tamu.edu/erddap/info/fk_CREMP_yearly_revisited_DATA_v3_1996/index.html) to find the variables description. Let's check what is `organismQuantity`:\n", "\n", "```\n", "The is value of the derived information product, such as the numerical value for biomass. This term does not include units. Mean number of observed fish per species for 5 Minutes\n", @@ -846,7 +846,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "`rerddap`'s info request does not have enough metadata about the variables to explain the blank, and most abundant, `genus`. [Checking the sever](http://gcoos4.tamu.edu:8080/erddap/tabledap/fk_CREMP_yearly_revisited_DATA_v3_1996.html) did not help figure that out. We'll remove that for now to deal with only those that are identified." + "`rerddap`'s info request does not have enough metadata about the variables to explain the blank, and most abundant, `genus`. [Checking the sever](https://gcoos4.tamu.edu/erddap/tabledap/fk_CREMP_yearly_revisited_DATA_v3_1996.html) did not help figure that out. We'll remove that for now to deal with only those that are identified." ] }, { diff --git a/jupyterbook/content/code_gallery/data_access_notebooks/2018-02-20-obis.ipynb b/jupyterbook/content/code_gallery/data_access_notebooks/2018-02-20-obis.ipynb index 01469f3b..b7823f38 100644 --- a/jupyterbook/content/code_gallery/data_access_notebooks/2018-02-20-obis.ipynb +++ b/jupyterbook/content/code_gallery/data_access_notebooks/2018-02-20-obis.ipynb @@ -48,7 +48,7 @@ "\n", "Created: 2018-02-20\n", "\n", - "The [Ocean Biogeographic Information System (OBIS)](http://www.iobis.org) is an open-access data and information system for marine biodiversity for science, conservation and sustainable development.\n", + "The [Ocean Biogeographic Information System (OBIS)](https://www.obis.org/) is an open-access data and information system for marine biodiversity for science, conservation and sustainable development.\n", "\n", "In this example we will use R libraries [`obistools`](https://iobis.github.io/obistools) and [`robis`](https://iobis.github.io/robis) to search data regarding marine turtles occurrence in the South Atlantic Ocean.\n", "\n", @@ -212,7 +212,7 @@ "\n", "Now let us try to obtain the occurrence data for the South Atlantic. We will need a vector geometry for the ocean basin in the [well-known test (WKT)](https://en.wikipedia.org/wiki/Well-known_text) format to feed into the `robis` `occurrence` function.\n", "\n", - "In this example we converted a South Atlantic shapefile to WKT with geopandas, but one can also obtain geometries by simply drawing them on a map with [iobis maptool](http://iobis.org/maptool)." + "In this example we converted a South Atlantic shapefile to WKT with geopandas, but one can also obtain geometries by simply drawing them on a map with [iobis maptool](https://obis.org/maptool)." ] }, { @@ -1050,7 +1050,7 @@ "source": [ "One interesting feature of this map is *Dermochelys coriacea*'s migration between Brazilian and African shores.\n", "\n", - "More information on [*Dermochelys coriacea*](http://www.iucnredlist.org/details/6494/0) and the other Sea Turtles can be found in the species [IUCN red list](http://www.iucnredlist.org)." + "More information on [*Dermochelys coriacea*](https://www.iucnredlist.org/species/6494/43526147) and the other Sea Turtles can be found in the species [IUCN red list](https://www.iucnredlist.org/)." ] } ], @@ -1070,7 +1070,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.1" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_access_notebooks/2018-03-01-erddapy.ipynb b/jupyterbook/content/code_gallery/data_access_notebooks/2018-03-01-erddapy.ipynb index 913e1527..a2a9676c 100644 --- a/jupyterbook/content/code_gallery/data_access_notebooks/2018-03-01-erddapy.ipynb +++ b/jupyterbook/content/code_gallery/data_access_notebooks/2018-03-01-erddapy.ipynb @@ -56,11 +56,11 @@ "\n", "A typical ERDDAP RESTful URL looks like:\n", "\n", - "[https://data.ioos.us/gliders/erddap/tabledap/whoi_406-20160902T1700.mat?depth,latitude,longitude,salinity,temperature,time&time>=2016-07-10T00:00:00Z&time\\<=2017-02-10T00:00:00Z &latitude>=38.0&latitude\\<=41.0&longitude>=-72.0&longitude\\<=-69.0](https://data.ioos.us/gliders/erddap/tabledap/whoi_406-20160902T1700.mat?depth,latitude,longitude,salinity,temperature,time&time%3E=2016-07-10T00:00:00Z&time%3C=2017-02-10T00:00:00Z&latitude%3E=38.0&latitude%3C=41.0&longitude%3E=-72.0&longitude%3C=-69.0)\n", + "[https://gliders.ioos.us/gliders/erddap/tabledap/whoi_406-20160902T1700.mat?depth,latitude,longitude,salinity,temperature,time&time>=2016-07-10T00:00:00Z&time\\<=2017-02-10T00:00:00Z &latitude>=38.0&latitude\\<=41.0&longitude>=-72.0&longitude\\<=-69.0](https://gliders.ioos.us/erddap/tabledap/whoi_406-20160902T1700.mat?depth,latitude,longitude,salinity,temperature,time&time%3E=2016-07-10T00:00:00Z&time%3C=2017-02-10T00:00:00Z&latitude%3E=38.0&latitude%3C=41.0&longitude%3E=-72.0&longitude%3C=-69.0)\n", "\n", "Let's break it down to smaller parts:\n", "\n", - "- **server**: https://data.ioos.us/gliders/erddap/\n", + "- **server**: https://gliders.ioos.us/erddap/index.html\n", "- **protocol**: tabledap\n", "- **dataset_id**: whoi_406-20160902T1700\n", "- **response**: .mat\n", @@ -872,7 +872,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "One can build the proper variables programmatically, feed them in erddapy, and then build a service like [this notebook](https://mybinder.org/v2/gh/ioos/BioData-Training-Workshop/master?filepath=notebooks/ERDDAP_timeseries_explorer-IOOS.ipynb). However, erddapy is also designed for interactive work. One can explore interactively the ERDDAP server from Python.\n", + "One can build the proper variables programmatically, feed them in erddapy, and then build a service like [this notebook](https://github.com/ioos/BioData-Training-Workshop/blob/master/notebooks/ERDDAP_timeseries_explorer-IOOS.ipynb). However, erddapy is also designed for interactive work. One can explore interactively the ERDDAP server from Python.\n", "\n", "PS: Note that in this example below we did not feed any variables other than the server URL" ] @@ -2003,7 +2003,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.4" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_access_notebooks/2019-03-08-grids-temperature.ipynb b/jupyterbook/content/code_gallery/data_access_notebooks/2019-03-08-grids-temperature.ipynb index 8630db40..93381129 100644 --- a/jupyterbook/content/code_gallery/data_access_notebooks/2019-03-08-grids-temperature.ipynb +++ b/jupyterbook/content/code_gallery/data_access_notebooks/2019-03-08-grids-temperature.ipynb @@ -55,7 +55,7 @@ "In this post we will demostrante how to leverage Python's libraries to plot\n", "horizontal temperature slices from a variety of ocean models with minimum specific code.\n", "\n", - "Be sure to check the [first post on the series](http://ioos.github.io/notebooks_demos/notebooks/2018-12-04-grids/)." + "Be sure to check the [first post on the series](https://ioos.github.io/ioos_code_lab/content/code_gallery/data_analysis_and_visualization_notebooks/2018-12-04-grids.html)." ] }, { @@ -497,7 +497,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_access_notebooks/2019-05-27-hurricane_gis_part02.ipynb b/jupyterbook/content/code_gallery/data_access_notebooks/2019-05-27-hurricane_gis_part02.ipynb index 3a5a61d1..314c9b4b 100644 --- a/jupyterbook/content/code_gallery/data_access_notebooks/2019-05-27-hurricane_gis_part02.ipynb +++ b/jupyterbook/content/code_gallery/data_access_notebooks/2019-05-27-hurricane_gis_part02.ipynb @@ -56,7 +56,7 @@ "[Sensor Observation Service (SOS)](https://opendap.co-ops.nos.noaa.gov/ioos-dif-sos/)\n", "along the hurricane track.\n", "\n", - "For the instructions on how to obtain the GIS data for Hurricane Michael please the the [first notebook in the series](https://ioos.github.io/notebooks_demos/notebooks/2019-02-26-hurricane_gis_part01/). The function below loads and extract the hurricane radii and points." + "For the instructions on how to obtain the GIS data for Hurricane Michael please the the [first notebook in the series](https://nbviewer.org/github/ioos/ioos_code_lab/blob/main/jupyterbook/content/code_gallery/data_access_notebooks/2019-02-26-hurricane_gis_part01.archived.ipynb). The function below loads and extract the hurricane radii and points." ] }, { @@ -159,7 +159,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The cell below is the main difference from what we did in [part 1](https://ioos.github.io/notebooks_demos/notebooks/2019-02-26-hurricane_gis_part01/), here we will use the bonding box and event dates with a [PyOOS collector](https://github.com/ioos/pyoos) to fetch all the data available in that scope." + "The cell below is the main difference from what we did in [part 1](https://nbviewer.org/github/ioos/ioos_code_lab/blob/main/jupyterbook/content/code_gallery/data_access_notebooks/2019-02-26-hurricane_gis_part01.archived.ipynb), here we will use the bonding box and event dates with a [PyOOS collector](https://github.com/ioos/pyoos) to fetch all the data available in that scope." ] }, { @@ -549,7 +549,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now that we have the data all that is left to do is to create interactive [Bokeh plots](https://bokeh.pydata.org/en/latest/)," + "Now that we have the data all that is left to do is to create interactive [Bokeh plots](https://docs.bokeh.org/en/latest/)," ] }, { @@ -801,7 +801,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_access_notebooks/2021-10-19-multiple-erddap-search.ipynb b/jupyterbook/content/code_gallery/data_access_notebooks/2021-10-19-multiple-erddap-search.ipynb index 532a00a8..bf223147 100644 --- a/jupyterbook/content/code_gallery/data_access_notebooks/2021-10-19-multiple-erddap-search.ipynb +++ b/jupyterbook/content/code_gallery/data_access_notebooks/2021-10-19-multiple-erddap-search.ipynb @@ -53,7 +53,7 @@ "The Python interface allow the user to mix powerful variable handling and visualization with the query results.\n", "\n", "Let us explore an example\n", - "[based on this](https://nbviewer.jupyter.org/gist/rsignell-usgs/f2be18f9db07a3c2970d88576cd62b57)\n", + "[based on this](https://nbviewer.org/gist/rsignell-usgs/f2be18f9db07a3c2970d88576cd62b57)\n", "Rich Signell's gist where we search for salinity time-series data in a specific region and time span." ] }, @@ -1608,7 +1608,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.11.5" }, "widgets": { "application/vnd.jupyter.widget-state+json": { diff --git a/jupyterbook/content/code_gallery/data_access_notebooks/2022-11-23_pyobis_example.ipynb b/jupyterbook/content/code_gallery/data_access_notebooks/2022-11-23_pyobis_example.ipynb index ff5a8070..c84aa7e8 100644 --- a/jupyterbook/content/code_gallery/data_access_notebooks/2022-11-23_pyobis_example.ipynb +++ b/jupyterbook/content/code_gallery/data_access_notebooks/2022-11-23_pyobis_example.ipynb @@ -1855,7 +1855,7 @@ "source": [ "Since the distribution of `n_occur` covers a wide range, we will present the concentration and histogram figures as log normal distributions.\n", "\n", - "So, let's combine the latitude and longitude histograms with the map to recreate this figure https://bbest.github.io/obis-lat-time-fig/#map,_hist,_time-series_combined." + "So, let's combine the latitude and longitude histograms with the map to recreate this figure [https://bbest.github.io/obis-lat-time-fig](https://bbest.github.io/obis-lat-time-fig)." ] }, { @@ -1980,7 +1980,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.0" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2016-11-16-CF-UGRID-SGRID-conventions.ipynb b/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2016-11-16-CF-UGRID-SGRID-conventions.ipynb index 54b1e26e..3f9eb4e7 100644 --- a/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2016-11-16-CF-UGRID-SGRID-conventions.ipynb +++ b/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2016-11-16-CF-UGRID-SGRID-conventions.ipynb @@ -53,14 +53,14 @@ "Metadata conventions, like the Climate and Forecast (CF) conventions,\n", "can be cumbersome to adhere to but it will be very handy when you or other users manipulate the data later in time.\n", "\n", - "In this notebook we will explore three Python modules that parse [`CF-1.6`](http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html),\n", - "[`UGRID-1.0`](http://ugrid-conventions.github.io/ugrid-conventions/),\n", - "and [`SGRID-0.3`](http://sgrid.github.io/sgrid/)\n", + "In this notebook we will explore three Python modules that parse [`CF-1.6`](https://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html),\n", + "[`UGRID-1.0`](https://ugrid-conventions.github.io/ugrid-conventions/),\n", + "and [`SGRID-0.3`](https://sgrid.github.io/sgrid/)\n", "\n", "## CF-1.6 with cf_xarray\n", "\n", "There are many Python libraries to read and write CF metadata,\n", - "including [`iris`](http://scitools.org.uk/iris/) and [`cf_xarray`](https://cf-xarray.readthedocs.io/).\n", + "including [`iris`](https://scitools-iris.readthedocs.io/en/stable/) and [`cf_xarray`](https://cf-xarray.readthedocs.io/en/latest/).\n", "\n", "We will explore `cf_xarray` in this notebook because it is built on top of the popular `xarray` package." ] @@ -727,7 +727,7 @@ "## UGRID-1.0 with pyugrid\n", "\n", "The Unstructured Grids convention encompasses any type of grid topology,\n", - "and the details of the convention are documented in [https://ugrid-conventions.github.io/ugrid-conventions](http://bit.ly/2gvtmqQ).\n", + "and the details of the convention are documented in [https://ugrid-conventions.github.io/ugrid-conventions](https://ugrid-conventions.github.io/ugrid-conventions/).\n", "Right now `pyugrid` supports only triangular topologies, more will be added in the near future.\n", "\n", "In a nutshell the `pyugrid` parses and exposes the underlying grid topology in a python object." @@ -823,7 +823,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Check a longer `pyugrid` example [here](http://bit.ly/2gaZLCy)." + "Check a longer `pyugrid` example [here](https://ocefpaf.github.io/python4oceanographers/blog/2015/07/20/pyugrid/)." ] }, { @@ -1146,7 +1146,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "For more examples on `pysgrid` check this [post](http://bit.ly/2fKVk0x) out." + "For more examples on `pysgrid` check this [post](https://ocefpaf.github.io/python4oceanographers/blog/2015/12/07/pysgrid/) out." ] } ], @@ -1166,7 +1166,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.0" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2017-01-23-R-notebook.ipynb b/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2017-01-23-R-notebook.ipynb index 18a258ac..ac38652c 100644 --- a/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2017-01-23-R-notebook.ipynb +++ b/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2017-01-23-R-notebook.ipynb @@ -9,7 +9,7 @@ "Created: 2017-01-23\n", "\n", "The IOOS notebook\n", - "[environment](https://github.com/ioos/notebooks_demos/blob/229dabe0e7dd207814b9cfb96e024d3138f19abf/environment.yml#L73-L76)\n", + "[environment](https://ioos.github.io/ioos_code_lab/content/ioos_installation_conda.html)\n", "installs the `R` language and the `Jupyter` kernel needed to run `R` notebooks.\n", "Conda can also install extra `R` packages,\n", "and those packages that are unavailable in `conda` can be installed directly from CRAN with `install.packages(pkg_name)`.\n", @@ -17,9 +17,9 @@ "You can start `jupyter` from any other environment and change the kernel later using the drop-down menu.\n", "(Check the `R` logo at the top right to ensure you are in the `R` jupyter kernel.)\n", "\n", - "In this simple example we will use two libraries aimed at the oceanography community written in `R`: [`r-gsw`](https://cran.r-project.org/web/packages/gsw/index.html) and [`r-oce`](http://dankelley.github.io/oce/).\n", + "In this simple example we will use two libraries aimed at the oceanography community written in `R`: [`r-gsw`](https://cran.r-project.org/web/packages/gsw/index.html) and [`r-oce`](https://dankelley.github.io/oce/).\n", "\n", - "(The original post for the examples below can be found author's blog: [http://dankelley.github.io/blog/](http://dankelley.github.io/blog/))" + "(The original post for the examples below can be found author's blog: [https://dankelley.github.io/blog/](https://dankelley.github.io/blog/))" ] }, { @@ -302,7 +302,7 @@ "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", - "version": "4.0.5" + "version": "4.3.1" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2017-03-30-octave_notebook_example.ipynb b/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2017-03-30-octave_notebook_example.ipynb index 8001e63e..5cfeedff 100644 --- a/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2017-03-30-octave_notebook_example.ipynb +++ b/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2017-03-30-octave_notebook_example.ipynb @@ -24,12 +24,12 @@ "source": [ "A common misconception is that `Jupyter` notebooks are for Python only.\n", "We already showed how to use the\n", - "[`R` language](http://ioos.github.io/notebooks_demos/notebooks/2017-01-23-R-notebook/),\n", + "[`R` language](https://ioos.github.io/ioos_code_lab/content/code_gallery/data_analysis_and_visualization_notebooks/2017-01-23-R-notebook.html),\n", "and now we are going to create a Matlab/Octave toolboxes notebook.\n", "\n", "The IOOS conda\n", - "[environment](http://ioos.github.io/notebooks_demos/other_resources/)\n", - "installs [`oct2py`](https://github.com/ioos/notebooks_demos/blob/229dabe0e7dd207814b9cfb96e024d3138f19abf/environment.yml#L40), the dependency needed to run Matlab/Octave notebooks.\n", + "[environment](https://ioos.github.io/ioos_code_lab/content/ioos_installation_conda.html)\n", + "installs `oct2py`, the dependency needed to run Matlab/Octave notebooks.\n", "However, unlike `R` that can be installed with conda,\n", "we cannot install Matlab or Octave with it.\n", "This notebook relies on system installation of `octave` but it is possible to run the same on Matlab with very little modification." diff --git a/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2018-12-04-grids.ipynb b/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2018-12-04-grids.ipynb index 95881ba4..cdf2dd52 100644 --- a/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2018-12-04-grids.ipynb +++ b/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2018-12-04-grids.ipynb @@ -62,7 +62,7 @@ "In order to be able to extract them without worrying about the underlying nature of the grids we will use `gridgeo`.\n", "[`gridgeo`](https://pyoceans.github.io/gridgeo/) abstracts out the grid parsing to the known standards,\n", "and do some heuristics on non-compliant data,\n", - "to extract a [`GeoJSON`](http://geojson.org/) representation of the grid.\n", + "to extract a [`GeoJSON`](https://geojson.org/) representation of the grid.\n", "\n", "Here is the list of models we will work in this notebook:" ] @@ -621,7 +621,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2020-02-14-QARTOD_ioos_qc_Water-Level-Example.ipynb b/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2020-02-14-QARTOD_ioos_qc_Water-Level-Example.ipynb index eb6a6d45..c286fb07 100644 --- a/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2020-02-14-QARTOD_ioos_qc_Water-Level-Example.ipynb +++ b/jupyterbook/content/code_gallery/data_analysis_and_visualization_notebooks/2020-02-14-QARTOD_ioos_qc_Water-Level-Example.ipynb @@ -88,7 +88,7 @@ "source": [ "Now we are ready to load the data, run tests and plot results!\n", "\n", - "We will get the data from the [AOOS ERDDAP server](http://erddap.aoos.org/erddap/).\n", + "We will get the data from the [AOOS ERDDAP server](https://erddap.aoos.org/erddap/index.html).\n", "\n", "" ] @@ -98,40 +98,51 @@ "execution_count": 2, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.8.4\n" + ] + }, { "data": { "text/plain": [ - "\n", - "- CF Roles: timeseries_id: ['station']\n", + "Discrete Sampling Geometry:\n", + " CF Roles: timeseries_id: ['station']\n", "\n", "Coordinates:\n", - "- CF Axes: X: ['longitude']\n", - " Y: ['latitude']\n", - " T: ['time']\n", - " Z: n/a\n", + " CF Axes: X: ['longitude']\n", + " Y: ['latitude']\n", + " T: ['time']\n", + " Z: n/a\n", "\n", - "- CF Coordinates: longitude: ['longitude']\n", - " latitude: ['latitude']\n", - " time: ['time']\n", - " vertical: n/a\n", + " CF Coordinates: longitude: ['longitude']\n", + " latitude: ['latitude']\n", + " time: ['time']\n", + " vertical: n/a\n", "\n", - "- Cell Measures: area, volume: n/a\n", + " Cell Measures: area, volume: n/a\n", "\n", - "- Standard Names: latitude: ['latitude']\n", - " longitude: ['longitude']\n", - " time: ['time']\n", + " Standard Names: latitude: ['latitude']\n", + " longitude: ['longitude']\n", + " time: ['time']\n", "\n", - "- Bounds: n/a\n", + " Bounds: n/a\n", + "\n", + " Grid Mappings: n/a\n", "\n", "Data Variables:\n", - "- Cell Measures: area, volume: n/a\n", + " Cell Measures: area, volume: n/a\n", + "\n", + " Standard Names: aggregate_quality_flag: ['sea_surface_height_above_sea_level_geoid_mhhw_qc_agg']\n", + " altitude: ['z']\n", + " sea_surface_height_above_sea_level: ['sea_surface_height_above_sea_level_geoid_mhhw']\n", + " sea_surface_height_above_sea_level quality_flag: ['sea_surface_height_above_sea_level_geoid_mhhw_qc_tests']\n", "\n", - "- Standard Names: aggregate_quality_flag: ['sea_surface_height_above_sea_level_geoid_mhhw_qc_agg']\n", - " altitude: ['z']\n", - " sea_surface_height_above_sea_level: ['sea_surface_height_above_sea_level_geoid_mhhw']\n", - " sea_surface_height_above_sea_level quality_flag: ['sea_surface_height_above_sea_level_geoid_mhhw_qc_tests']\n", + " Bounds: n/a\n", "\n", - "- Bounds: n/a" + " Grid Mappings: n/a" ] }, "execution_count": 2, @@ -145,7 +156,7 @@ "print(cf_xarray.__version__)\n", "from erddapy import ERDDAP\n", "\n", - "e = ERDDAP(server=\"http://erddap.aoos.org/erddap/\", protocol=\"tabledap\")\n", + "e = ERDDAP(server=\"https://erddap.aoos.org/erddap/\", protocol=\"tabledap\")\n", "e.dataset_id = \"kotzebue-alaska-water-level\"\n", "e.constraints = {\n", " \"time>=\": \"2018-09-05T21:00:00Z\",\n", @@ -165,18 +176,13 @@ { "data": { "text/plain": [ - "OrderedDict([('qartod',\n", - " OrderedDict([('gross_range_test',\n", - " masked_array(data=[1, 1, 1, ..., 1, 1, 1],\n", - " mask=False,\n", - " fill_value=999999,\n", - " dtype=uint8)),\n", - " ('flat_line_test', array([1, 1, 1, ..., 1, 1, 1])),\n", - " ('spike_test',\n", - " masked_array(data=[2, 1, 1, ..., 1, 1, 2],\n", - " mask=False,\n", - " fill_value=999999,\n", - " dtype=uint8))]))])" + "defaultdict(collections.OrderedDict,\n", + " {'qartod': OrderedDict([('gross_range_test',\n", + " array([1, 1, 1, ..., 1, 1, 1], dtype=uint8)),\n", + " ('flat_line_test',\n", + " array([1, 1, 1, ..., 1, 1, 1], dtype=uint8)),\n", + " ('spike_test',\n", + " array([2, 1, 1, ..., 1, 1, 2], dtype=uint8))])})" ] }, "execution_count": 3, @@ -278,7 +284,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNAAAAFgCAYAAAB6wIQ3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIb0lEQVR4nOzdd3zTdf4H8Nc3O92UltWWMoWwl8rQQ0YREded4onivDvlHIB6ngNlnDju5wkoJ+Lk1ENxgKeoSNmgIqvIKqVQWijdO22a/fn9URpa2qRJmzRJ+3r64GHzzTff7zufd+Y7nyEJIQSIiIiIiIiIiIioUTJ/B0BERERERERERBTIWEAjIiIiIiIiIiJygQU0IiIiIiIiIiIiF1hAIyIiIiIiIiIicoEFNCIiIiIiIiIiIhdYQCMiIiIiIiIiInKBBTQiIiIiIiIiIiIXWEAjIiIiIiIiIiJyQeHvAFqT3W5HTk4OwsPDIUmSv8MhIiIiIiIiIiI/EUJAr9ejW7dukMlc9zFrVwW0nJwcJCQk+DsMIiIiIiIiIiIKEOfOnUN8fLzLfdpVAS08PBxATcNERET4ORrAYrFg06ZNmDJlCpRKpb/DoTqYm+DAPAUu5iZ4MFfBgXnyL7Z/8GCuAhPzEjyYq8DF3PhGRUUFEhISHPUiV9pVAa122GZERETAFNBCQkIQERHBJ0CAYW6CA/MUuJib4MFcBQfmyb/Y/sGDuQpMzEvwYK4CF3PjW+5M88VFBIiIiIiIiIiIiFxgAY2IiIiIiIiIiMgFFtCIiIiIiIiIiIhcYAGNiIiIiIiIiIjIBRbQiIiIiIiIiIiIXGABjYiIiIiIiIiIyAUW0IiIiIiIiIiIiFxQ+DsAIiLyk/RVQNobQHUuoO0K9HsM6Pugv6MiIiIiovas8GfgzMeA/hQQ3gfoOQuIHevvqIhYQCMiapfSVwH7/grAXnPZUgrsewg4+xUwaZNfQyMiIiKidqrwZ+DgPMBcDijCgfxtQOlBYMRSFtHI7ziEk4ioPTrwOATsEIDjHwAgPxk4+FTNh5e9s4EtSTX/L/zZf7ESERERUftw5mPYTGXIRwKqFbFAWJ+aYtqZT/wdGRF7oBERtUt2g/Pr0t8GCndAmMthV4RBzl/+iIiIiKg16E9Bb9PCKgdKqi2Ii9DU9ETTp/s7MiL2QCMiokvYKgFzOfIRjzxLB1hCevGXPyIiIiLyvfA+kNsrAXFhfIQQgFUPRFzm37iIEMQFtJdffhmSJGHu3Ln+DoWIqG2R5IAiHDYhAQCMVsFf/oiIiIjI93rOglUegTBLJjTWAqDyFKCKBHrc5e/IiIKzgLZv3z688847GDJkiL9DISIKTp2TnF8XOajmlz7+8kdERERErSl2LI7FLUJByFhYZBFA54nAiGVA7Bh/R0YUfAW0yspK3HnnnXj33XfRoUMHf4dDRBScJm1CVYcJFxcPAAAoAN1TwOX/BlSRjl/+VMYM/vJHRERERK2iNPRy7O/6ErYlfgpc8RaLZxQwgm4RgYcffhjXX389Jk+ejBdffNHlviaTCSaTyXG5oqICAGCxWGCxWHwapztqYwiEWKg+5iY4ME8tc3b4evyWqwcAKGQSbh7QyXGdNOT/UJDyHsLNZ1AZNQry/vdCRI0C3Gxr5iZ4MFfBgXnyL7Z/8GCuAhPzEjwCIlfi4k+8fMxcFBC5aYM8aU9JCCGa3i0wfPbZZ1iyZAn27dsHjUaDa665BsOGDcOyZcsa3X/hwoVYtGhRg+1r1qxBSEiIj6MlIgpslrBYWKK711yw2xCSfaje9YbuIwEAyrLzUFbktXJ0RERERNQehUSZ0KPqW4SbM1FtDsM5xTUolff3d1jURhkMBsycORPl5eWIiIhwuW/QFNDOnTuHUaNGYdOmTRg6dCgANFlAa6wHWkJCAoqKippsmNZgsViQnJyMpKQkKJVKf4dDdTA3wYF5apn0YoPTHmgA8OXRfADAoM5h6B8b6tGxmZvgwVwFB+bJv9j+wYO5CkzMS/Dwd66kol+g3zMXMms5rPIwRCuMEKpI2Ie+BhHTvody+js3bVVFRQViYmLcKqAFzRDOAwcOoKCgACNHjnRss9ls2LlzJ1asWAGTyQS5XF7vNmq1Gmq1usGxlEplQD3gAi0euoi5CQ7MU/PIZfWnwXTWhjKZrNnty9wED+YqODBP/sX2Dx7MVWBiXoKH33J17lMo7BWoUPUEJAlSuBpS5SnIzn0GdP1d68cTgPg88i5P2jJoCmiTJk3CkSNH6m2777770L9/f/z9739vUDwjIiIiIiIioiBSsB1aczZCTFmwS2pA3gtQhAP6dH9HRhQ8BbTw8HAMGjSo3rbQ0FB07NixwXYiIiIiIiIiCiLpq4CKU5DDCgEJCmEAyo8B6lgg5gp/R0cEWdO7EBERERERERH5UNobAATskAOQYIcMgB2wlAM97vJzcERB1AOtMdu3b/d3CERERERERETUUtW5gFwNq1BCbjdCgr1mu6QEYtv3AgIUGNgDjYionRJO/iYiIiIianXaroDdAjsUsMjDYZZFAJIMCE30d2REAFhAIyIiIiIiIiJ/6/cYIFNBZa+Awl4Jlb0CkKmAfo/6OzIiAEE+hJOIiIiIiIiI2oC+DwIA9L+9Dq21AFXKToga+gTQ9y9+DoyoBgtoREREREREROR/fR/ED5XXOy7e0Tfej8EQ1cchnERExEnQiIiIiIiIXGABjYiIiIiIiIiIyAUW0IiIiIiIiIiIiFxgAY2IiIiIiIiIiMgFFtCIiIiIiIiIiIhcYAGNiIjAVQSIiIiIiIicYwGNiIiIiIiIiIjIBRbQiIiIiIiIiIiIXGABjYiIiIiIiIiIyAUW0IiI2ilRZ9ozzoBGRERERETkHAtoRERERERERERELrCARkRERERERERE5AILaERERERERERERC6wgEZEREREREREROQCC2hEREREREREREQusIBGRERERERERETkAgtoRERERERERERELrCARkRERERERERE5AILaERERERERERERC6wgEZEREREREREROQCC2hEREREREREREQusIBGRERERERERETkQtAU0FauXIkhQ4YgIiICERERGDNmDH744Qd/h0VEFLRE3b+F092IiIiIiIjavaApoMXHx+OVV17B/v37sX//fkycOBE33XQTjh075u/QiIiIiIiIiIioDVP4OwB33XDDDfUuL1myBCtXrsSePXswcOBAP0VFRERERERERERtXdAU0Oqy2Wz44osvUFVVhTFjxvg7HCIiIiIiIiIiasOCqoB25MgRjBkzBkajEWFhYVi/fj0GDBjgdH+TyQSTyeS4XFFRAQCwWCywWCw+j7cptTEEQixUH3MTHJinlrHZbPUuO2tHu93ucRszN8GDuQoOzJN/sf2DB3MVmJiX4BFouQqUOAJBoOWmrfCkPSUhgmfqaLPZjLNnz6KsrAxfffUV3nvvPezYscNpEW3hwoVYtGhRg+1r1qxBSEiIr8MlIgpolvDOsHSIr7kgBELOHax3vaH7SACAsuw8lBV5rR0eEREREbVDtZ9BASDk7AE/RkLtgcFgwMyZM1FeXo6IiAiX+wZVAe1SkydPRu/evbFq1apGr2+sB1pCQgKKioqabJjWYLFYkJycjKSkJCiVSn+HQ3UwN8GBeWqZE4VVOJpfCQCQAPxhUOd61395NB8AMLBTGHSdQj06NnMTPJir4MA8+RfbP3gwV4GJeQkegZCr2s+gAHDrJZ9P27NAyE1bVFFRgZiYGLcKaEE1hPNSQoh6BbJLqdVqqNXqBtuVSmVAPeACLR66iLkJDsxT88jl9RdidtaGcrms2e3L3AQP5io4ME/+xfYPHsxVYGJegkeg5CoQYgg0gZKbtsKTtgyaAtqzzz6L6667DgkJCdDr9fjss8+wfft2bNy40d+hERERERERERFRGxY0BbT8/HzMmjULubm5iIyMxJAhQ7Bx40YkJSX5OzQiouAUtAP4iYiIiIiIWlfQFNDef/99f4dARERERERERETtkKzpXYiIiIiIiIiIiNovFtCIiIiIiIiIiIhcYAGNiKidEk7+JiIiIiIiovpYQCMiIiIiIiIiInKBBTQiIiIiIiIiIiIXWEAjIiIiIiIiIiJygQU0IiIiIiIiIiIiFxT+DoCIiIiIiIiIKLUwFRszvkCRIRsxIfEYFn8bdLE6f4dFBIA90IiIiIiIiIjIz1ILU7F0z1KkFu1BlaUCqUV7ai4Xpvo7NCIALKARERERERERkZ8lZySj2FCM+PB+6KjthvjwfiipLsHmjM3+Do0IAAtoRERERERERORnWeVZiNJEQZIkAIAkSYhURyKrPMvPkRHVYAGNiIiIiIiIiPwqMTIRZcYyCCEAAEIIlJvK0SOqh38DI7qABTQiIiIiIiIi8qukXknoGNIR5yvTUFydg/OVaYjWRmNSz0n+Do0IAAtoRERERERERORnulgd5o2eh/4dxyBUGYn+Hcdg3uh5XIWTAobC3wEQEREREREREelidZja6746l+P9GA1RfeyBRkTUTolLL4tLtxARERERERHAAhoREREREREREZFLHMJJRERERERERH6XWpiKjRlfoMiQjZiQeAyLv41zoFHAYA80IiIiIiIiIvKr1MJULN2zFKlFe1BlqUBq0Z6ay4Wp/g6NCEAzC2hWqxWbN2/GqlWroNfrAQA5OTmorKz0anBERERERERE1PYlZySj2FCM+PB+6KjthvjwfiipLsHmjM3+Do0IQDOGcGZlZWHq1Kk4e/YsTCYTkpKSEB4ejn/+858wGo14++23fREnEREREREREbVRWeVZiNJEocwgAQAkSUKkOhJZ5Vl+joyohsc90ObMmYNRo0ahtLQUWq3Wsf2WW27Bli1bvBocEREREREREbV9iZGJKDOWOVaGF0Kg3FSOHlE9/BsY0QUe90DbvXs3fvrpJ6hUqnrbExMTcf78ea8FRkRERERERETtQ1KvJBwtOIrfctOgVUSg2lqBoV3jMannJH+HRgSgGT3Q7HY7bDZbg+3Z2dkIDw/3SlBERNT6hL8DICIiIqJ2Sxerw7zR89C/4xiEKiPRv+MYzBs9j6twUsDwuAdaUlISli1bhnfeeQdAzbjkyspKLFiwANOmTfN6gERE5COsmBERERFRANHF6jC11311Lsf7MRqi+jwuoC1duhQTJkzAgAEDYDQaMXPmTKSnpyMmJgaffvqpL2IkIiIiIiIiIiLyG48LaN26dcOhQ4fw6aef4uDBg7Db7XjggQdw55131ltUgIiIiIiIiIiIqC3wuIAGAFqtFvfffz/uv/9+b8fj1Msvv4x169bhxIkT0Gq1GDt2LF599VX069ev1WIgIiIiIiIiIqL2x+MC2kcffeTy+rvvvrvZwbiyY8cOPPzww7j88sthtVrx3HPPYcqUKTh+/DhCQ0N9ck4ioraMU6ARERERERG5x+MC2pw5c+pdtlgsMBgMUKlUCAkJ8VkBbePGjfUuf/jhh+jUqRMOHDiA3/3udz45JxERERERERERkccFtNLS0gbb0tPTMXv2bPztb3/zSlDuKC8vBwBER0c73cdkMsFkMjkuV1RUAKgp+lksFt8G6IbaGAIhFqqPuQkOzFPL2O22epctFgtkktRgP5vN7nEbMzfBg7kKDsyTf7H9gwdzFZiYl+ARaLkKlDgCQaDlpq3wpD0lIYRXRvHs378fd911F06cOOGNw7kkhMBNN92E0tJS7Nq1y+l+CxcuxKJFixpsX7NmDUJCQnwZIhFRwLNEdIUlqpvjsvbsAdQtnxm6jwQAKMvOQ1mR18rREREREVF7VPsZFABCzh7wYyTUHhgMBsycORPl5eWIiIhwua/XCmgpKSkYP368o5eXLz388MP47rvvsHv3bsTHxzvdr7EeaAkJCSgqKmqyYVqDxWJBcnIykpKSoFQq/R0O1cHcBAfmqWWO5VcitbDKcfn3AzvV64H25dF8AMCgzmHoH+vZXJPMTfBgroID8+RfbP/gwVwFJuYleARCrmo/gwLArYM6+yWGQBQIuWmLKioqEBMT41YBzeMhnN988029y0II5ObmYsWKFRg3bpynh/PYo48+im+++QY7d+50WTwDALVaDbVa3WC7UqkMqAdcoMVDFzE3wYF5ah65XFbvslKpbHQIp0wma3b7MjfBg7kKDsyTf7H9gwdzFZiYl+Dhr1ylFqZiY8YXKDJkIyYkHsPib4MuVtfqcQQyPo+8y5O29LiAdvPNN9e7LEkSYmNjMXHiRPzrX//y9HBuE0Lg0Ucfxfr167F9+3b07NnTZ+ciIiIiIiIiotaTWpiKpXuWIrUoGyHKCBQW7cHSPdmYN3oei2gUEDwuoNntdl/E0aSHH34Ya9aswf/+9z+Eh4cjL69mPp7IyEhotVq/xERERERERERELZeckYxiQzHiw/tBkiREa7qipPocNmdsZgGNAoKs6V0Cw8qVK1FeXo5rrrkGXbt2dfxbu3atv0MjImoTvDMjJhERERGR57LKsxCliYJ0YUoRSZIQqY5EVnmWnyMjquFWD7THH3/c7QO+/vrrzQ7GFS+tdUBEREREREREASYxMhGZpZkQIgKSJEEIgXJTOYZ3He7v0IgAuFlAS0lJcetgUiOTTxMRERERERERuZLUKwlHC47it9w0aBURqLZWYGjXeEzqOcnfoREBcLOAtm3bNl/HQURERERERETtlC5Wh3mj5+GVnV+iyJCNxMiBmDf6Vs5/RgHD40UEiIiIiIiIiIi8TRerw9Re99W5HO/HaIjqa1YBbd++ffjiiy9w9uxZmM3metetW7fOK4EREZFvcWZJIiIiIiIi93i8Cudnn32GcePG4fjx41i/fj0sFguOHz+OrVu3IjIy0hcxEhERERERERER+Y3HBbSXXnoJS5cuxYYNG6BSqbB8+XKkpqZixowZ6N69uy9iJCIiIiIiIiIi8huPC2inT5/G9ddfDwBQq9WoqqqCJEmYN28e3nnnHa8HSERERERERERE5E8eF9Cio6Oh1+sBAHFxcTh69CgAoKysDAaDwbvRERGR73ASNCIiIiIiIrd4vIjA1VdfjeTkZAwePBgzZszAnDlzsHXrViQnJ2PSpEm+iJGIiIiIiIiIiMhv3C6gHTp0CMOGDcOKFStgNBoBAM888wyUSiV2796N3//+93j++ed9FigREREREREREZE/uF1AGzFiBIYPH44//elPmDlzJgBAJpPhqaeewlNPPeWzAImIiIiIiIiIiPzJ7TnQfvrpJ4wYMQJPP/00unbtirvuugvbtm3zZWxERNSKOCUaERERERFR49wuoI0ZMwbvvvsu8vLysHLlSmRnZ2Py5Mno3bs3lixZguzsbF/GSURERERERERE5Bcer8Kp1Wpxzz33YPv27Th58iTuuOMOrFq1Cj179sS0adN8ESMREREREREREZHfeFxAq6t37954+umn8dxzzyEiIgI//vijt+IiIiIiIiIiIiIKCG4vInCpHTt24IMPPsBXX30FuVyOGTNm4IEHHvBmbERBK7UwFckZycgqz0JiZCKSeiVBF6vzd1hETRAAJH8HQUREREREFHA8KqCdO3cOq1evxurVq3HmzBmMHTsWb775JmbMmIHQ0FBfxUhNYLEmsKQWpmLpnqU4U3oGepMe31R/g8+OfoZnr3oW0/tN93d4RA5cNICIiIiIiMg9bhfQkpKSsG3bNsTGxuLuu+/G/fffj379+vkyNnJDamEqXv/ldeToixAT0gGZpZk4WnAU80bPYxHNT5IzknG04CjOlGah0mxAiFKLClMFXtr9EnpH92ZeiIiIiIiIiIKM2wU0rVaLr776CtOnT4dcLvdlTOSB5IxknNcXQiP1RKVRwqAuCThWeAybMzazUOMnB3MP4lTJKehNBqhkWhgsRsgkgRx9DvNCREREREREFITcLqB98803voyDmimrPAsqWTikC/MWSZKESHUkssqz/BxZ+6U36WGwGKCSa6GUqQEIGCzlAMC8EBEREREREQWhFq3CSf6XGJkIvakcQtTMZiSEQLmpHD2ievg3sHYsXB0OrTIEZls1LDYTTLZqyGVKAGBeKLBxUjQiIiIiIqJGNXsVTgoMSb2SsD3jAM7r06BVROBYoRXR2mhM6jnJ36G1W2q5Gla7FWabCRa7GRp5KJRyBeLC45gXavNqFzU5U3IGlQWV6FnUE0O6DvF3WEREREREAYsLAwYH9kALcrpYHe4c/Ff07zgGocpIjE8czwUE/GhD2gZsOr0JJqsRcpkCEAJGWyUiVB3wzFXPMC/UptWuQLsjcwfKjGU4WnUUb+x9A6mFqf4OjYiIiIgoINX7DF1dhh2ZO7B0z1J+hg5A7IHWBvSM6oepveIAAHcMj/dzNO3bh4c+hMFiROeQPjBYK2CxmWC0VqFTaBym95vu7/CIfCo5IxnFhmJ0CukLhUxCd7UBJdUlXDyDiIiIiHyiLfTcqv0M3T2iHwqqzOjToStOl53gZ+gA1KwC2smTJ7F9+3YUFBTAbrfXu+6FF17wSmBEwSizPBMyaKFRhEKjCAUAlBnzUWEu9XNkRE1r6RRoWeVZCFFGoKDSDABQBsmiJhvSNuD+b+5HoaHQ36H41yF/B0BuOeTvANq5Q/4OgNx2yN8BUKMO+TsActshfwdQ4/7vNKieX93odbU9t4oNxYjURCKzNBNHC44G3YisrPIsRGmicLbMCADILjcGxWfo9sjjAtq7776L2bNnIyYmBl26dIEkSY7rJEliAY3atR6RPXCm5DyEsEOSZBDCDpPNgK5hg/wdGlED3l4zIDEyEWmFGVBJUZAkybGoyci4kV4+k/dsSNuAGV/OQLW18Q9mREREROQ/RpsR2he1jRbRantuaWQ9YDACA2LjkVp0POh6biVGJiKzNBNCRECSJNjsdpSbyjG863B/h0aX8HgOtBdffBFLlixBXl4eDh06hJSUFMe/gwcP+iJGh507d+KGG25At27dIEkSvv76a5+eL1hw4bzAcd+w+6BRhKLAkIUyYz4KDFnQKEIxtfcf/R0akc8l9UpCB200zlemobg6B+dM5wJ+UZMPD33I4hkRERFRADPajI1ur+25ZbQKWOwCZpsIyp5bSb2S0DGko+Mz9Fn9yYD/DN1eeVxAKy0txW233eaLWJpUVVWFoUOHYsWKFX45P1FTpvebjjsHPo8+0SOhVYahT/RI3DnweYyLn+Lv0IjqSS1MxadH38YnRxdjY8YHOK9Pb/ExdbE6PDjyMceiJgPDBuKxKx4L6F8AM8sz/R0CERERETVDYmQiyoxlEKKmS0nt6IceUT38G5iHdLE6zBs9z/EZelDsmKAbhtpeeDyE87bbbsOmTZvw0EMP+SIel6677jpcd911rX5eIk+M6DIZI7pM9ncYQa0tTAYayGrnizhdkgebLQSFRXtwruIEpvTrhCGdB7bo2Jd17I+pvToCAELOHoAuJrDz1iOyBw7m+rb3NBERERF5X1KvJBwtOIrfctOgVUTAUmxGl7CYoOy5pYvVYWqv+wAAoSo5dLFd/RzRRfxudpHHBbQ+ffrg+eefx549ezB48GAolcp61z/22GNeC46I2p/a4k5+ZRGiNFFBOxloIPv48Mf4NXsvqkwyhKoi0SkkARXmImzN2NLiAlog8ORN/r5h9+GHUz9wGCcRERFRgNLINY1u18XqMPfKuXh111coMmRjXHx/3Nh/Kr8zeNHF72aFUMrC2/13M48LaO+88w7CwsKwY8cO7Nixo951kiQFVAHNZDLBZDI5LldUVAAALBYLLBaLv8JyqI2hpbHUXQk1EO5XW+Ct3NSyC8HcuGlj+kYUVBZCLnqg0ihBF9sNx4uO48f0H9Enqk+9fb2dp/YgtSgV36Z9i2JDOVTyCBQZslFhKkJsSALOlGY02pZ2u93tNrZarY6/zxnPYfme5ThfeR7dI7tjUs9JPu+RllqUikU7F2FP9h4UG4phFVZoFBqMjR+LgbEDG8Rxba9rseaWNbj3f39GubnIp7ERERERkWc0cg0q/l7h9LNon6g+jp5bk3pHo4NWGfTfDYST747++O6zMX0jCqtqvpsJu4ROoV2RX5Xe6HezYOVJe0qidsBwkJEkCevXr8fNN9/sdJ+FCxdi0aJFDbavWbMGISEhPoyudZmj4mGN6AygZsgU+Zehe8MVB+WGUqiLMvwQTfD54PwHqBQmREUPAAAoy3NQZC5CmCIM98Xd5+fogt+Ggg1ILtkMi1yBcFVHSBJQbiqCUqbClMirMT1mmmPf2seysuw8lBV5bh3fpg6DqXM/nNenY9NvL0Nv0yNUFooqexXC5eG4sdONSNAk+OS+AcDHOR/jx6IfUWmvbHBdmCwMdtgRJg/DLZ1uwXWxF6cEqO46EEKpgTrvBOTmKp/FR0RERESu1f0+1dT3WwGg+sL+mtzjkFmCd1RB7f2WrCZoc476OZoaH5z/AFXWKkTGDgEAyCzVKC1Lb1PfzQwGA2bOnIny8nJERES43NfjHmh11dbeJElqyWF85plnnsHjjz/uuFxRUYGEhARMmTKlyYZpDRaLBcnJyUhKSmowFNYTh3L1OFVsAABMmzatib3JHS3JzZdH8xts69ylC8Ze0d9b4bVpGfsysOXMDgghIEkS+vTpA3ORGeMTx2PaqPqPb289h9qT7Zu3o6dyEDJLM6G3FEMpqWGxGSGXKTH72r9icOcBjn1rH8uXXdYPuk4j3Dp+YZUZO86U4kjhLuhtelze53cw2oDYUCVSi47DmmDFtMt99zq19JOlMAojAAkyyCFgh0BNL91KeyW0ci2KrcX4JP8TDBw0EA+NrJnP84e0IlRZbBg7diw6hrSvxxKfR8GBefIvtn/wYK4CE/MSPAIhV3W/TzX1/VYIga+OFQAAxl11FTpog/fxVXu/tVpto/fbH7nJ2JeBnWd3QthrvpuFhobCpopo9LtZsKodqeiOZhXQPvroI/zf//0f0tNrVm277LLL8Le//Q2zZs1qzuF8Rq1WQ61WN9iuVCoD6oW7pfHIZBcXUw2k+9UWeOuxIpMk5sZNU/tOxaH8ozhRWDMZaGqxBTGhMZjSZ4rTNgy053Qg6xndE4fzT6N3hxEoNJxFmTEfVmGFWq7BjnPbkVN1DhllGcgqz0KRPhKDY6/GkK4j3W5fhaKmWFVkyEaoLBTn9TVdojVKOTpoOyC7MtunuZLJZLCLmhhkkgw2Ya93vU0IKGQKGG1GvL7ndUzuPRnbz2zHqz+9iVJjIeIjuuKRy2dj9hWzfRZjoOLzKDgwT/7F9g8ezFVgYl6CR6DkqqkY7HUG1CkUioCIuaWkJr47tmZupvaditTiVMdCDcXGKlwW09Xld7Ng48n98LiA9vrrr+P555/HI488gnHjxkEIgZ9++gkPPfQQioqKMG/ePE8P6bbKykqcOnXKcfnMmTM4dOgQoqOj0b17d5+dl4hajy5Wh9mXP4aVv36DIkM2xvcY2K5WevH1KjdJvZKwPeMAzusLoZJrYbDqAQBV5gos2r4QRls1QpWhiNZGw2xV4kTxXlwWuwADu1zu0XliQuJxsvgIIi70JDRbbSg3lWN41+Feuy+NGR0/GruydsEurLAJKwTqzlIgQQYFABuUMiXKjGVYsG0BNmVsgsFSDbmkwunSk3hm6zMA0C6LaEREREREtXSxOswbPQ+v7PwSRYZs9I0ehgevuKndfDe7lMcFtDfffBMrV67E3Xff7dh20003YeDAgVi4cKFPC2j79+/HhAkTHJdrh2fec889WL16tc/OS0Stq19HHab26ggAuH1YHGQBOkzcG2pXttl2Zhv0Zj3kMjkSIxKhi9X5ZJUbXawOdw7+K75J24R9uT9AKakgyWQoNeXBbDNCwA6TzYRqiwmhymhklP2GDelrcaPOswLa4NirkZuzG+cra36tqjBXo2d0Z58vKz5ryCxsSPseRwoPO4Zu1pJBBqsww263QybV/LqXnJEMk9WEcGVHSJIMGoWE4uoirDqwigU0IiIiogAXnDO6BxddrM6xUEN8pAa62Bg/R+Q/HhfQcnNzMXbs2Abbx44di9zcXK8E5cw111yDIF3zgIg80Qae5u70JEstTMXcjXPx87mfYRM2WG1W2GGH3lgJlbwzrogbiIyyE9icsdmrv/L07tAPU3vFochwDmk2I/KqzsBmt9YrOFXbDFDJQ6CUq/Bb3j6PzxEX3hc3dLoR+xWlKDJkY3DnEbhn+A0+/7VKF6vDOzf+B3O+n4/Uop9hthsRoQ5FSXUZbMIGIWpWCZVJCkiQoLfooZKpIEk1Q+HlMhmUciVyK337fkZERERERMHF4wJanz598Pnnn+PZZ5+tt33t2rXo27ev1wIjIgpWtb3Kig3FiNJEOe1JlpyRjKMFR2EHoJV3gBEVsNrNqLYakV5yFJ1DeiFSE4ms8iwvR1jToy8mJB4H8pJhtZkd84ZdJFBhLkaUOhaQmlfRTNAkIKb7zQCAgZ3DoYuNbEHMrtUtWMZq43Fb/8cRF74SAHDH8Hjcv+4lfJ76TxhtVVDKNAhRhiMxsgvSS9JRba2GRm6HJMlqlg23WdA7urfPYiUiIiIiCkZtoJ9Di3hcQFu0aBFuv/127Ny5E+PGjYMkSdi9eze2bNmCzz//3BcxElE7JgRq6z1BIzkjGcWGYsSFXQZJkhAfEY9jhcca9CTLKs+CyWaCDIoLqxnLAAkQdgGDpQJWu90n84bVjogdHHs1fs7+HwoN2bDD2mA/ATuMNgOGdrrCq+f3tksLlieLMlBl2odpvf+MuPCaH3aSet6N02WHcF5/ChIkhCgjMCZhADQKDfbn7ofeXAyFTIUqixVqhRp/Gf4XP98rIiIiImpKey/oUOuSNb1LfX/4wx/w66+/IiYmBl9//TXWrVuHmJgY7N27F7fccosvYiQiCipZ5VmIUEfifIUJ2eVG2AUQqW7YkywxMhFquRpWuwVCCChlGkDUFK4UMiWy9WmI1kZ7fd6w2npkXHhf3HzZo1DJtU73VUhKTL/s9haeybdqC5aJEf0gQwz6dxyAKksZjhTurrdfj8hBiNZ0weDY36FPh+GICYlBt4huuK7Pjega1gcquQb9OvbDyxNf5vxnREREREGBJTRqPR73QAOAkSNH4pNPPvF2LEREQWdD2gZ8eOhDZJZnokdkD9w37D4kRiYio+QMJBEJSZJgc9KTLKlXEr47+R12ZO1GpaUEkGSQSTJoFSFIjByEATFjMG/0rT6dN2xEl8kYGDMWB/OT68yBJkGCBJkkR6eQ7ujdoV/LT+TDWlpWeRaiNFHIKjMCqFnOXKuIQJEhu95+g2OvxrmKE46FDY4VWhGtjcY9Qx7G2ZKOCFMrcMOALr4LlIiIiIhcSi1MxcaML1BkyEZMSDyGxd/m+rMw62etq523t1sFtIqKCkRERDj+dqV2PyIibwjk1+gNaRvw4IYHUWIogV2y43j+cezJ3oP5V89HB200juXXFGpSiyyIDe3YoCeZLlaHZVOXYc53S3CksGbC+5HdBmFozEyM6DIZMgnQxcZ7Pe5LFzUdGDsWWRXHUGYshAQBmUwJIWxQytQYFHu1d07qw0QmRiYiszQTQkRAkiSYrXZUWyvQI3Jgvf3iwvtiWu8/40jhbhQZsjE+cRAm95qMGG0vnC0pDLaRwkRERERtSu20HKlF2QhRRqCwaA+W7sl2uSJ9IH9X8IVzxnNYsW8FsiuzGyxU5s4iZi3V3tr7Um4V0Dp06IDc3Fx06tQJUVFRF+bqqU8IUdPTwmbzepBE1M7Ue4kJ3EnQXtr9EvKr8iEJCXYIAFbkVuZi1cFVWH3TJ1j683oUGbJxdfcBuK7vlHpvYHXf4BIi+2FKrwcQF94XdwyPx6cp2c5P6hX123Nw7NU4UfwrTpYcgMVmhE1YoZCp0StqKK5KaMHQfDfS5o03+qReSThacBS/5dYULAsNlQhVRmFQ7FUN9o0L7+uYF+2O4TXFyYJKk0fnIyIiIiLvq52WIz68HyRJQrSmK0qqz3l9RfpA5+wjdGpRKr4p+AahIhTR2uh6C5UBwJ+++ROOFhyFyWaCWq7G2qNr8d6N77WrtvM1twpoW7duRXR0NABg27ZtPg2I3Ff7xXNv9knI0QmDY68G4P3eKkR+FcA/cxwvPA67sENcEuSxgmMAgKm97gMA3DyoK7RKueP6Sye9P1aUijNlqZjW+89ojefwpb+BxIX3xW39n8Suc+txqvQAAKBv9AhcFf97R7HJG17Y+gLeT3kfpcZSdNB0wI39bkRGaQaOFhyF0WaERq7Bdye/w7Kpyzx6o9fF6jBv9Dy8svNLFBmy0aPDEPSMGOPV2ImIiIjIt2qn5Sgz1HxYlSSp0XmE26stZ7bgrPEsrPl2lBrL0VEbhdjQGGzO2IxdWbuwJ3sP7BemZDHZTPg5+2fcsvYWrL99vdeKaAH81axVuFVAGz9+vOPvnj17IiEhoUEvNCEEzp07593oyKm6X8Ct9hDkVmTgXMUJXK/rwgoztSmB/CJtE7YGxTMAsAorPj3yXwyLfRgA8H36d1hz5D+OedJiQmJQWFWMSFUvRKhU6B4eiayKExcmvZ/QyveiRlx4X/xxwFNePurF94kXdz2BL0984Giv6spqvH3g7Qa3yKvMw4JtC/D5DM9WddbF6hwFy9hQFQqrzO7fOJAfZERERETtxKXTcgghmlyRvj19jNueuR1nq89CmGSQS0pkV5xHflUetp7Zii1ntjiKZ3WlFafhT9/8yXs90UR7avGGPF6Fs2fPnigsLGywvaSkBD179vRKUNS05IxkHC04isP5x7AzcxOy9SeRXXESmzM2+zs0onYjRhPj9LqtmVsAAAfzNuOZLX/D7rO/oMKox57sPfji+BfI1ZdAb7LhbFk1JElqdNJ7X2ntAbHn9en4+uQnjRYbL2WHHV+nfY3UwtTmn7CZdzAwBwoTERERtQ9JvZLQMaQjzlemobg6B+cr3ViRvs7Hy7b+We5M+RlYhAU2mw0GawWMtmpUmCtwKO8QDGaD09vtzd6LZXuWeSWG9l0+a0YBrXaus0tVVlZCo9F4JShq2tYzW3E4/zBOl55CmbkAuVWnkV52AO8feN/foRG1G13CnK/YmFmWCQDYce5zlFRXoIM6AQqpI7pH9IRN2HC69ATEhV9whBCotlYgNqR1hmA398NFamEq3vj1DTyx6Qm88esbbhe5jhTugsXu/jxjFrsFnxxuvZWeHYW9tv6pi4iIiCiA1U7L0b/jGIQqI9G/4xiXCwi0NwazAVZYYYERAnaICz3OsiuyG+19VssKK75N+7a1wmzT3BrCCQCPP/44gJpxyM8//zxCQkIc19lsNvz6668YNmyY1wOkxqUWpaLKUtVg+2+Fv2Hl3pWYfcVsP0RF5H2B/CuHwer8l55yYxkAoMiQDaWkhSTV/F5RYbKhg7oDyox6nK+smfTeZNM7nfTeJxr5EaQpl87bVnfS0qY+1GSWH/X4fBvSNmDJpCUe346IiIiIglfdaTlqLrv+gTmQvyt4m9VubXS7s2ll6io0FCK1MJXFyBZyuwdaSkoKUlJSIITAkSNHHJdTUlJw4sQJDB06FKtXr/ZhqFRXsaHY6XXLf13eipEQ+VgAvyta7Ban11mFFef16YgJiYfJZoAQNb8K2e12WIQF/ToOdfy6NjBmDKb1/nOrTXrfnI5Wtasi9Y3WQYYY9I0egJLqEreGjVdbKz0+X3ppejOibJ7ahxg7oBEREREFmwD+suBlZlvjc/y6M02KVVgxd+Pclk2TQu73QKtdffO+++7D8uXLERER4bOgqGk2u83pdecquJhDoEg+8xE2Z34CvbkQ3SO74aGRD7F3YBBYuXcl3j7wNvIq89AlrIvTvMVFxCG1qPE3ITnkOFK4G+MTZiC7Ig0Fhiyo5SEw2avRKTQSt+n+jLiwqwEAaoUMJqvzbtfe1owOaI5VkTJLqmGxC1SabW6silRzIiHskCC59eZeq9pazV/JiIiIiIgukMvkLbr9z+d+xrI9y7DqhlXNPkb7KVc2zuM50D788EMWzwKAVqF1ep1dtN4XcWrceX065mwahw+PPIdz+lSUmYpwpOAIntr8FFbuXenv8MiFF7a+gDkb5+BwwWEUGApwuOAw/vrDXxH3ely93KUWpkIGGSQnL6NqpQaZZUcwostk3DnwefSJHgmtMgyXdRiB15Jew7iEa1vrLnlFYmQiyoxlMNsuLI1tsaHcVI4eUT2avK3RaoAcnr/ht9o8aI5PAuyDRkRERBRM2tOikHHhcS26fZWlCp8f+9yjuYwbaEft3Ri3e6DVtW/fPnzxxRc4e/YszOb63QjXrVvnlcDItfjIeORW5TZ6nYBoUc+N1MJUJGckI6s8C4mRiUjqlcReIB44r0/H0l//gkLj2XrbBQQqLZVY/uty9kJrglSnkNGar9Gphan458//hEU0HJqZo8/BU5ufAgDMvmI2kjOSEaYKw+huE/FLzpZ6kaokFVRyJYy2mnkKR3SZjBFdJgMAFDIJ0/vF4ZfMEt/fISeaUyZK6pWEowVH8Vtuzbxt1dYKDO0a73pVpAuqLRWQy5WATYIVzoe9XmpLxpbmzYPm4YOGQziJiIiIgl9bru2kFqairLqsRccQECg3lePV3a/iu5PfYdnUZfye7yGPC2ifffYZ7r77bkyZMgXJycmYMmUK0tPTkZeXh1tuucUXMVIjJveajJS8lEYnElTL1dicsblZT4bUwlS8sO0F7M/Zj2JDMSx2C14NeRXzr5rPoo+bjhTuQo7htNPrW2OIbdsqgrbeW+GyPctgsjlfLbLaWo3le2sKoLVDGqPUfZBeegLF1bkQsEMGGRQKBWx2G+zC+VBrf2psJeWm1K6K9MrOL1FkyEZi5EDMG32r68dV7WkkCRACMkkBNFKcbIxCUqDE2MwiY3MrYaygEREREQWVYC2aNfZ9DQgHAHx/6j+Yv/NTx3QyuhgdtmZuRaGhsMXnFRDIqcxBSXVJs4ZzBmt7e4vHBbSXXnoJS5cuxcMPP4zw8HAsX74cPXv2xIMPPoiuXbv6IkZqxKwhs7AudR3SitPqbZdLcihkChzMPdis4y7bsww/nPoBVRYDap8eufpcPLP1GSREJmB6v+ktDb3Nq1lx0PlLi0zyeOR0k2pXSNx2Zhv0Zj2MFiMsdgvswg6VXIW1R9fivRvfC+IiWuv47OhnLq8XQuC8/jyAmiGNR/KPoKz6DKotesggwQ4JMkkOrVwLO+yQSS2bpyDQeLoqUi2tIhyQJKjkGsAmYLYbXe4vl+QQENDKnQ9Vd4V1MCIiIiIKVKmFqZi7cS6OFhyFyWaCWq7Gdye/Q1Li0zhe9As+Pb4EFrsJMkmGIkMRDhcc9noMRpsR36Z926L50Nojjwtop0+fxvXXXw8AUKvVqKqqgiRJmDdvHiZOnIhFixZ5PUhqSBerw2tJr+HO9XeiwlQBQIIMMqjlagBApbnxVe82pG3Ah4c+RGZ5JnpE9sB9w+5zFMVSC1Px7clvUWWpqneb2q6eL+1+qd0U0FKLUrGhYAO2b96OntE9PerB1dSKgx1DOnojRIfaF+CdWTthspkaTNRutBnxS/YvmLdxHjbO2ujVc7eG1prXILUwFRXmCpf72C/0MAOAXlG9cLb8LIqqymGxm2GDFYAEuUwBk63mDS9ge6C18vmiNZ0RpoxEpUXv1hyNEiTIJBm6hHdp1vk8fci091/SiIiIiNqCYPlMt3TPUuw6uwsWmxXWC6MzcipzsCvrF0iSDEabAYAEm4+/S3ijR1t743EBLTo6Gnq9HgAQFxeHo0ePYvDgwSgrK4PBYPB6gOTc9H7TcXnXy7H73G5Y7XbIJTkgAVa7tdGhnSv3rsTCHQtRaalEiDIE2eXZOFZ4zHGs5IxklJvKnZ7vUO6hdrEqXmphKp5IfgIHCg5AKpGgUWg8GiOulYdCARWsaHyZ4WJDMVbuXem1IbHJGcn4NftXGG3Oe/UICGw5syVo8ufJao3ekpyR7NZ+kiQhtTAVGWUZSIhIQLgyDqlFB2C3W2CDHVa7BSHKcAAicHugtVoFreZEHTRdIACoZBrI5BoAVpSbnb/W2GGHUqZEiDKkdcK8UKVlzzUiIiKiwHFen443fl3ncloa4fSCb7VkypyNpzai2lrdYHu1TV/nku/vjFVYm/H9MFjKlL7hcQHt6quvRnJyMgYPHowZM2Zgzpw52Lp1K5KTkzFpUtOTSZN3RWoiEaoMhdlqh0WYoZZpIEmAQlY/tamFqXhx94soMhRBQILJaoZaroLVbsXqQ6sxvd90HMw9CJPFxfxPtmoMfXsodDE6PDTyoTY7J9qCbQuwM2snbHY7FEIJo9Xo0ZK/PaIGI6fyDE6VpQBo2Num0lJZbzL6ljqYe9BlMaKWVVjxyeFPmjcpe2sTjf7pNY294WWVZ0EhKWAVDYvPdVntVmzO2Iys8ix0j+yOziEdcL4iC4U2AyAE7MKGSnMlVHIle6Bd4JikX5IACKgVaiitSljsTuZDE4DJakJBVUFrhUhEREREAeS8Ph0v/XQnSs0XF86LC4tD8t3J9Qs+Fz5oHszbjFWHPsHp0jRoFBpM7DkRc0fP9XrngdTCVHx8+GN8e/JbyCFH7+jeyCzNxNGCo5g3ep5b5yuuLvZqTI1Ry9Qw2Z1/twcAGWQez53evstnzSigrVixAkZjTU+XZ555BkqlErt378bvf/97PP/8814PkFyzCRtMNhNMNjPsQqDUZoAECT+d+wkb0jY4hlx+fPhj5Ffmw36hoGMTQLXVBqvditSimiVs9SY9bHD9hd9it+BIwRGvFoACSWphKjae3giz3QIZ5LDYzLBLMkiShG2Z2xrd/+PDH2NP9h4ICIyJH4NOIZchWtsF6goNTPbGe2VWWirx9Jan8eKuF1FcXQy1XI0BMQNwx5A7XP56sXLvSry460XkVeZBkiR0DuuMcFW42/dvT/Yet/cNRq6GKNfdZ/62+TivPw+FpECkJhK7snYhWhuNEGVIk8M4qyxV+PvmvyMhMgEhihBIIgplpnzYLhTeZJDVFOLsVpga+WWprdqQtgHLf12O3/IPw2ixIErTGZeHDMaYyNkoM+XXLCAAK2rXL4gNiYXFboHJZrowDP2i2tepfTn76r2Oua2Z7+zsgUZERETkf+f16Vi8ewb0lqL62yvP4w9r/4Djjxx3/CB+qvgMfs1Ox5GCnTDZqgCpZjqQ1YdW42jB0QbzQLek51jt1Dl7svegylIFuxA4Vngc4eowaBQaFBuK8eLEF5s8nt3e9JQmLRUfGY/s8myXRTS5TO753OntvILWrCGctWQyGZ566ik89dRTXg2K3FdlroLNboMQAnbUfIEXEMirzMODGx7EKqzC9H7T8eXxLxuMoRYQMNvNyCrPwl++/QsO5B5w65wCAgaLAct/Xe5xAa01Vods7jlSC1Mxf+t86M01XWdr29MubICoKTBeuv/cjXOxP2c/LHYLFJICB3MOotpihkWY0NSrS4W5wlGsMdlM2JOzB3tz9qJ7ZHe8ed2bDYoGK/euxNwf58JsvzA0VAA5+hx3msShsCo4xrk353V5Q9oGPPDNAyipLoEddhzOO4zdZ3fj/RvfrzfP35PJT+JkcTrEhSJNXlUeThafRGJkIqK10RBCDr2lzGUU1dZqnCo+BUmSoFWEw2K/OPecJMkgRM0bksHquhjnL81ZhdOVlXtXYv62+Sg1ljraQW8pRZ7+NNJt+RAQsNkt6BraCyEqBcJUcpwuO43hXYZj+mXT8cK2F1BmKmtwXIvdgr8l/w29o3v7dOixI9OsoBERERH5VWphKj46srBB8cxxfXEqNqRtwJt738SRgqOoMldd+E514RPdhf/ZhA17z+/Fsj3LcMNlN2D5r8ux7/w+6M16CAjIJTki1BH1puqp7RyxJWMLSqprVoOXyWp+HO8W3g3ZFdk4VXKq3ogVq7Cj1FgKAFh/Yj0ySjOw5g9rXH521Sg0LqffaSm1XI1hXYahsKoQJrPzApoEye3vk+f16ThSuAsGSy6Ol+p88j0+GHhcQJswYQLuuusu3HrrrYiMjPRFTOSBclM5ZJLswgTmF9UuTzt/23x8c/IbpJekOz1GlaUK7x5816PzSpLkWI2wMbW9UU4UnYBGoUG4KhyZ5ZkoM5ZdLDSgZn6x/h37o8pahbLqMnQJ69Ki4aHOVjRpav6y2tttz9zudB+TzYQnNj3hKMrV9jyrMhsu9NxreTneDjsyyzPxwDcPYPu92+vFvGzvsovFs2ZKL0kPmnnQajXVqvvK92H1V6vx3cnvYBEXhwTaYUeBoQB/S/4bpvebjg1pG/DEpidwsuRkI+cQyCzPxNBOQxGj7YXz+kzkVZ1xORebHXZAAGarCfY6Kx1YhRk2YQHsQJUbQ2u9yZ0eeN5WOzy8xFjS4DoLLDhZegAd1J1gtVuRXZmGEGUIwlVahCnD0C28Gx698lF8fPhj7MvZ1+jxT5WcwrI9y1BkKHL7frXzH8aIiIiIgtayPctwpGi3y33+8PkfYLVbIS7854xVWPHOwXew5sgaVFuq6422sgorSowl2HZmG5btWYa5o+di7sa5+DX7V+gvWfhKgoTUotQm52kWEDiUfwi3rL0F629f7/Q7V5QmqtEfj71FF6PDvUPvxY6sHXAyLTc0cg0UMgXKjE3HkVqYii9O/AsZpb+hylKGDaeseDXkVcy/an6bG5HWFI8LaIMHD8b8+fPxyCOPYNq0aZg1axamTZsGlUrli/ioCaGqUJdP5N/yf8PhfO8ve1s7dLSx4VUb0jbg0R8exXn9edjsNsdwrEsJCFRbq5GSn+LYVmAowGMbH8O2zG3oH9Mf/0v7H/Iq89wurC3YtgBbM7bCCiukC/+VVJc0OX9Z7UoorgpU5cZy/CflP1AraopyuZW5jl8wvK3AUIAF2xbg8xmfO7ZllGS0+LhGm9HtudwChovm/S79O7yb/S7K7GX1imd1nSg+gRe2voDPj3+O0yWnXZ4qrTgN/TuORml1odt5tQgTVDItTHUW7qi9baHhHA7mbcaILpPdOlZLbEjbgCeTn6zpgScE0orSsPvsbiwcv9Cnb2wfH/4YhZXOezaabAaUmQqhkqmhlGlhshqhksvQOawzRnYbCQCY3Guy0wKaVVjxn9/+A4VMAa1S22DxE29iBzQiIiIi//rPb/9BY/NI1+Vpp4JKS6XT6yzCgm/TvkXHkI7Yl1PTQ+3S76+eft9LK07DTZ/dhFsH3IpZQ2Y1GELq6wXT/jHhH5jebzriwuNQbChu5HwSQpWhkMlkCFWFNvgRfnLPybAIC7LKs6A36fFd+nf1eqpJkJCnz8P8bfOREJng8x/sA4nHBbQ33ngDy5Ytw+bNm7FmzRrcc889kMvluPXWW3HnnXdi/PjxvoiTnBgTPwY7Mne43MdXT1CL3YJbP78V8ZHxGNp5qKNXyIeHPkReZZ7zCcKbYBVWfJH6BYCaJ6dckqOkuqTJeddSC1Ox4eQGWOsMZRUQMNqM+DbtW5dFI2crodRlhx1lpjJIRgnbqrY1+YtHS32d9rWjt1hqYWqTk9u768fTPzbrdq0x/LZxztv4zX1vothS3OTcfUv3LAWAJvcz2ow4UbwXRidz1zUenR0We+NdsG2w4vPU11qlgPbhoQ9RWFUIg7kaZrsZMklCtbUaL+56Edf0vKbRyVa94ZfsX+r9QteQgF3YIZcpYbZXI1QZAout5rVhUs+ahWdmDZmFl3e/7PQIJpsJFpsNJqsJqksWP/GGi83BEhoRERGRv6QWpsJkcz3xvS/kVeVhw8kNMFqNTjt/eCq9JB0v734Z/973b7wy8RXHd9jkjGRoFBoooIQVzfu+rJJUMAvnRcTaz8gquQpquQZ2AVjsxjrfXQUqzBWQIMFiteDRHx5FkaEIZqsZKbkpWHdiHTQyDeywN1qsrP0eXG4s9+pn8mAga9aNZDJMmTIFq1evRn5+PlatWoW9e/di4sSJ3o6PmjBryCy/nt9kN+F0aQY2nNyAGV/OQNzrcfhf2v+8NqZbQMAqrLAKKyotlXh046MYunIoVu5d2WDf5IxkVNsaL4LVjmF3Jr8q3614bMIGK6ywCIvXClrOWOwWLNuzDEDNfZO89OW+xOC6LRrzwtYXcPm7l2POxjl4/ZfXMWfjHIx8ZyRmfD4DqYWpXomrLuHk70sdyDnQZFEMqPnVydUvT3U1503bVSE1R99wyKg3pRam4o1f38CWM1tQYiyB0V4NO2ywCiuEECioKsAnhz9xO15P5ZTnNJkDu7BCIVPV9NSz1bx5dw7t7Cjq6WJ1iFBFuD4Gal4HDFYD9Ca9Y/ETr+CYTyIiIiK/S85I9st5BQSOFRxrskNFc1SYKvDID4/gwW8fRGphKrad2Yaz5WebXTwDgG4R3aCQGu8LFa25OGd9mCoM0doOiA3pDK0ipN73SYvdArPdjN3Zu5FVnoUqSxXMwuz4nmC0G5vs6WeDDYfyDjX7fgSjZhXQauXl5eHtt9/Gq6++isOHD2PUqFHeisupt956Cz179oRGo8HIkSOxa9cun58zkOlidVDIPO5I6GU1ixFUW6uRo89psFiBN9mEDUcKjuDJ5CcbFNFcrSBispvwh7V/wIa0DQ2uSy1MhdnWsrnFfKW2t9jB3IOQS3KvHFMh9+zxsnLvSizZtQRVlqp626ut1fgi9Qvc+dWd3i+iuVHQSC1MdSz44N1Te/r4laCUqZ1ea/PSr1iN2ZC2AZM/moy5G+ei3NRwvrXaN8A92XuQWpiKZ7c8i4n/mYi71k/D2uOv4rze+dyI7p4/qyKryf1sFxbiAIBIdSQkSA1et+ZcOcft81qExeWvg4IFMSIiIqKgk1Xe9OdKX/FWzzNnx3734LuY+dVMbM3c2qJCXQdFB9w+8Hb8acSfGnw/lEtyPHz5w47Lo+NHQyVXIVytgVqhcvojektGVtUuoNBeeFx5qaiowFdffYU1a9Zg+/bt6NWrF2bOnInPPvsMffr08UWMDmvXrsXcuXPx1ltvYdy4cVi1ahWuu+46HD9+HN27d/fpuQNZR21H5FXl+TuMViMgYLAaMO/HefXGXF+6Sual1p9Yjz3Zexwrk9aq7d3l67HozVFurCmK6E16aBQat3tROSODDPER8R7d5tWfX3X5hpKSn9JgvrZL+WL4Z3JGsk/f6NwnYLY7fxNUSMoWn6F2UY4j+UdgEzZ0De+K0fGj8fWJr1FocL2yqk3YUGmuxAvbXsDP536GwVINi92Co+IwMsoO4+7BCxEX3rdZcS3fu9ytHnsCNpSaal6jqiyAUq6E1V6/B+fiiYux9tjaRhd5aIzN7r1Cfe0z38uLkxIRERGRBxIjE/0dgs/ULjDgjFquxoiuI5BVloVyU7mj84IcckACFDIFpvedjmtwDR685kEolUrEhsTi/ZT3UWosRQdNBzww/AEsnrjYccxZQ2YhvTgd6SXpMFl9MzTWYHF/6pu2wOMCWufOndGhQwfMmDEDL730Ei6//HJfxNWo119/HQ888AD+9Kc/AQCWLVuGH3/8EStXrsTLLzufP6etu6HfDfgg5QOf9vwKRCa7CQ9ueNBRELMJm8tCmIBAXmUeXtr9Ur0CWm3vLl8NyZQgYWjnoTVj+u2evXCFKEPwxq9v4Le832CxWyCHosGKq57EoZApMDZ+rEe3O1/hfLXVWj+e/tHp6p6phan40zd/qrcy6tqja/Heje85LaK5U8w8mHswYAufdankGpzXpze7SLVy70o8tfmpesXTouoiHCs45lYBUUAgR5+DgqoCFBmKIYSAXKaEXZiQUfYbdp1bjz8OeMrjuM7r07H7rOsVkurFIQTkMgXkkgSb3dbom+2gToNQYCiExSpgFWaYbM19Qw7sxwQRERERNZTUKwmdQjqhwFDg71BandVuxfs3vo/NGZsdk/efKTuDkuoS9IjsgXuH3Ytre12L77//3nGbxRMX1yuYXUoXq8PiCYuxOWMzXtr1EgxW7xe7vDXNULDwqIAmhMDy5ctx1113ISQkxFcxNcpsNuPAgQN4+umn622fMmUKfv7551aNJdDMGz0PO7N24mTxyYAvJnhbXmUe5m+djw8PfYjtmdubLKjYYcdveb/V2+at3l3ORKojseYPa/Do949ia+ZWj3JUYarAW/veQkFVAay2mnmkhB2QIJzOOyWDDJN7TUakOhIb0jfAarNBoKZ3jUKm8Pgx4s7+1dZqbM7Y3GhB7M/f/Bk/Z198jpptZuw9v9dlr7VNp7/Hsn3vosiQjc9O9MGfR9zfYHJKvUkPGWRuzYHmLzIooJCpcKRwd7MKaOf16Vjy8/xGH5ue9L7L1mdDLskdRfbaSfytdit2Z3+JKE0MBsde7VGMRwp3wWh1f65DO6yQQw5JJgFCanTJbJuwwWIzw2Qzo6kJ/bVyrdPr6j5iv0h9DU9u/QJFhhKEKCMxofsfcZvuSRe3ICIiIiJ/0MXqsP3e7Rjw1gB/h9LqFJICulidy1E6Fovn86bVHnPdiXU+GbUWpY3y+jEDmccFtEceeQQTJkxA377N603RXEVFRbDZbOjcuXO97Z07d0ZeXuMPBJPJBJPpYo+fiooKADUPvOY8+LytNoaWxtInqg9emfgKbvniFm+E1UAg9/Kxw44jBUeQWuz+PGbV1moczj0MXUzNi5PVZoVMkrWod5czarkafaP7ok9UH1SZqzxux0pLJdKK0xyXbReGCjqr9EuQ0Dm0M/5v8v/hsY2PIUoTBatNQqVZD7lMgkwCUnJTPHrMKSVlk70b7cKO/ef3NzjuIz88gp+yf6q3rXZhiG2Z2xqN47v07/D0lnkoqCyEXdiQrT+BXWe3Y9H4RXho5EOO/aw2KyRJ8nntw9PHvxxyyCQFFDIFbMIOu7Ahs+yI43qBmud8vZUr60zaVbdNdp5bhxKj54s+NKZ+DmvOZ4cVZcZCbMv6DCeKf8Vt/Z9stIhms9kb5Cqz/KhH5xcXVuOEXQZJkiCEaHDMSlMlrHYrZJICdrvr52KFuQLd/tUNZdVliNJG4b6h92FQx5rVjcSF9nx2+zRkVlxse7PJiPXpy5FbdQaPjfq34/xWq81xu0B4b2ht3novIt9invyL7R88mKvAxLwED3/nqk9UH9RM1R4IU7U4F62JRpmxzGtTyvSP6d9km7ckN1d0vQI7Mnd49Xu9DDJc3+f6oH9eexK/RwU0mUyGvn37ori4uNULaLWkSyapEUI02Fbr5ZdfxqJFixps37RpU6v3oHMlObnlq434quukAgrEqmJRYi6BCa2/pLA77LB7tAiAgMDirxdjVreaFUwL8gtgt9qhVYTBZDdCsguYvXVf7UCiLRHff/89ThWc8s4x4bpXWKSIxJm9Z1BcXIxqUzWEJK8ZOickVFsrcargFFatW4UETUKT5zlnPAeZaHqtEbuwI/1ser0uxT8U/oB3zr/j9Dbl1eX19q+1MH0hcqvOw1ZTcgGEQKmxFE9vehr5J/NxeWTNsPGs3CxHocSXQmQhqLJXNb3jBXYIKC4MCZZBATusMNou3t5mteL777+HqWMPILQjAMBkNgPymrnSvv/+e6D7SADA0ULfL5JihxU5ladQbixwOpzz5Mk0nNl/4YeKC7GVVHv+C5ZVWKCyK2CFFWa9uUH+s/KzIGwCQhJNrkyUWZ7p+Lu6shqv/PQKbupbhdt0T6K8rBzvn1hSr3hW156cb3BV3i0oPlmJb/K/wRHDMZglgW7aHrgpaqLjMdbeeOO9iHyPefIvtn/wYK4CE/MSPPyZq/sG/wMfHnnOb+d3x+yus/FV/lc4W30WJmFq0agYBRSYHjq90e9GjWlObhKMCeih6YEzxjMe39YZrUyLocahbscdqAwG94e2ejwH2j//+U/87W9/w8qVKzFo0CBPb95sMTExkMvlDXqbFRQUNOiVVuuZZ57B448/7rhcUVGBhIQETJkyBRERET6N1x0WiwXJyclISkqCUtnyicalQ97tKSaX5AhRhuD6AddjzbE1aMFKuwHnN/Nv+HTapwCAD774ADKjDGabBSqZBpLcCrPFOwW0CG0Enr/5eehidNCc1kDS1+ZIggwy2L08/FBAQBGiwLRp0/Dztp/xbsq7MFoMsNkBmzBDAmCUjFictbimt1p4Z/x5+J/r9eyqa8W+FYg6FwVDlesXFQGB2E6xmDZtmmPb8+897/I2Vlgh+gpc3/f6etsfXP4gbBfKZ3UZhAEfFn6Izpd1xtbMrThRfaJVhm+O6T4GO7J2wCKafgLIIINcUsAqLJBLcgjYYbfX9EKrJVfU5GfvuXKcLa8ZAqlSqWC21dzfadOm4cuj+QCArPITPrhHDdmEBRWWYuw8txZXJ9T0ZP3+9Hs4XvQzLHYTLovuh7+Pm4Pr+15fJ7bjzTiTgAUWxIbEYmjPofUeLwDwYv6LOG85D7sA3E1tbQ9BO+zYnPUJbtM9icjISOw8+4XL23198t+IDVVif9n+C/MfSigzFqDEkoVRo0Y1eFy2Zd5+LyLfYJ78i+0fPJirwMS8BI9AyJXhaM0Ptlsy/wujrQgCAmXVZbAKq9PvuxIkaBVaqBVqn68MqZFrsOCOBZhRNANbz2xFVnkWNHIN9uftR0FVAY4XHvdofu37h9+PBdctaHK/lubmd0W/w9B3hnp8O2fiouLw4O8f9Nrx/KV2pKI7PC6g3XXXXTAYDBg6dChUKhW02vrz0JSUeGe40aVUKhVGjhyJ5ORk3HLLxaGKycnJuOmmmxq9jVqthlqtbrBdqVQG1Au3t+LpGtYVOZU5Te4nhxyRmkiXQ8OUMiVClCG4Mu5KPD72cfzv5P9atMKGSqaCVqlFj8geuLHfjdhyZgv2nd8Hq7BCggSZJEOn0E4YlzAOX6V+5fPVFU+VncKPGT9ier/pUMgVkMvkUNhlsAgzQhUarxULu4R2wZCuQwAA/WP747z+fM39haxmiidR8wIcpYlCQVWBV+53sbEYSqUS9w6/F2uPr0WpsQx1xzlWW6tRba2GQlKgxFiCZ7c+C4VMgdlXzG5wrM+Pfe7WWHkJEow2Y73HcVOLDwgIPPLDI+gX26/eWH+bvWHxrFZOZQ6e2vwUFDKFW6s/NkUlU8Fsd917cc7oOTBYDdh3fp/LIpoECWqFGmq5BhZbzST4CkkFSAKyOktMS6h5zstkF3v21fSirbnPtW34ReprsIrW7fWpN5fgixOvobS6AGfKD8N64f7+mpOHv3x3DB/c+AGSzxzGlydeh95S3Kxz2Gsm8UNCZEKD170obVRNQUy4/zyo+1ipNNd8WNpwejUswvX8bGcrjiKr3FYnpzVHyq/Mx1v738LNA252O4a2ItDeG6lxzJN/sf2DB3MVmJiX4OHvXCX1vBtJPe/GHcPjAdSsSr/60GocyjuEbH027HY7JFnN96pwdThu6X8LwtXhSIxMxPsp7+Nw/uFGv1OoZCrIIIPR7v5cvkD9EV89onpAqVRiSNchju96QM3iaZszNuP5bc9Db9K79d1OgoRBnQd51NbNzc2QrkMQogxp8cqZEiRoFBooZIo28Xz25D54XEBbtmyZpzfxmscffxyzZs3CqFGjMGbMGLzzzjs4e/YsHnqo8d4z7c38q+fjrz/81eU+CkmBiT0nYtnUZbj2k2sdRQ5x4T8AUEkqjOs+DmPix+CuIXdBF6tDhCoCRYaiZvVwU0AB0/P1CwF3FN6BZXuWYVvmNhitRvSP6Y/HrngMvaN7I70k3eUSv95y9/q78dEtH8EmbDDbzDBdmFjdm4sJ1C3yzLliDvZm74XeXPNiKgkJCkmBCHUEenbo6bVJHY2WmjcDXazuwgt94zmzCTtkkFBlqcI/f/5ngwLahrQN+DXnV7dyLpfkDSaF1yg0Td7ufOV5fHL4EyyZtMSxrYOmA4qqi5zexmgzOu2dJEFC17CuuLHfjXj7wNsuzx0XHoe3r38bd399t9NfqWJDYjG933T0ju6NZXuW4f2U913OB6eQFLDYL06Cb4MFcklZrweau37I+MDj27SUTdhwruIE8qqyIOo0sgBQZCjCoz88itzKQphs7g9pvZQkSVDJVY0+ruLC46BWqGFo5q+GAnYkn/kIa1NfaXLfmsJpww81NthwOP9ws85PRERERL4xvd90x6JitcW0zPJMxwqVdRcc6xnVEw9ueBAl1SWw2CywwQYJEnpE9sDfxv4NAJr83gzUfBfQm/Sw2q2OOXw1Cg0eu+KxRvevnbD/SMER/Pfwf91a9VIGGbLKs9xpAq+4vs/1+DL1y2aPXNPINYhSR8EGGwZ0aoeLPXh6g3vuuccXcbjl9ttvR3FxMRYvXozc3FwMGjQI33//PRITE/0WUyCZfcVsPJH8BKqt1Y1er5Qpcd+w+zB39FzoYnWY2mcqPjn8CWzC5hgGpZAUmDVkFt6+oX7xYWiXoSgyFKHcXO5xXJ1COzXYpovVYdUNqxrdf80f1mDBtgXYnrUd1dZqxIXHYc4Vc7B87/J6E+q3VKmpFI/+8CiiNFEw22ondReA3XvzyRUZLhaCpvebjlcmvYIXd72I0upSKOQKxGhjMLLbSERro7Ene49XhuCqFRd7Xebqc53uJ+oMID1Xfg6phan1eoLN3zbf7Xgam4cwISLBrR6RWzK21CugJUYlIr003a3zNogDEnpE9cDK6SsBwGUR7e3r38b0ftPx0/0/4eoPrkaxsX6PqhBFCP4y4i8ALj5eO4Z0xMu7X270eAICSrkSVZYqyCQFcGGorl3YYHLynLzU+789i4c2/g96c2XN/G+tTAJQaMiuVzyrJSDqzTvmjAIK2C/81xibsKFPdJ9GexCO6DoCXxxzPfRSDrnLobsbMz5AtdWdAp/z9m2qVyIRERER+U/dYpqz61dhlcsi2xObnkC1zfln9E4hnfD+je/jXPk5rDqwCrmVuega1hUPjnyw0ZE7dc0bPQ9ZZVnYlLGpyfuiVWrRI6pHk/t5y6IJi3Befx77cvbBYvds2JVckiMhIgFV1ipEqiJxzxD/1Yb8xeMCGgCcPn0aH374IU6fPo3ly5ejU6dO2LhxIxISEjBw4EBvx1jPX//6V/z1r01Xi9ur6X2nNzoEUiPX4PUpr9d7stc+sY8WHoXJaoJaocag2EGYM3pOg+PeN+w+HCs8Bn2xe11R6573hn43eHQfdLE6fD7j8wbbf8z4EZmlmTDZvTesraCqAIWGQlgvvHjIIHNrQQatQotwVThsdhtKjCVOC01GW/2uwbOvmI1rel6DzRmbkVWehcTIREzuNRnvpbwHjULjtPjpiSFdLnYjdmfeLqCm1828jfOwcdZGADW/6vyW/1uTt5Mgh0ySYBd2KGQKpBam4oVtL2B75naUVLs3nPvSnnctXRjAemH1xpXTV+Ljwx+jytKwmBKiCHG8gepidVh982o8v+15ZOuzoZAUiNREYnCnwbhzyJ31bjdryCy8uvtVp88BSZIgl+Sw2u3AhV+pIEkwWJseV//klonIqWpe4bDu/Xot6TW3flFrjAQZrKJlxaO4yDioZWqcLD3Z6PUCAqlFqbgy7soG1yX1SsLj1scbuVX929fMH9gwBxIkFFfntLj4GKirDhMRERGRe5oqsg3rOsxpB4ZhnYdhzR/WODoXNFUwu5QuVodlU5dhwbYF+CLV+Y/DEiQM7TwUk3pO8uj4LaGL1eG9G9/D5ozNWHN4DX4r+M3xHVQlV6FLaBdY7VbkV9XMeyyTZBBCQCFToH9Mf8hlcgyJHNKgINleeFxA27FjB6677jqMGzcOO3fuxJIlS9CpUyccPnwY7733Hr788ktfxEluqq0o/5b/G0xWE2SSDHHhcXjjujcaPMBrn9iXFnPq9kKqVXvbJzc9ibQS93qBqWQq/C7xd40W5JqjZlJ2736xNVgNjt53QM2KnhKkJnu5DO40GL/++VcAQPjL4ag0Nz7sM1QZ2mBbbdfeuhIjE6GWq2G0Glt0H2WQ4dHLH3VcVslVMFrdG9+/KWMTVu5diYTIBNz/zf1unKuml5UEQC5T4HzFeYz7YJzHk3ZarBeLfKmFqUjJS/Ho9nXZYUeYKsxx+fHRj2PJriX1ii0yyPDEmCfq3a52mGZTz4WLw2IbF6oKRaW5smYRBHtNDzS5kDkbReuw6uAzbhfPJEiID49HflW+YxVim7BBq9Bi3uh5mH3FbPx9y9+hN+vdOl5d3nh+Te0zFdHaaLyy+xWnxys3ljd6nS5WB6VCCZvV+XPPVQFfQMBub/nCEtXm6gY9MomIiIio7Xj2qmcdwzxtwgYhBNQKNe4cfKdjxFZL1HYKWbl3JRbsWIBCQ2G967UKLab3nY5FExa1+mfO2u+jj1558Xtj7fxttd+FCqsK8U3aNx71vGsPPC6gPf3003jxxRfx+OOPIzw83LF9woQJWL58uVeDI8/VrSg3VRSr3d/dJ2xtkWHI20McvXxcUclVWDZ1mddeEMLV4R59wZcgQSlXwmxz3aOm7jEFBKzCCqWkhAoqVIuGPcJCFCH1ijTdwrvhZHHjvW0m9JjgVqxJvZLwQcoHOFZwzKMVWy5164Bb6xVKx3cfjx8zfnTrtgICL+56EaPjRzd4gW+MSq6CXdghk2SwCQvOVZxr8SIIC7YtcLm4hTvGJIxx/L144mIAwPsp76PUWIoOmg54YPgDju11uftckCSp0YKYBAkdNB1wvuI8bEKgdoigHUCF2fV92pq1tsnz1vrLyL/g7elvu5z7YWrvqViXus7jVUpb2nMrLiwOc66sKZi/f/B9FBgKGt3PZDU5XQQiISIB6SXN74lnRcuHX1qFtcHcfERERETUdrgzzNMbZl8xOygKT419F2rsO1N753EB7ciRI1izZk2D7bGxsSgubt6qbORdnhTFmnPs2JBY5FY6n1urlh12r8YxousI/Pfwf5vcTwYZRsePRpgqDPlV+cgoyYDe4llvHCEEro6+GidtJ3G2/CyAmsKJWq5GlDaqXpFm7hVz8WTykw0miewV2QsLr1no1vl0sTq8OOFFPJn8JE6XnPaoiCaX5JBLcozqNqrB+ZZOXYrBbw12u5CSU5mDn8/97OY5FYCwwS6sHo+fd+b7U9+36PYSJNw5uP6wy8UTF3v1xT8uIq7RiT67hXWDSq660EOtfnsXVp9F8pmPkNTz7ga3O5i32aPVNmsLVK66pS+asAg5+hwcLTh6cdEKSIgNicWDIx/EHYPvwCeHP8EHKR94bfVXAHh7+tuO5/z8q+fjsR8bn2DVIixO53q4dcCtTueZay1ySY492Xv8GgMRERER+VZTwzyJLiXz9AZRUVHIzW1YPElJSUFcXJxXgqLANv2y6dAqtFDKlJA5eQhJkBodvtgSSb2SXK6AWEsuyXFNj2uwbOoyPDD8AXTQdmjW+W7odAOWTlmKwZ0Ho2NIR8SGxCIhMgFj48fWK9LMvmI2Xkt6Df2i+yFMGYYYbQxu092GDXdu8KiAOL3fdKy/fT2eGveU27cJV4WjV1Qv3DvsXrx343uNDjnsFNZwEQdXmloNNFoTjWhtNMw2I0z2areLZ86GPtbePrUwtdH5yjwxtfdUn3eB/vvYvyNEEQIJkmPOvBBFCJ67+jmEqkKdFj+/PLG00e3v//as2+dWSkq37p8uVod3b3wX/5j4D8wbMw9vTH0Dx/56DPl/y8fiiYuhi9VhyaQleObqZyCXyd0+vytqubreB5CHRrpeHdnZXA+zhsyCTPL4rclr5JBDo9BwHjQiIiIiIqrH4x5oM2fOxN///nd88cUXkCQJdrsdP/30E5588kncfXfD3hXU9ly6+ECFqQIWu8VRUIBUUyyZkOje8EV36WJ1UMgUTRdsJMBkMzl64n18+GOcrTjr0bkkSUKCJgHT+k5Dv9h+TQ6J9VbX3NrCxv/9/H8u76cECcM6D8N///DfJgsqHbUdUVBZ4PFwvsYoJSUeHPUgPj3yKUoMJR4N+XNWkCitLsWGtA34Obvpnm+u3D7gdnx222ctOoY7avPc2Go85/TnsD1ze6O301uKcF6fjsTIyxzb3v/tWZSamu7NWWtgZ/cXaXGnJ2pSr6QLq8+2XGPDlUOlUFSJhkXRSFWky2Hlvqhd1Z3r0BWtUotwdTjGxo/1fhBERERERBS0PC6gLVmyBPfeey/i4uIghMCAAQNgs9kwc+ZMzJ8/3xcxUoC5dPEBtVyN79O/R0ZZBsxWM1QKFQbFDsLCCQu9fu7YkFjkVOZABjnsTgpCVru13vCwUJXnPeGUCqXjb18OiXUmVBWKMmMZgIZf/GO0MZjQY4LbE052Ce+CUyWnYLO1vID29FVP447Bd2DF3hVeKcgBgBVWzN82Hyq5yuPbSpCggAJPjH0CLye13rA/ZwXTWUNmuRx++P3p9zF7xKuOy7vPfeXRef9xzT882r8pulgd1HJ1g+HHnhreeThev/b1Btuvj70eXxV8Ve+xIoccj13Z+NBOoKYnojsr4Xqqo7YjiqqLXO4TqgxFXERcoyuwEhERERFR++ZxAU2pVOK///0v/vGPf+DgwYOw2+0YPnw4+vbt64v4KEBdWlS6a8hdbi9c0BIPDH8Ar/z0CmxNrLRXd3jYmPgx2JG5w6MhWbEhsc2O0RuSeiZh3Yl1sAu7o5ggk2T4ff/f4/MZn3t0rLjwOERro5FTmdOimHQddY65xCw278x5VutE0Ql0CvVsqClQ06stRB6COwbd4dV4mksXq4NWoXUsBX2p1KI6vewkwGRvfL/GdArp5JM5GoZ2Hopfzv/S7NuHKcOc9oSc2W0m+vTtg9W/rW5yEYdayRnJiNBEeLyaqysjuoxAdEg0NmdsdrqPBAm3DbgNI7qO8NnrFxERERERBS+PC2i1evXqhV69esFms+HIkSMoLS1Fhw7Nm2uKgl9r9dKqu6pi3YJQ3V5a3cK61Ytl1pBZ+Pfef6PCXOH2eYZ2GuqliJtn0YRFOK8/j6MFR2G2maGSqzCo0yAsmrDI42ON6DoCyaeTWxxT3ZVXvT0/lMlmgt7c+EIPtQVEZ+dUSSroYgKn2DG973R8kfpFo9dVWy/ex8zSNLg7VjFEEYKF4xd6IbqGnr36Wdz02U3NXkhg3uh5Lp/7C8cvxJLJ7q9mmVWehZFdR+Lnc3tQba2GTALswt7sx5wECZ/8/hOcLjmNAzkHnBbmHhz5IFZOX9mscxARERERUdvn8UzNc+fOxfvvvw8AsNlsGD9+PEaMGIGEhARs377d2/ERNbB44mKcf+I83rruLcdk7rX/1U7mXpcuVoc/DvqjR8PCJvac6O2wPaKL1eG9G9/DixNfxMNXPIwXJ77Y6CIB7kjqldTk0DV3GG1Gx98R6ogWH+9StUNWLyWXaiZ1d6bag15crWHRhEVQy9UNtkuQEKKKdFzeePpzSGh8An855OgZ2ROdQjphaKeheC3pNZ8tfz2933REa6ObdVuNQuP15a0TIxMRoY7Ajf2mo19MX8SGxKJreNdmD+tUyVTQxeowvd90fHTzRxjaaSjkddo9Uh2J569+nsUzIiIiIiJyyeMeaF9++SXuuusuAMC3336LjIwMnDhxAh999BGee+45/PTTT14PkqgxriZzv9Tc0XPx9YmvUWAoaPK4SkmJCT0m4EzBGa/H7Alv9erTxepgtTW+MqSnx6k1pNMQbMnc0uJjukOSJISpwpwOi3R3FdDWoovV4aqEq7AzaycswoLaPnQKmRrdwvo49vspe5PTRRjevO5NnxXMGjOs6zCXwxud0cq1Xo8lqVcSjhYcRUl1CcbGj0W5qRzR2misObKmWau01l1llEuVExERERFRc3ncA62oqAhdunQBAHz//feYMWMGLrvsMjzwwAM4cuSI1wMkcmX2FbNxaPYh5P8tH4dmH3JadNDF6jA2YWzNKqFNmNRrUkANCQwEEiQ8evmjjss39r+xWcdRSIp6vX/coVVoYbA4n+ReIWv2SHSfuSL+CnTQdoBKpoUMMsgkOWSQIVIV49gnt/IcGhvCGaGKaNXiGQDMuWIOlDJl0zteQq1o2NOupXSxOswbPQ/jE8ejg7YDxieOx7zR89Azqmezjtc9qruXIyQiIiIiovbI4wJa586dcfz4cdhsNmzcuBGTJ08GABgMBsjlnn0xJmpNE3pOaHKeJ41c0+hqgsEuTBXWotvPGDCjXs+dpF5JUEieFa5kkGFQp0Een7tHZA+YbWan18fUKUoFEoVMAblMBpmkACDBYjcjtXgPsvXpSC1MhcFa2ejtvL1Agzum95uOp8c97XFxc0iXIT6JRxerw6NXPorXpryGR698FLpYHW7odwNiQ2KhlC6u1iqHHLoYHZRS48U/lUyFxy53vuInERERERGRuzwuoN13332YMWMGBg0aBEmSkJSUBAD49ddf0b9/f68HSOQtSb2SmtwnISKhTa6+d23vayGXGhZHRnQZ4fJ2tfNDfXbbZ/W262J1iNJEOb3d2ISxGBs/FhHqCGjkGkSoIzA6fjT+MeEfsMH1CqqXuqH/DbAL54XPyyMu9+h4rcFkMyFMFQaL1QSrMMEurBCwo8hwHrvOrsPHhz+GswUEmjvXV0stnrgYb173JrqFdYNWrkW4KhxxYXHQyBuff65TSKd6vRJ9bdaQWRifOB4DOukwKHYQhnYeilt0t+CrGV9h+dTl6BbWzbGvBAlx4XFYdu2yVu/NR0REREREbZPHY58WLlyIQYMG4dy5c7jtttugVtcM4ZHL5Xj66ae9HiCRt+hidZBD7rKAkxCZ0IoRtZ5FExYhR5+DowVHYbQZoZFrMKjTILx747sY/Nbgem1Su6KpUqZE2dNlTo85rOsw7Diz48I8Xxdp5Bo8M+4Z9I7ujc0Zm5FVnoXEyERM7jW5JgeSHDbhXhFNJVPhzsF34qVdLzndZ3z0eLeO1ZoSIxORq8+FFTVzz9WsIClgEUYcyE3GwQLnCx+EqEJaKcqGZl8xG9f0vKZe3npG9cS3J7/FhpMbUFpdCoVcgcGdBuOZq55p1fnEdLE6LJ6wuNHHlC5Wx0IZERERERH5VLMmD7r11lsbbLvnnntaHAyRr42OH42fsp0vdKGSq5xeF8x0sTq8e+O7jRYf4iPjkVWeBeBi8QwA4sPjXR5zzhVzcKr4FAqqCmC2mWEXdmgUGjwx5glHYaWx3nzR2mgUGgqbjFkGGa7ufjV0sTqEKcOgt+gb7BOiCEGCJvCKnkm9kvDExicave5s5QmXtx3RzXWvQF9rbPGKQJl431sLaxAREREREXmqWQW0LVu2YOnSpUhNTYUkSejfvz/mzp3rmA+NKFC9e+O7GPDWAKfXnyn178qbvuSs+PD3sX/Hk8lPotpa7Rg+qFVo8bexf3N5vNqiyupDq5FZnokekT1w77B7myy2PDTyIby8+2VYheuVQbuEdcHNupsBANf2uRbrUtfVm8NOBhmu63Ody2P4iy5WB0mSnI3SdKk1h0USERERERGRezwuoK1YsQLz5s3Drbfeijlz5gAA9uzZg2nTpuH111/HI4884vUgibxFF6uDRq6B0WZs9PpSY2krR+R/tUPfVh1YhdzKXHQN64oHRz7o1pC46f2me9w7afHExQCAf+z6h8v9Ks2VmNRzUs1tJiyuGYJaeBRmqxkqhQqDYgfhhd+9gDN7A7PoqVFqYDF7tiBAbEhswPT2IiIiIiIioos8LqC9/PLLWLp0ab1C2WOPPYZx48ZhyZIlLKBRwOse1R0ni082el23iG6Nbm/rZl8xu1XnkFo8cTFW/7Ya5yrOOd2n2lrt6DGni9XhvRvfazAEtU9UH5xBYBbQBnUahF+yf/HoNr/X/d5H0RAREREREVFLeLwKZ0VFBaZOndpg+5QpU1BRUeGVoIh8ae4Vc6GSNZzrTCPX4C/D/+KHiNqnLmFdXF5vs9dfaEAXq8OjVz6K16a8hkevfDTg58J69qpnPVpRU4KEOVfO8WFERERERERE1FweF9BuvPFGrF+/vsH2//3vf7jhhhu8EhSRL82+YjaWXbsM3cK6QQ455JIcceFxeH3K61zJrxVN7uV6zkSlTNlKkfjG9H7TMWPADLf3nzFgRsAXBYmIiIiIiNort4ZwvvHGG46/dTodlixZgu3bt2PMmDEAauZA++mnn/DEE42vOkcUaFp7yCI1NGvILPyQ/gMO5R9q9Pq2UEz67LbPgC+AtcfXutwvTBlWsy8REREREREFJLcKaEuXLq13uUOHDjh+/DiOHz/u2BYVFYUPPvgA8+fP926ERNQm6WJ1WPOHNfjzN3/GT9k/ObZLkBATEoN/THC9yECw+Oy2z1DxSQV+OP1Do9fLIcenf/i0laMiIiIiIiIiT7hVQDtzJjAn6Sai4KaL1WH3A7uxIW0DVh9ajczyTPSI7IF7h93bplaj/P6u7zF7w2y8c+Ad2GF3bO8c0hnv3fhem7qvREREREREbZHHq3DWKioqgiRJ6NixozfjIaJ2aHq/6W2+iLRy+kqsnL7S32EQERERERFRM3i0iEBZWRkefvhhxMTEoHPnzujUqRNiYmLwyCOPoKyszEchEhERERERERER+Y/bPdBKSkowZswYnD9/HnfeeSd0Oh2EEEhNTcXq1auxZcsW/Pzzz+jQoYMv4yUiIiIiIiIiImpVbhfQFi9eDJVKhdOnT6Nz584NrpsyZQoWL17cYMEBIiIiIiIiIiKiYOb2EM6vv/4ar732WoPiGQB06dIF//znP7F+/XqvBlfXkiVLMHbsWISEhCAqKspn5yEiIiIiIiIiIqrL7QJabm4uBg4c6PT6QYMGIS8vzytBNcZsNuO2227D7NmzfXYOIiIiIiIiIiKiS7k9hDMmJgaZmZmIj49v9PozZ874dEXORYsWAQBWr17ts3MQERERERERERFdyu0C2tSpU/Hcc88hOTkZKpWq3nUmkwnPP/88pk6d6vUAW8JkMsFkMjkuV1RUAAAsFgssFou/wnKojSEQYqH6mJvgwDwFLuYmeDBXwYF58i+2f/BgrgIT8xI8Ai1XgRJHIAi03LQVnrSnJIQQ7uyYnZ2NUaNGQa1W4+GHH0b//v0BAMePH8dbb70Fk8mE/fv3IyEhoXlRu2n16tWYO3cuysrKmtx34cKFjp5rda1ZswYhISE+iI6IiIiIiIiImsvQfaTj75CzB/wYCbUHBoMBM2fORHl5OSIiIlzu63YBDagZpvnXv/4VmzZtQu3NJElCUlISVqxYgT59+ngUqLMCV1379u3DqFGjHJc9KaA11gMtISEBRUVFTTZMa7BYLEhOTkZSUhKUSqW/w6E6mJvgwDwFLuYmeDBXwYF58i+2f/BgrgIT8xI8AiFXXx7Nd/x966CGixi2V4GQm7aooqICMTExbhXQ3B7CCQA9e/bEDz/8gNLSUqSnpwMA+vTpg+jo6GYF+sgjj+CPf/yjy3169OjRrGMDgFqthlqtbrBdqVQG1AMu0OKhi5ib4MA8BS7mJngwV8GBefIvtn/wYK4CE/MSPAIlV4EQQ6AJlNy0FZ60pUcFtFodOnTAFVdc0Zyb1hMTE4OYmJgWH4eIiIiIiIiIiMhXmlVA84ezZ8+ipKQEZ8+ehc1mw6FDhwDU9IALCwvzb3BERERERERERNRmBU0B7YUXXsB//vMfx+Xhw4cDALZt24ZrrrnGT1EREREREREREVFbJ/N3AO5avXo1hBAN/rF4RkREREREREREvhQ0BTQiIiIiIiIiIiJ/YAGNiIiIiIiIiIjIBRbQiIiIiIiIiIiIXGABjYiIiIiIiIiIyAUW0IiIiIiIiIiIiFxgAY2IiIiIiIiIiMgFFtCIiIiIiIiIiIhcYAGNiIiIiIiIiIjIBRbQiIiIiIiIiIiIXGABjYiIiIiIiIiIyAUW0IiIiIiIiIiIiFxgAY2IiIiIiIiIiMgFFtCIiIiIiIiIiIhcYAGNiIiIiIiIiIjIBRbQiIiIiIiIiIiIXGABjYiIiIiIiIiIyAUW0IiIiIiIiIiIiFxgAY2IiIiIiIiIiMgFFtCIiIiIiIiIiIhcYAGNiIiIiIiIiIjIBRbQiIiIiIiIiIiIXGABjYiIiIiIiIiIyAUW0IiIiIiIiIiIiFxgAY2IiIiIiIiIiMgFFtCIiIiIiIiIiIhcYAGNiIiIiIiIiIjIhaAooGVmZuKBBx5Az549odVq0bt3byxYsABms9nfoRERERERERERURun8HcA7jhx4gTsdjtWrVqFPn364OjRo/jzn/+MqqoqvPbaa/4Oj4iIiIiIiIiI2rCgKKBNnToVU6dOdVzu1asX0tLSsHLlShbQiIiIiIiIiIjIp4JiCGdjysvLER0d7e8wiIiIiIiIiIiojQuKHmiXOn36NN58803861//crmfyWSCyWRyXK6oqAAAWCwWWCwWn8bojtoYAiEWqo+5CQ7MU+BiboIHcxUcmCf/YvsHD+YqMDEvwSPQchUocQSCQMtNW+FJe0pCCOHDWFxauHAhFi1a5HKfffv2YdSoUY7LOTk5GD9+PMaPH4/33nuvWcdfs2YNQkJCmhc0EREREREREfmEoftIx98hZw/4MRJqDwwGA2bOnIny8nJERES43NevBbSioiIUFRW53KdHjx7QaDQAaopnEyZMwJVXXonVq1dDJnM9ArWxHmgJCQkoKipqsmFag8ViQXJyMpKSkqBUKv0dDtXB3AQH5ilwMTfBg7kKDsyTf7H9gwdzFZiYl+ARCLn68mi+4+9bB3X2SwyBKBBy0xZVVFQgJibGrQKaX4dwxsTEICYmxq19z58/jwkTJmDkyJH48MMPmyyeAYBarYZarW6wXalUBtQDLtDioYuYm+DAPAUu5iZ4MFfBgXnyL7Z/8GCuAhPzEjwCJVeBEEOgCZTctBWetGVQzIGWk5ODa665Bt27d8drr72GwsJCx3VdunTxY2RERERERERERNTWBUUBbdOmTTh16hROnTqF+Pj4etf5cQQqERERERERERG1A02PgwwA9957L4QQjf4jIiIiIiIiIiLypaAooBEREREREREREfkLC2hEREREREREREQusIBGRERERERERETkAgtoRERERERERERELrCARkRERERERERE5AILaERERERERERERC6wgEZEREREREREROQCC2hEREREREREREQusIBGRERERERERETkAgtoRERERERERERELrCARkRERERERERE5AILaERERERERERERC6wgEZEREREREREROQCC2hEREREREREREQusIBGRERERERERETkAgtoRERERERERERELrCARkRERERERERE5AILaERERERERERERC6wgEZEREREREREROQCC2hEREREREREREQusIBGRERERERERETkAgtoRERERERERERELrCARkRERERERERE5ILC3wEQEREREREREQFAjGE/epR/hXBzJmAZBPScBcSO9XdYRCygEREREREREVEAKPwZw/MXQWmrgFUeBuRvA0oPAiOWsohGfschnERERERERETkf2c+hlboUanqCbOyExDWBzCXA2c+8XdkROyBRkREREREREQBQH8KmpAohEkKhKoUgCQBinBAn+7vyIiCpwfajTfeiO7du0Oj0aBr166YNWsWcnJy/B0WEREREREREXlDeB/IrZWIVCugkEmAEIBVD0Rc5u/IiIKngDZhwgR8/vnnSEtLw1dffYXTp0/j1ltv9XdYREREREREROQNPWcBqkig8hRQnVfzf1Uk0OMuf0dGFDxDOOfNm+f4OzExEU8//TRuvvlmWCwWKJVKP0ZGRERERERERC0WO7ZmwYAzn9QM2+x4+YVVOMf4OzKi4Cmg1VVSUoL//ve/GDt2rMvimclkgslkclyuqKgAAFgsFlgsFp/H2ZTaGAIhFqqPuQkOzFPgYm6CB3MVHJgn/2L7Bw/mKjAxL8EjIHIVdTkw/PL62/jYCYzctEGetKckhBA+jMWr/v73v2PFihUwGAwYPXo0NmzYgI4dOzrdf+HChVi0aFGD7WvWrEFISIgvQyUiIiIiIiIiogBmMBgwc+ZMlJeXIyIiwuW+fi2gOStw1bVv3z6MGjUKAFBUVISSkhJkZWVh0aJFiIyMxIYNGyBJUqO3bawHWkJCAoqKippsmNZgsViQnJyMpKQkDkMNMMxNcGCeAhdzEzyYq+DAPPkX2z94MFeBiXkJHsxV4GJufKOiogIxMTFuFdD8OoTzkUcewR//+EeX+/To0cPxd0xMDGJiYnDZZZdBp9MhISEBe/bswZgxjY+HVqvVUKvVDbYrlcqAesAFWjx0EXMTHJinwMXcBA/mKjgwT/7F9g8ezFVgYl6CB3MVuJgb7/KkLf1aQKstiDVHbce5uj3MiIiIiIiIiIiIvC0oFhHYu3cv9u7di6uuugodOnRARkYGXnjhBfTu3dtp7zMiIiIiIiIiIiJvkPk7AHdotVqsW7cOkyZNQr9+/XD//fdj0KBB2LFjR6NDNImIiIiIiIiIiLwlKHqgDR48GFu3bvV3GERERERERERE1A4FRQHNW2rnTauoqPBzJDUsFgsMBgMqKio4CWCAYW6CA/MUuJib4MFcBQfmyb/Y/sGDuQpMzEvwYK4CF3PjG7X1odp6kSvtqoCm1+sBAAkJCX6OhIiIiIiIiIiIAoFer0dkZKTLfSThTpmtjbDb7cjJyUF4eDgkSfJ3OKioqEBCQgLOnTuHiIgIf4dDdTA3wYF5ClzMTfBgroID8+RfbP/gwVwFJuYleDBXgYu58Q0hBPR6Pbp16waZzPUyAe2qB5pMJkN8fLy/w2ggIiKCT4AAxdwEB+YpcDE3wYO5Cg7Mk3+x/YMHcxWYmJfgwVwFLubG+5rqeVYrKFbhJCIiIiIiIiIi8hcW0IiIiIiIiIiIiFxgAc2P1Go1FixYALVa7e9Q6BLMTXBgngIXcxM8mKvgwDz5F9s/eDBXgYl5CR7MVeBibvyvXS0iQERERERERERE5Cn2QCMiIiIiIiIiInKBBTQiIiIiIiIiIiIXWEAjIiIiIiIiIiJygQW0S7z88su4/PLLER4ejk6dOuHmm29GWlpavX2EEFi4cCG6desGrVaLa665BseOHau3zzvvvINrrrkGERERkCQJZWVlDc518uRJ3HTTTYiJiUFERATGjRuHbdu2NRnjkSNHMH78eGi1WsTFxWHx4sW4dCq7f//739DpdNBqtejXrx8++ugjzxsjwAR6boxGI+69914MHjwYCoUCN998c6P77dixAyNHjoRGo0GvXr3w9ttve9QOga4t5Ck3NxczZ85Ev379IJPJMHfuXE+bISC1hdysW7cOSUlJiI2NRUREBMaMGYMff/zR47YIdK2Zq4MHDyIpKQlRUVHo2LEj/vKXv6CysrLJGJt6L2qrz6O62kKegvk51Rbaf/fu3Rg3bhw6duwIrVaL/v37Y+nSpc1rkADVFvJU108//QSFQoFhw4a53QaBqi3kZvv27ZAkqcG/EydONK9RAlRbyBUAmEwmPPfcc0hMTIRarUbv3r3xwQcfeN4gAaQt5Obee+9t9Hk0cODA5jVKG8YC2iV27NiBhx9+GHv27EFycjKsViumTJmCqqoqxz7//Oc/8frrr2PFihXYt28funTpgqSkJOj1esc+BoMBU6dOxbPPPuv0XNdffz2sViu2bt2KAwcOYNiwYZg+fTry8vKc3qaiogJJSUno1q0b9u3bhzfffBOvvfYaXn/9dcc+K1euxDPPPIOFCxfi2LFjWLRoER5++GF8++23LWwd/wr03NhsNmi1Wjz22GOYPHlyo/ucOXMG06ZNw9VXX42UlBQ8++yzeOyxx/DVV181o0UCU1vIk8lkQmxsLJ577jkMHTq0Ga0QmNpCbnbu3ImkpCR8//33OHDgACZMmIAbbrgBKSkpzWiRwNVaucrJycHkyZPRp08f/Prrr9i4cSOOHTuGe++912V87rwXtdXnUV1tIU/B/JxqC+0fGhqKRx55BDt37kRqairmz5+P+fPn45133mlZ4wSQtpCnWuXl5bj77rsxadKk5jVGgGlLuUlLS0Nubq7jX9++fZvXKAGqreRqxowZ2LJlC95//32kpaXh008/Rf/+/ZvfMAGgLeRm+fLl9Z4/586dQ3R0NG677baWNU5bJMilgoICAUDs2LFDCCGE3W4XXbp0Ea+88opjH6PRKCIjI8Xbb7/d4Pbbtm0TAERpaWm97YWFhQKA2Llzp2NbRUWFACA2b97sNJ633npLREZGCqPR6Nj28ssvi27dugm73S6EEGLMmDHiySefrHe7OXPmiHHjxrl/x4NAoOWmrnvuuUfcdNNNDbY/9dRTon///vW2Pfjgg2L06NFuHTcYBWOe6ho/fryYM2eOW8cLNsGem1oDBgwQixYtcmvfYOWrXK1atUp06tRJ2Gw2x7aUlBQBQKSnpzuNx533orra8vOormDPU61gfU61lfa/5ZZbxF133dXk/Q1WwZyn22+/XcyfP18sWLBADB061JO7HRSCMTfOztnWBWOufvjhBxEZGSmKi4ubdZ+DRTDm5lLr168XkiSJzMxMt+5ze8IeaE0oLy8HAERHRwOo6UGUl5eHKVOmOPZRq9UYP348fv75Z7eP27FjR+h0Onz00UeoqqqC1WrFqlWr0LlzZ4wcOdLp7X755ReMHz8earXase3aa69FTk4OMjMzAdT86q/RaOrdTqvVYu/evbBYLG7HGOgCLTfu+OWXX+rFB9Tkb//+/W0qN3UFY57ai7aQG7vdDr1e77gPbZWvcmUymaBSqSCTXfw4oNVqAdQMLXPGnfei9qgt5CmYn1Ntof1TUlLw888/Y/z48W7HF2yCNU8ffvghTp8+jQULFrgdU7AJ1twAwPDhw9G1a1dMmjTJrSlxgl0w5uqbb77BqFGj8M9//hNxcXG47LLL8OSTT6K6utrt+IJBMObmUu+//z4mT56MxMREt+NrL1hAc0EIgccffxxXXXUVBg0aBACO4UedO3eut2/nzp1dDk26lCRJSE5ORkpKCsLDw6HRaLB06VJs3LgRUVFRTm+Xl5fX6Lnrxnbttdfivffew4EDByCEwP79+/HBBx/AYrGgqKjI7RgDWSDmxh3O8me1WttMbuoK1jy1B20lN//6179QVVWFGTNmePW4gcSXuZo4cSLy8vLwf//3fzCbzSgtLXUMHcjNzXV6O3fei9qbtpKnYH1OBXv7x8fHQ61WY9SoUXj44Yfxpz/9ye34gkmw5ik9PR1PP/00/vvf/0KhULgdUzAJ1tx07doV77zzDr766iusW7cO/fr1w6RJk7Bz50634ws2wZqrjIwM7N69G0ePHsX69euxbNkyfPnll3j44Yfdji/QBWtu6srNzcUPP/zQZt+HWooFNBceeeQRHD58GJ9++mmD6yRJqndZCNFgmytCCPz1r39Fp06dsGvXLuzduxc33XQTpk+f7ngCDBw4EGFhYQgLC8N1113n8tx1tz///PO47rrrMHr0aCiVStx0002OsdFyudztGANZoObGHU3lry0J5jy1dW0hN59++ikWLlyItWvXolOnTs06RjDwZa4GDhyI//znP/jXv/6FkJAQdOnSBb169ULnzp0d7xfNfS9qb9pCnoL5ORXs7b9r1y7s378fb7/9NpYtW9bo/WgLgjFPNpsNM2fOxKJFi3DZZZe5HU+wCcbcAEC/fv3w5z//GSNGjMCYMWPw1ltv4frrr8drr73mdnzBJlhzZbfbIUkS/vvf/+KKK67AtGnT8Prrr2P16tVtphdasOamrtWrVyMqKsrpgnjtXdv8CcULHn30UXzzzTfYuXMn4uPjHdu7dOkCoKZa27VrV8f2goKCBpVdV7Zu3YoNGzagtLQUERERAIC33noLycnJ+M9//oOnn34a33//vWNYX233zC5dujSoFBcUFAC4WEnWarX44IMPsGrVKuTn5zt+mQkPD0dMTIynTRFwAjU37nCWP4VCgY4dO7p9nGAQzHlq69pCbtauXYsHHngAX3zxhdMFB9oCX+cKAGbOnImZM2ciPz8foaGhkCQJr7/+Onr27AkAzX4vak/aQp6C+TnVFtq/9jiDBw9Gfn4+Fi5ciDvuuMOjGANdsOZJr9dj//79SElJwSOPPAKgphAghIBCocCmTZswceJEj+IMNMGaG2dGjx6NTz75xKP4gkUw56pr166Ii4tDZGSkYx+dTgchBLKzs4N+4Ydgzk0tIQQ++OADzJo1CyqVyqPY2gv2QLuEEAKPPPII1q1bh61btzoejLV69uyJLl26IDk52bHNbDZjx44dGDt2rNvnMRgMAFBvDHPtZbvdDgBITExEnz590KdPH8TFxQEAxowZg507d8JsNjtus2nTJnTr1g09evSodyylUon4+HjI5XJ89tlnmD59eoPzBZNAz407xowZUy8+oCZ/o0aNglKpdPs4gawt5Kmtaiu5+fTTT3HvvfdizZo1uP766z26bbBorVzV1blzZ4SFhWHt2rXQaDRISkoC0PL3orasreQpWJ9TbaX9G7tfJpOpWfEFomDPU0REBI4cOYJDhw45/j300EPo168fDh06hCuvvLJZMQaCYM+NMykpKfUKFW1BW8jVuHHjkJOTg8rKSsc+J0+ehEwmq1dwCjZtITe1duzYgVOnTuGBBx5oVlztgpcXJQh6s2fPFpGRkWL79u0iNzfX8c9gMDj2eeWVV0RkZKRYt26dOHLkiLjjjjtE165dRUVFhWOf3NxckZKSIt59913HanQpKSmOVUcKCwtFx44dxe9//3tx6NAhkZaWJp588kmhVCrFoUOHnMZXVlYmOnfuLO644w5x5MgRsW7dOhERESFee+01xz5paWni448/FidPnhS//vqruP3220V0dLQ4c+aM9xusFQV6boQQ4tixYyIlJUXccMMN4pprrhEpKSkiJSXFcX1GRoYICQkR8+bNE8ePHxfvv/++UCqV4ssvv/RuY/lRW8iTEMKxbeTIkWLmzJkiJSVFHDt2zHsN5QdtITdr1qwRCoVC/Pvf/653H8rKyrzbWH7WWrkSQog333xTHDhwQKSlpYkVK1YIrVYrli9f7jI+d96LhGibz6O62kKegvk51Rbaf8WKFeKbb74RJ0+eFCdPnhQffPCBiIiIEM8995wXW8q/2kKeLtVWVuFsC7lZunSpWL9+vTh58qQ4evSoePrppwUA8dVXX3mxpfyvLeRKr9eL+Ph4ceutt4pjx46JHTt2iL59+4o//elPXmyp1tcWclPrrrvuEldeeaUXWqXtYgHtEgAa/ffhhx869rHb7WLBggWiS5cuQq1Wi9/97nfiyJEj9Y6zYMGCJo+zb98+MWXKFBEdHS3Cw8PF6NGjxffff99kjIcPHxZXX321UKvVokuXLmLhwoX1lqA9fvy4GDZsmNBqtSIiIkLcdNNN4sSJEy1uG38LhtwkJiY2euy6tm/fLoYPHy5UKpXo0aOHWLlyZYvaJdC0lTw1dn1iYmJLmsbv2kJuxo8f3+j199xzT0ubJ6C0Zq5mzZoloqOjhUqlEkOGDBEfffSRWzE29V7k7H4E+/OorraQp2B+TrWF9n/jjTfEwIEDRUhIiIiIiBDDhw8Xb731lrDZbC1qm0DSFvJ0qbZSQGsLuXn11VdF7969hUajER06dBBXXXWV+O6771rULoGoLeRKCCFSU1PF5MmThVarFfHx8eLxxx+vV2gKRm0lN2VlZUKr1Yp33nmn2W3RHkhCXJhBjoiIiIiIiIiIiBoI3gmxiIiIiIiIiIiIWgELaERERERERERERC6wgEZEREREREREROQCC2hEREREREREREQusIBGRERERERERETkAgtoRERERERERERELrCARkRERERERERE5AILaERERERERERERC6wgEZERETUBi1cuBDDhg3zdxhEREREbYIkhBD+DoKIiIiI3CdJksvr77nnHqxYsQImkwkdO3ZspaiIiIiI2i4W0IiIiIiCTF5enuPvtWvX4oX/b+fudSnb4zgOfzdnJCPY3ilEJzs7aMwVTDeFhEyj0IhKN5WCYjIapUItVBJuQthGoXABkhETL1O4AERkm86JM7K7YzvH8ySrWP9ird+//ayXr19zfHz8uPb+/fsUi8V6jAYA8L/kE04AgP+Y/v7+x6NYLKZQKPyx9s9POGdmZjI5OZnl5eX09fWlvb09S0tLub+/z/z8fDo7OzMwMJD19fUn97q8vMzU1FQ6OjrS1dWViYmJ/Pz582U3DABQZwIaAMAbsbOzk1+/fqVSqWRlZSXfvn3L+Ph4Ojo6cnh4mLm5uczNzeX8/DxJcn19nY8fP6alpSWVSiXfv39PS0tLPn36lLu7uzrvBgDg5QhoAABvRGdnZ1ZXV1MqlTI7O5tSqZTr6+ssLi5maGgoCwsLaWpqysHBQZJka2srDQ0NWVtby+joaMrlcjY2NnJ2dpbd3d36bgYA4AX9Ve8BAAB4GcPDw2lo+Pv5aV9fX0ZGRh7PGxsb09XVlaurqyTJ0dFRfvz4kdbW1ifXub29zcnJycsMDQDwCghoAABvxLt3756cFwqFZ9eq1WqSpFqt5sOHD9nc3PzjWj09Pf/eoAAAr4yABgDAs8bGxrK9vZ3e3t60tbXVexwAgLrxDzQAAJ41PT2d7u7uTExMZH9/P6enp9nb28uXL19ycXFR7/EAAF6MgAYAwLOam5tTqVQyODiYz58/p1wuZ3Z2Njc3N95IAwDelMLDw8NDvYcAAAAAgNfKG2gAAAAAUIOABgAAAAA1CGgAAAAAUIOABgAAAAA1CGgAAAAAUIOABgAAAAA1CGgAAAAAUIOABgAAAAA1CGgAAAAAUIOABgAAAAA1CGgAAAAAUIOABgAAAAA1/AYj/vybTa40ngAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNAAAAFgCAYAAAB6wIQ3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACIb0lEQVR4nOzdd3zTdf4H8Nc3O92UltWWMoWwl8rQQ0YREded4onivDvlHIB6ngNlnDju5wkoJ+Lk1ENxgKeoSNmgIqvIKqVQWijdO22a/fn9URpa2qRJmzRJ+3r64GHzzTff7zufd+Y7nyEJIQSIiIiIiIiIiIioUTJ/B0BERERERERERBTIWEAjIiIiIiIiIiJygQU0IiIiIiIiIiIiF1hAIyIiIiIiIiIicoEFNCIiIiIiIiIiIhdYQCMiIiIiIiIiInKBBTQiIiIiIiIiIiIXWEAjIiIiIiIiIiJyQeHvAFqT3W5HTk4OwsPDIUmSv8MhIiIiIiIiIiI/EUJAr9ejW7dukMlc9zFrVwW0nJwcJCQk+DsMIiIiIiIiIiIKEOfOnUN8fLzLfdpVAS08PBxATcNERET4ORrAYrFg06ZNmDJlCpRKpb/DoTqYm+DAPAUu5iZ4MFfBgXnyL7Z/8GCuAhPzEjyYq8DF3PhGRUUFEhISHPUiV9pVAa122GZERETAFNBCQkIQERHBJ0CAYW6CA/MUuJib4MFcBQfmyb/Y/sGDuQpMzEvwYK4CF3PjW+5M88VFBIiIiIiIiIiIiFxgAY2IiIiIiIiIiMgFFtCIiIiIiIiIiIhcYAGNiIiIiIiIiIjIBRbQiIiIiIiIiIiIXGABjYiIiIiIiIiIyAUW0IiIiIiIiIiIiFxQ+DsAIiLyk/RVQNobQHUuoO0K9HsM6Pugv6MiIiIiovas8GfgzMeA/hQQ3gfoOQuIHevvqIhYQCMiapfSVwH7/grAXnPZUgrsewg4+xUwaZNfQyMiIiKidqrwZ+DgPMBcDijCgfxtQOlBYMRSFtHI7ziEk4ioPTrwOATsEIDjHwAgPxk4+FTNh5e9s4EtSTX/L/zZf7ESERERUftw5mPYTGXIRwKqFbFAWJ+aYtqZT/wdGRF7oBERtUt2g/Pr0t8GCndAmMthV4RBzl/+iIiIiKg16E9Bb9PCKgdKqi2Ii9DU9ETTp/s7MiL2QCMiokvYKgFzOfIRjzxLB1hCevGXPyIiIiLyvfA+kNsrAXFhfIQQgFUPRFzm37iIEMQFtJdffhmSJGHu3Ln+DoWIqG2R5IAiHDYhAQCMVsFf/oiIiIjI93rOglUegTBLJjTWAqDyFKCKBHrc5e/IiIKzgLZv3z688847GDJkiL9DISIKTp2TnF8XOajmlz7+8kdERERErSl2LI7FLUJByFhYZBFA54nAiGVA7Bh/R0YUfAW0yspK3HnnnXj33XfRoUMHf4dDRBScJm1CVYcJFxcPAAAoAN1TwOX/BlSRjl/+VMYM/vJHRERERK2iNPRy7O/6ErYlfgpc8RaLZxQwgm4RgYcffhjXX389Jk+ejBdffNHlviaTCSaTyXG5oqICAGCxWGCxWHwapztqYwiEWKg+5iY4ME8tc3b4evyWqwcAKGQSbh7QyXGdNOT/UJDyHsLNZ1AZNQry/vdCRI0C3Gxr5iZ4MFfBgXnyL7Z/8GCuAhPzEjwCIlfi4k+8fMxcFBC5aYM8aU9JCCGa3i0wfPbZZ1iyZAn27dsHjUaDa665BsOGDcOyZcsa3X/hwoVYtGhRg+1r1qxBSEiIj6MlIgpslrBYWKK711yw2xCSfaje9YbuIwEAyrLzUFbktXJ0RERERNQehUSZ0KPqW4SbM1FtDsM5xTUolff3d1jURhkMBsycORPl5eWIiIhwuW/QFNDOnTuHUaNGYdOmTRg6dCgANFlAa6wHWkJCAoqKippsmNZgsViQnJyMpKQkKJVKf4dDdTA3wYF5apn0YoPTHmgA8OXRfADAoM5h6B8b6tGxmZvgwVwFB+bJv9j+wYO5CkzMS/Dwd66kol+g3zMXMms5rPIwRCuMEKpI2Ie+BhHTvody+js3bVVFRQViYmLcKqAFzRDOAwcOoKCgACNHjnRss9ls2LlzJ1asWAGTyQS5XF7vNmq1Gmq1usGxlEplQD3gAi0euoi5CQ7MU/PIZfWnwXTWhjKZrNnty9wED+YqODBP/sX2Dx7MVWBiXoKH33J17lMo7BWoUPUEJAlSuBpS5SnIzn0GdP1d68cTgPg88i5P2jJoCmiTJk3CkSNH6m2777770L9/f/z9739vUDwjIiIiIiIioiBSsB1aczZCTFmwS2pA3gtQhAP6dH9HRhQ8BbTw8HAMGjSo3rbQ0FB07NixwXYiIiIiIiIiCiLpq4CKU5DDCgEJCmEAyo8B6lgg5gp/R0cEWdO7EBERERERERH5UNobAATskAOQYIcMgB2wlAM97vJzcERB1AOtMdu3b/d3CERERERERETUUtW5gFwNq1BCbjdCgr1mu6QEYtv3AgIUGNgDjYionRJO/iYiIiIianXaroDdAjsUsMjDYZZFAJIMCE30d2REAFhAIyIiIiIiIiJ/6/cYIFNBZa+Awl4Jlb0CkKmAfo/6OzIiAEE+hJOIiIiIiIiI2oC+DwIA9L+9Dq21AFXKToga+gTQ9y9+DoyoBgtoREREREREROR/fR/ED5XXOy7e0Tfej8EQ1cchnERExEnQiIiIiIiIXGABjYiIiIiIiIiIyAUW0IiIiIiIiIiIiFxgAY2IiIiIiIiIiMgFFtCIiIiIiIiIiIhcYAGNiIjAVQSIiIiIiIicYwGNiIiIiIiIiIjIBRbQiIiIiIiIiIiIXGABjYiIiIiIiIiIyAUW0IiI2ilRZ9ozzoBGRERERETkHAtoRERERERERERELrCARkRERERERERE5AILaERERERERERERC6wgEZEREREREREROQCC2hEREREREREREQusIBGRERERERERETkAgtoRERERERERERELrCARkRERERERERE5AILaERERERERERERC6wgEZEREREREREROQCC2hEREREREREREQusIBGRERERERERETkQtAU0FauXIkhQ4YgIiICERERGDNmDH744Qd/h0VEFLRE3b+F092IiIiIiIjavaApoMXHx+OVV17B/v37sX//fkycOBE33XQTjh075u/QiIiIiIiIiIioDVP4OwB33XDDDfUuL1myBCtXrsSePXswcOBAP0VFRERERERERERtXdAU0Oqy2Wz44osvUFVVhTFjxvg7HCIiIiIiIiIiasOCqoB25MgRjBkzBkajEWFhYVi/fj0GDBjgdH+TyQSTyeS4XFFRAQCwWCywWCw+j7cptTEEQixUH3MTHJinlrHZbPUuO2tHu93ucRszN8GDuQoOzJN/sf2DB3MVmJiX4BFouQqUOAJBoOWmrfCkPSUhgmfqaLPZjLNnz6KsrAxfffUV3nvvPezYscNpEW3hwoVYtGhRg+1r1qxBSEiIr8MlIgpolvDOsHSIr7kgBELOHax3vaH7SACAsuw8lBV5rR0eEREREbVDtZ9BASDk7AE/RkLtgcFgwMyZM1FeXo6IiAiX+wZVAe1SkydPRu/evbFq1apGr2+sB1pCQgKKioqabJjWYLFYkJycjKSkJCiVSn+HQ3UwN8GBeWqZE4VVOJpfCQCQAPxhUOd61395NB8AMLBTGHSdQj06NnMTPJir4MA8+RfbP3gwV4GJeQkegZCr2s+gAHDrJZ9P27NAyE1bVFFRgZiYGLcKaEE1hPNSQoh6BbJLqdVqqNXqBtuVSmVAPeACLR66iLkJDsxT88jl9RdidtaGcrms2e3L3AQP5io4ME/+xfYPHsxVYGJegkeg5CoQYgg0gZKbtsKTtgyaAtqzzz6L6667DgkJCdDr9fjss8+wfft2bNy40d+hERERERERERFRGxY0BbT8/HzMmjULubm5iIyMxJAhQ7Bx40YkJSX5OzQiouAUtAP4iYiIiIiIWlfQFNDef/99f4dARERERERERETtkKzpXYiIiIiIiIiIiNovFtCIiIiIiIiIiIhcYAGNiKidEk7+JiIiIiIiovpYQCMiIiIiIiIiInKBBTQiIiIiIiIiIiIXWEAjIiIiIiIiIiJygQU0IiIiIiIiIiIiFxT+DoCIiIiIiIiIKLUwFRszvkCRIRsxIfEYFn8bdLE6f4dFBIA90IiIiIiIiIjIz1ILU7F0z1KkFu1BlaUCqUV7ai4Xpvo7NCIALKARERERERERkZ8lZySj2FCM+PB+6KjthvjwfiipLsHmjM3+Do0IAAtoRERERERERORnWeVZiNJEQZIkAIAkSYhURyKrPMvPkRHVYAGNiIiIiIiIiPwqMTIRZcYyCCEAAEIIlJvK0SOqh38DI7qABTQiIiIiIiIi8qukXknoGNIR5yvTUFydg/OVaYjWRmNSz0n+Do0IAAtoRERERERERORnulgd5o2eh/4dxyBUGYn+Hcdg3uh5XIWTAobC3wEQEREREREREelidZja6746l+P9GA1RfeyBRkTUTolLL4tLtxARERERERHAAhoREREREREREZFLHMJJRERERERERH6XWpiKjRlfoMiQjZiQeAyLv41zoFHAYA80IiIiIiIiIvKr1MJULN2zFKlFe1BlqUBq0Z6ay4Wp/g6NCEAzC2hWqxWbN2/GqlWroNfrAQA5OTmorKz0anBERERERERE1PYlZySj2FCM+PB+6KjthvjwfiipLsHmjM3+Do0IQDOGcGZlZWHq1Kk4e/YsTCYTkpKSEB4ejn/+858wGo14++23fREnEREREREREbVRWeVZiNJEocwgAQAkSUKkOhJZ5Vl+joyohsc90ObMmYNRo0ahtLQUWq3Wsf2WW27Bli1bvBocEREREREREbV9iZGJKDOWOVaGF0Kg3FSOHlE9/BsY0QUe90DbvXs3fvrpJ6hUqnrbExMTcf78ea8FRkRERERERETtQ1KvJBwtOIrfctOgVUSg2lqBoV3jMannJH+HRgSgGT3Q7HY7bDZbg+3Z2dkIDw/3SlBERNT6hL8DICIiIqJ2Sxerw7zR89C/4xiEKiPRv+MYzBs9j6twUsDwuAdaUlISli1bhnfeeQdAzbjkyspKLFiwANOmTfN6gERE5COsmBERERFRANHF6jC11311Lsf7MRqi+jwuoC1duhQTJkzAgAEDYDQaMXPmTKSnpyMmJgaffvqpL2IkIiIiIiIiIiLyG48LaN26dcOhQ4fw6aef4uDBg7Db7XjggQdw55131ltUgIiIiIiIiIiIqC3wuIAGAFqtFvfffz/uv/9+b8fj1Msvv4x169bhxIkT0Gq1GDt2LF599VX069ev1WIgIiIiIiIiIqL2x+MC2kcffeTy+rvvvrvZwbiyY8cOPPzww7j88sthtVrx3HPPYcqUKTh+/DhCQ0N9ck4ioraMU6ARERERERG5x+MC2pw5c+pdtlgsMBgMUKlUCAkJ8VkBbePGjfUuf/jhh+jUqRMOHDiA3/3udz45JxERERERERERkccFtNLS0gbb0tPTMXv2bPztb3/zSlDuKC8vBwBER0c73cdkMsFkMjkuV1RUAKgp+lksFt8G6IbaGAIhFqqPuQkOzFPL2O22epctFgtkktRgP5vN7nEbMzfBg7kKDsyTf7H9gwdzFZiYl+ARaLkKlDgCQaDlpq3wpD0lIYRXRvHs378fd911F06cOOGNw7kkhMBNN92E0tJS7Nq1y+l+CxcuxKJFixpsX7NmDUJCQnwZIhFRwLNEdIUlqpvjsvbsAdQtnxm6jwQAKMvOQ1mR18rREREREVF7VPsZFABCzh7wYyTUHhgMBsycORPl5eWIiIhwua/XCmgpKSkYP368o5eXLz388MP47rvvsHv3bsTHxzvdr7EeaAkJCSgqKmqyYVqDxWJBcnIykpKSoFQq/R0O1cHcBAfmqWWO5VcitbDKcfn3AzvV64H25dF8AMCgzmHoH+vZXJPMTfBgroID8+RfbP/gwVwFJuYleARCrmo/gwLArYM6+yWGQBQIuWmLKioqEBMT41YBzeMhnN988029y0II5ObmYsWKFRg3bpynh/PYo48+im+++QY7d+50WTwDALVaDbVa3WC7UqkMqAdcoMVDFzE3wYF5ah65XFbvslKpbHQIp0wma3b7MjfBg7kKDsyTf7H9gwdzFZiYl+Dhr1ylFqZiY8YXKDJkIyYkHsPib4MuVtfqcQQyPo+8y5O29LiAdvPNN9e7LEkSYmNjMXHiRPzrX//y9HBuE0Lg0Ucfxfr167F9+3b07NnTZ+ciIiIiIiIiotaTWpiKpXuWIrUoGyHKCBQW7cHSPdmYN3oei2gUEDwuoNntdl/E0aSHH34Ya9aswf/+9z+Eh4cjL69mPp7IyEhotVq/xERERERERERELZeckYxiQzHiw/tBkiREa7qipPocNmdsZgGNAoKs6V0Cw8qVK1FeXo5rrrkGXbt2dfxbu3atv0MjImoTvDMjJhERERGR57LKsxCliYJ0YUoRSZIQqY5EVnmWnyMjquFWD7THH3/c7QO+/vrrzQ7GFS+tdUBEREREREREASYxMhGZpZkQIgKSJEEIgXJTOYZ3He7v0IgAuFlAS0lJcetgUiOTTxMRERERERERuZLUKwlHC47it9w0aBURqLZWYGjXeEzqOcnfoREBcLOAtm3bNl/HQURERERERETtlC5Wh3mj5+GVnV+iyJCNxMiBmDf6Vs5/RgHD40UEiIiIiIiIiIi8TRerw9Re99W5HO/HaIjqa1YBbd++ffjiiy9w9uxZmM3metetW7fOK4EREZFvcWZJIiIiIiIi93i8Cudnn32GcePG4fjx41i/fj0sFguOHz+OrVu3IjIy0hcxEhERERERERER+Y3HBbSXXnoJS5cuxYYNG6BSqbB8+XKkpqZixowZ6N69uy9iJCIiIiIiIiIi8huPC2inT5/G9ddfDwBQq9WoqqqCJEmYN28e3nnnHa8HSERERERERERE5E8eF9Cio6Oh1+sBAHFxcTh69CgAoKysDAaDwbvRERGR73ASNCIiIiIiIrd4vIjA1VdfjeTkZAwePBgzZszAnDlzsHXrViQnJ2PSpEm+iJGIiIiIiIiIiMhv3C6gHTp0CMOGDcOKFStgNBoBAM888wyUSiV2796N3//+93j++ed9FigREREREREREZE/uF1AGzFiBIYPH44//elPmDlzJgBAJpPhqaeewlNPPeWzAImIiIiIiIiIiPzJ7TnQfvrpJ4wYMQJPP/00unbtirvuugvbtm3zZWxERNSKOCUaERERERFR49wuoI0ZMwbvvvsu8vLysHLlSmRnZ2Py5Mno3bs3lixZguzsbF/GSURERERERERE5Bcer8Kp1Wpxzz33YPv27Th58iTuuOMOrFq1Cj179sS0adN8ESMREREREREREZHfeFxAq6t37954+umn8dxzzyEiIgI//vijt+IiIiIiIiIiIiIKCG4vInCpHTt24IMPPsBXX30FuVyOGTNm4IEHHvBmbERBK7UwFckZycgqz0JiZCKSeiVBF6vzd1hETRAAJH8HQUREREREFHA8KqCdO3cOq1evxurVq3HmzBmMHTsWb775JmbMmIHQ0FBfxUhNYLEmsKQWpmLpnqU4U3oGepMe31R/g8+OfoZnr3oW0/tN93d4RA5cNICIiIiIiMg9bhfQkpKSsG3bNsTGxuLuu+/G/fffj379+vkyNnJDamEqXv/ldeToixAT0gGZpZk4WnAU80bPYxHNT5IzknG04CjOlGah0mxAiFKLClMFXtr9EnpH92ZeiIiIiIiIiIKM2wU0rVaLr776CtOnT4dcLvdlTOSB5IxknNcXQiP1RKVRwqAuCThWeAybMzazUOMnB3MP4lTJKehNBqhkWhgsRsgkgRx9DvNCREREREREFITcLqB98803voyDmimrPAsqWTikC/MWSZKESHUkssqz/BxZ+6U36WGwGKCSa6GUqQEIGCzlAMC8EBEREREREQWhFq3CSf6XGJkIvakcQtTMZiSEQLmpHD2ievg3sHYsXB0OrTIEZls1LDYTTLZqyGVKAGBeKLBxUjQiIiIiIqJGNXsVTgoMSb2SsD3jAM7r06BVROBYoRXR2mhM6jnJ36G1W2q5Gla7FWabCRa7GRp5KJRyBeLC45gXavNqFzU5U3IGlQWV6FnUE0O6DvF3WEREREREAYsLAwYH9kALcrpYHe4c/Ff07zgGocpIjE8czwUE/GhD2gZsOr0JJqsRcpkCEAJGWyUiVB3wzFXPMC/UptWuQLsjcwfKjGU4WnUUb+x9A6mFqf4OjYiIiIgoINX7DF1dhh2ZO7B0z1J+hg5A7IHWBvSM6oepveIAAHcMj/dzNO3bh4c+hMFiROeQPjBYK2CxmWC0VqFTaBym95vu7/CIfCo5IxnFhmJ0CukLhUxCd7UBJdUlXDyDiIiIiHyiLfTcqv0M3T2iHwqqzOjToStOl53gZ+gA1KwC2smTJ7F9+3YUFBTAbrfXu+6FF17wSmBEwSizPBMyaKFRhEKjCAUAlBnzUWEu9XNkRE1r6RRoWeVZCFFGoKDSDABQBsmiJhvSNuD+b+5HoaHQ36H41yF/B0BuOeTvANq5Q/4OgNx2yN8BUKMO+TsActshfwdQ4/7vNKieX93odbU9t4oNxYjURCKzNBNHC44G3YisrPIsRGmicLbMCADILjcGxWfo9sjjAtq7776L2bNnIyYmBl26dIEkSY7rJEliAY3atR6RPXCm5DyEsEOSZBDCDpPNgK5hg/wdGlED3l4zIDEyEWmFGVBJUZAkybGoyci4kV4+k/dsSNuAGV/OQLW18Q9mREREROQ/RpsR2he1jRbRantuaWQ9YDACA2LjkVp0POh6biVGJiKzNBNCRECSJNjsdpSbyjG863B/h0aX8HgOtBdffBFLlixBXl4eDh06hJSUFMe/gwcP+iJGh507d+KGG25At27dIEkSvv76a5+eL1hw4bzAcd+w+6BRhKLAkIUyYz4KDFnQKEIxtfcf/R0akc8l9UpCB200zlemobg6B+dM5wJ+UZMPD33I4hkRERFRADPajI1ur+25ZbQKWOwCZpsIyp5bSb2S0DGko+Mz9Fn9yYD/DN1eeVxAKy0txW233eaLWJpUVVWFoUOHYsWKFX45P1FTpvebjjsHPo8+0SOhVYahT/RI3DnweYyLn+Lv0IjqSS1MxadH38YnRxdjY8YHOK9Pb/ExdbE6PDjyMceiJgPDBuKxKx4L6F8AM8sz/R0CERERETVDYmQiyoxlEKKmS0nt6IceUT38G5iHdLE6zBs9z/EZelDsmKAbhtpeeDyE87bbbsOmTZvw0EMP+SIel6677jpcd911rX5eIk+M6DIZI7pM9ncYQa0tTAYayGrnizhdkgebLQSFRXtwruIEpvTrhCGdB7bo2Jd17I+pvToCAELOHoAuJrDz1iOyBw7m+rb3NBERERF5X1KvJBwtOIrfctOgVUTAUmxGl7CYoOy5pYvVYWqv+wAAoSo5dLFd/RzRRfxudpHHBbQ+ffrg+eefx549ezB48GAolcp61z/22GNeC46I2p/a4k5+ZRGiNFFBOxloIPv48Mf4NXsvqkwyhKoi0SkkARXmImzN2NLiAlog8ORN/r5h9+GHUz9wGCcRERFRgNLINY1u18XqMPfKuXh111coMmRjXHx/3Nh/Kr8zeNHF72aFUMrC2/13M48LaO+88w7CwsKwY8cO7Nixo951kiQFVAHNZDLBZDI5LldUVAAALBYLLBaLv8JyqI2hpbHUXQk1EO5XW+Ct3NSyC8HcuGlj+kYUVBZCLnqg0ihBF9sNx4uO48f0H9Enqk+9fb2dp/YgtSgV36Z9i2JDOVTyCBQZslFhKkJsSALOlGY02pZ2u93tNrZarY6/zxnPYfme5ThfeR7dI7tjUs9JPu+RllqUikU7F2FP9h4UG4phFVZoFBqMjR+LgbEDG8Rxba9rseaWNbj3f39GubnIp7ERERERkWc0cg0q/l7h9LNon6g+jp5bk3pHo4NWGfTfDYST747++O6zMX0jCqtqvpsJu4ROoV2RX5Xe6HezYOVJe0qidsBwkJEkCevXr8fNN9/sdJ+FCxdi0aJFDbavWbMGISEhPoyudZmj4mGN6AygZsgU+Zehe8MVB+WGUqiLMvwQTfD54PwHqBQmREUPAAAoy3NQZC5CmCIM98Xd5+fogt+Ggg1ILtkMi1yBcFVHSBJQbiqCUqbClMirMT1mmmPf2seysuw8lBV5bh3fpg6DqXM/nNenY9NvL0Nv0yNUFooqexXC5eG4sdONSNAk+OS+AcDHOR/jx6IfUWmvbHBdmCwMdtgRJg/DLZ1uwXWxF6cEqO46EEKpgTrvBOTmKp/FR0RERESu1f0+1dT3WwGg+sL+mtzjkFmCd1RB7f2WrCZoc476OZoaH5z/AFXWKkTGDgEAyCzVKC1Lb1PfzQwGA2bOnIny8nJERES43NfjHmh11dbeJElqyWF85plnnsHjjz/uuFxRUYGEhARMmTKlyYZpDRaLBcnJyUhKSmowFNYTh3L1OFVsAABMmzatib3JHS3JzZdH8xts69ylC8Ze0d9b4bVpGfsysOXMDgghIEkS+vTpA3ORGeMTx2PaqPqPb289h9qT7Zu3o6dyEDJLM6G3FEMpqWGxGSGXKTH72r9icOcBjn1rH8uXXdYPuk4j3Dp+YZUZO86U4kjhLuhtelze53cw2oDYUCVSi47DmmDFtMt99zq19JOlMAojAAkyyCFgh0BNL91KeyW0ci2KrcX4JP8TDBw0EA+NrJnP84e0IlRZbBg7diw6hrSvxxKfR8GBefIvtn/wYK4CE/MSPAIhV3W/TzX1/VYIga+OFQAAxl11FTpog/fxVXu/tVpto/fbH7nJ2JeBnWd3QthrvpuFhobCpopo9LtZsKodqeiOZhXQPvroI/zf//0f0tNrVm277LLL8Le//Q2zZs1qzuF8Rq1WQ61WN9iuVCoD6oW7pfHIZBcXUw2k+9UWeOuxIpMk5sZNU/tOxaH8ozhRWDMZaGqxBTGhMZjSZ4rTNgy053Qg6xndE4fzT6N3hxEoNJxFmTEfVmGFWq7BjnPbkVN1DhllGcgqz0KRPhKDY6/GkK4j3W5fhaKmWFVkyEaoLBTn9TVdojVKOTpoOyC7MtunuZLJZLCLmhhkkgw2Ya93vU0IKGQKGG1GvL7ndUzuPRnbz2zHqz+9iVJjIeIjuuKRy2dj9hWzfRZjoOLzKDgwT/7F9g8ezFVgYl6CR6DkqqkY7HUG1CkUioCIuaWkJr47tmZupvaditTiVMdCDcXGKlwW09Xld7Ng48n98LiA9vrrr+P555/HI488gnHjxkEIgZ9++gkPPfQQioqKMG/ePE8P6bbKykqcOnXKcfnMmTM4dOgQoqOj0b17d5+dl4hajy5Wh9mXP4aVv36DIkM2xvcY2K5WevH1KjdJvZKwPeMAzusLoZJrYbDqAQBV5gos2r4QRls1QpWhiNZGw2xV4kTxXlwWuwADu1zu0XliQuJxsvgIIi70JDRbbSg3lWN41+Feuy+NGR0/GruydsEurLAJKwTqzlIgQQYFABuUMiXKjGVYsG0BNmVsgsFSDbmkwunSk3hm6zMA0C6LaEREREREtXSxOswbPQ+v7PwSRYZs9I0ehgevuKndfDe7lMcFtDfffBMrV67E3Xff7dh20003YeDAgVi4cKFPC2j79+/HhAkTHJdrh2fec889WL16tc/OS0Stq19HHab26ggAuH1YHGQBOkzcG2pXttl2Zhv0Zj3kMjkSIxKhi9X5ZJUbXawOdw7+K75J24R9uT9AKakgyWQoNeXBbDNCwA6TzYRqiwmhymhklP2GDelrcaPOswLa4NirkZuzG+cra36tqjBXo2d0Z58vKz5ryCxsSPseRwoPO4Zu1pJBBqsww263QybV/LqXnJEMk9WEcGVHSJIMGoWE4uoirDqwigU0IiIiogAXnDO6BxddrM6xUEN8pAa62Bg/R+Q/HhfQcnNzMXbs2Abbx44di9zcXK8E5cw111yDIF3zgIg80Qae5u70JEstTMXcjXPx87mfYRM2WG1W2GGH3lgJlbwzrogbiIyyE9icsdmrv/L07tAPU3vFochwDmk2I/KqzsBmt9YrOFXbDFDJQ6CUq/Bb3j6PzxEX3hc3dLoR+xWlKDJkY3DnEbhn+A0+/7VKF6vDOzf+B3O+n4/Uop9hthsRoQ5FSXUZbMIGIWpWCZVJCkiQoLfooZKpIEk1Q+HlMhmUciVyK337fkZERERERMHF4wJanz598Pnnn+PZZ5+tt33t2rXo27ev1wIjIgpWtb3Kig3FiNJEOe1JlpyRjKMFR2EHoJV3gBEVsNrNqLYakV5yFJ1DeiFSE4ms8iwvR1jToy8mJB4H8pJhtZkd84ZdJFBhLkaUOhaQmlfRTNAkIKb7zQCAgZ3DoYuNbEHMrtUtWMZq43Fb/8cRF74SAHDH8Hjcv+4lfJ76TxhtVVDKNAhRhiMxsgvSS9JRba2GRm6HJMlqlg23WdA7urfPYiUiIiIiCkZtoJ9Di3hcQFu0aBFuv/127Ny5E+PGjYMkSdi9eze2bNmCzz//3BcxElE7JgRq6z1BIzkjGcWGYsSFXQZJkhAfEY9jhcca9CTLKs+CyWaCDIoLqxnLAAkQdgGDpQJWu90n84bVjogdHHs1fs7+HwoN2bDD2mA/ATuMNgOGdrrCq+f3tksLlieLMlBl2odpvf+MuPCaH3aSet6N02WHcF5/ChIkhCgjMCZhADQKDfbn7ofeXAyFTIUqixVqhRp/Gf4XP98rIiIiImpKey/oUOuSNb1LfX/4wx/w66+/IiYmBl9//TXWrVuHmJgY7N27F7fccosvYiQiCipZ5VmIUEfifIUJ2eVG2AUQqW7YkywxMhFquRpWuwVCCChlGkDUFK4UMiWy9WmI1kZ7fd6w2npkXHhf3HzZo1DJtU73VUhKTL/s9haeybdqC5aJEf0gQwz6dxyAKksZjhTurrdfj8hBiNZ0weDY36FPh+GICYlBt4huuK7Pjega1gcquQb9OvbDyxNf5vxnREREREGBJTRqPR73QAOAkSNH4pNPPvF2LEREQWdD2gZ8eOhDZJZnokdkD9w37D4kRiYio+QMJBEJSZJgc9KTLKlXEr47+R12ZO1GpaUEkGSQSTJoFSFIjByEATFjMG/0rT6dN2xEl8kYGDMWB/OT68yBJkGCBJkkR6eQ7ujdoV/LT+TDWlpWeRaiNFHIKjMCqFnOXKuIQJEhu95+g2OvxrmKE46FDY4VWhGtjcY9Qx7G2ZKOCFMrcMOALr4LlIiIiIhcSi1MxcaML1BkyEZMSDyGxd/m+rMw62etq523t1sFtIqKCkRERDj+dqV2PyIibwjk1+gNaRvw4IYHUWIogV2y43j+cezJ3oP5V89HB200juXXFGpSiyyIDe3YoCeZLlaHZVOXYc53S3CksGbC+5HdBmFozEyM6DIZMgnQxcZ7Pe5LFzUdGDsWWRXHUGYshAQBmUwJIWxQytQYFHu1d07qw0QmRiYiszQTQkRAkiSYrXZUWyvQI3Jgvf3iwvtiWu8/40jhbhQZsjE+cRAm95qMGG0vnC0pDLaRwkRERERtSu20HKlF2QhRRqCwaA+W7sl2uSJ9IH9X8IVzxnNYsW8FsiuzGyxU5s4iZi3V3tr7Um4V0Dp06IDc3Fx06tQJUVFRF+bqqU8IUdPTwmbzepBE1M7Ue4kJ3EnQXtr9EvKr8iEJCXYIAFbkVuZi1cFVWH3TJ1j683oUGbJxdfcBuK7vlHpvYHXf4BIi+2FKrwcQF94XdwyPx6cp2c5P6hX123Nw7NU4UfwrTpYcgMVmhE1YoZCp0StqKK5KaMHQfDfS5o03+qReSThacBS/5dYULAsNlQhVRmFQ7FUN9o0L7+uYF+2O4TXFyYJKk0fnIyIiIiLvq52WIz68HyRJQrSmK0qqz3l9RfpA5+wjdGpRKr4p+AahIhTR2uh6C5UBwJ+++ROOFhyFyWaCWq7G2qNr8d6N77WrtvM1twpoW7duRXR0NABg27ZtPg2I3Ff7xXNv9knI0QmDY68G4P3eKkR+FcA/cxwvPA67sENcEuSxgmMAgKm97gMA3DyoK7RKueP6Sye9P1aUijNlqZjW+89ojefwpb+BxIX3xW39n8Suc+txqvQAAKBv9AhcFf97R7HJG17Y+gLeT3kfpcZSdNB0wI39bkRGaQaOFhyF0WaERq7Bdye/w7Kpyzx6o9fF6jBv9Dy8svNLFBmy0aPDEPSMGOPV2ImIiIjIt2qn5Sgz1HxYlSSp0XmE26stZ7bgrPEsrPl2lBrL0VEbhdjQGGzO2IxdWbuwJ3sP7BemZDHZTPg5+2fcsvYWrL99vdeKaAH81axVuFVAGz9+vOPvnj17IiEhoUEvNCEEzp07593oyKm6X8Ct9hDkVmTgXMUJXK/rwgoztSmB/CJtE7YGxTMAsAorPj3yXwyLfRgA8H36d1hz5D+OedJiQmJQWFWMSFUvRKhU6B4eiayKExcmvZ/QyveiRlx4X/xxwFNePurF94kXdz2BL0984Giv6spqvH3g7Qa3yKvMw4JtC/D5DM9WddbF6hwFy9hQFQqrzO7fOJAfZERERETtxKXTcgghmlyRvj19jNueuR1nq89CmGSQS0pkV5xHflUetp7Zii1ntjiKZ3WlFafhT9/8yXs90UR7avGGPF6Fs2fPnigsLGywvaSkBD179vRKUNS05IxkHC04isP5x7AzcxOy9SeRXXESmzM2+zs0onYjRhPj9LqtmVsAAAfzNuOZLX/D7rO/oMKox57sPfji+BfI1ZdAb7LhbFk1JElqdNJ7X2ntAbHn9en4+uQnjRYbL2WHHV+nfY3UwtTmn7CZdzAwBwoTERERtQ9JvZLQMaQjzlemobg6B+cr3ViRvs7Hy7b+We5M+RlYhAU2mw0GawWMtmpUmCtwKO8QDGaD09vtzd6LZXuWeSWG9l0+a0YBrXaus0tVVlZCo9F4JShq2tYzW3E4/zBOl55CmbkAuVWnkV52AO8feN/foRG1G13CnK/YmFmWCQDYce5zlFRXoIM6AQqpI7pH9IRN2HC69ATEhV9whBCotlYgNqR1hmA398NFamEq3vj1DTyx6Qm88esbbhe5jhTugsXu/jxjFrsFnxxuvZWeHYW9tv6pi4iIiCiA1U7L0b/jGIQqI9G/4xiXCwi0NwazAVZYYYERAnaICz3OsiuyG+19VssKK75N+7a1wmzT3BrCCQCPP/44gJpxyM8//zxCQkIc19lsNvz6668YNmyY1wOkxqUWpaLKUtVg+2+Fv2Hl3pWYfcVsP0RF5H2B/CuHwer8l55yYxkAoMiQDaWkhSTV/F5RYbKhg7oDyox6nK+smfTeZNM7nfTeJxr5EaQpl87bVnfS0qY+1GSWH/X4fBvSNmDJpCUe346IiIiIglfdaTlqLrv+gTmQvyt4m9VubXS7s2ll6io0FCK1MJXFyBZyuwdaSkoKUlJSIITAkSNHHJdTUlJw4sQJDB06FKtXr/ZhqFRXsaHY6XXLf13eipEQ+VgAvyta7Ban11mFFef16YgJiYfJZoAQNb8K2e12WIQF/ToOdfy6NjBmDKb1/nOrTXrfnI5Wtasi9Y3WQYYY9I0egJLqEreGjVdbKz0+X3ppejOibJ7ahxg7oBEREREFmwD+suBlZlvjc/y6M02KVVgxd+Pclk2TQu73QKtdffO+++7D8uXLERER4bOgqGk2u83pdecquJhDoEg+8xE2Z34CvbkQ3SO74aGRD7F3YBBYuXcl3j7wNvIq89AlrIvTvMVFxCG1qPE3ITnkOFK4G+MTZiC7Ig0Fhiyo5SEw2avRKTQSt+n+jLiwqwEAaoUMJqvzbtfe1owOaI5VkTJLqmGxC1SabW6silRzIiHskCC59eZeq9pazV/JiIiIiIgukMvkLbr9z+d+xrI9y7DqhlXNPkb7KVc2zuM50D788EMWzwKAVqF1ep1dtN4XcWrceX065mwahw+PPIdz+lSUmYpwpOAIntr8FFbuXenv8MiFF7a+gDkb5+BwwWEUGApwuOAw/vrDXxH3ely93KUWpkIGGSQnL6NqpQaZZUcwostk3DnwefSJHgmtMgyXdRiB15Jew7iEa1vrLnlFYmQiyoxlMNsuLI1tsaHcVI4eUT2avK3RaoAcnr/ht9o8aI5PAuyDRkRERBRM2tOikHHhcS26fZWlCp8f+9yjuYwbaEft3Ri3e6DVtW/fPnzxxRc4e/YszOb63QjXrVvnlcDItfjIeORW5TZ6nYBoUc+N1MJUJGckI6s8C4mRiUjqlcReIB44r0/H0l//gkLj2XrbBQQqLZVY/uty9kJrglSnkNGar9Gphan458//hEU0HJqZo8/BU5ufAgDMvmI2kjOSEaYKw+huE/FLzpZ6kaokFVRyJYy2mnkKR3SZjBFdJgMAFDIJ0/vF4ZfMEt/fISeaUyZK6pWEowVH8Vtuzbxt1dYKDO0a73pVpAuqLRWQy5WATYIVzoe9XmpLxpbmzYPm4YOGQziJiIiIgl9bru2kFqairLqsRccQECg3lePV3a/iu5PfYdnUZfye7yGPC2ifffYZ7r77bkyZMgXJycmYMmUK0tPTkZeXh1tuucUXMVIjJveajJS8lEYnElTL1dicsblZT4bUwlS8sO0F7M/Zj2JDMSx2C14NeRXzr5rPoo+bjhTuQo7htNPrW2OIbdsqgrbeW+GyPctgsjlfLbLaWo3le2sKoLVDGqPUfZBeegLF1bkQsEMGGRQKBWx2G+zC+VBrf2psJeWm1K6K9MrOL1FkyEZi5EDMG32r68dV7WkkCRACMkkBNFKcbIxCUqDE2MwiY3MrYaygEREREQWVYC2aNfZ9DQgHAHx/6j+Yv/NTx3QyuhgdtmZuRaGhsMXnFRDIqcxBSXVJs4ZzBmt7e4vHBbSXXnoJS5cuxcMPP4zw8HAsX74cPXv2xIMPPoiuXbv6IkZqxKwhs7AudR3SitPqbZdLcihkChzMPdis4y7bsww/nPoBVRYDap8eufpcPLP1GSREJmB6v+ktDb3Nq1lx0PlLi0zyeOR0k2pXSNx2Zhv0Zj2MFiMsdgvswg6VXIW1R9fivRvfC+IiWuv47OhnLq8XQuC8/jyAmiGNR/KPoKz6DKotesggwQ4JMkkOrVwLO+yQSS2bpyDQeLoqUi2tIhyQJKjkGsAmYLYbXe4vl+QQENDKnQ9Vd4V1MCIiIiIKVKmFqZi7cS6OFhyFyWaCWq7Gdye/Q1Li0zhe9As+Pb4EFrsJMkmGIkMRDhcc9noMRpsR36Z926L50Nojjwtop0+fxvXXXw8AUKvVqKqqgiRJmDdvHiZOnIhFixZ5PUhqSBerw2tJr+HO9XeiwlQBQIIMMqjlagBApbnxVe82pG3Ah4c+RGZ5JnpE9sB9w+5zFMVSC1Px7clvUWWpqneb2q6eL+1+qd0U0FKLUrGhYAO2b96OntE9PerB1dSKgx1DOnojRIfaF+CdWTthspkaTNRutBnxS/YvmLdxHjbO2ujVc7eG1prXILUwFRXmCpf72C/0MAOAXlG9cLb8LIqqymGxm2GDFYAEuUwBk63mDS9ge6C18vmiNZ0RpoxEpUXv1hyNEiTIJBm6hHdp1vk8fci091/SiIiIiNqCYPlMt3TPUuw6uwsWmxXWC6MzcipzsCvrF0iSDEabAYAEm4+/S3ijR1t743EBLTo6Gnq9HgAQFxeHo0ePYvDgwSgrK4PBYPB6gOTc9H7TcXnXy7H73G5Y7XbIJTkgAVa7tdGhnSv3rsTCHQtRaalEiDIE2eXZOFZ4zHGs5IxklJvKnZ7vUO6hdrEqXmphKp5IfgIHCg5AKpGgUWg8GiOulYdCARWsaHyZ4WJDMVbuXem1IbHJGcn4NftXGG3Oe/UICGw5syVo8ufJao3ekpyR7NZ+kiQhtTAVGWUZSIhIQLgyDqlFB2C3W2CDHVa7BSHKcAAicHugtVoFreZEHTRdIACoZBrI5BoAVpSbnb/W2GGHUqZEiDKkdcK8UKVlzzUiIiKiwHFen443fl3ncloa4fSCb7VkypyNpzai2lrdYHu1TV/nku/vjFVYm/H9MFjKlL7hcQHt6quvRnJyMgYPHowZM2Zgzpw52Lp1K5KTkzFpUtOTSZN3RWoiEaoMhdlqh0WYoZZpIEmAQlY/tamFqXhx94soMhRBQILJaoZaroLVbsXqQ6sxvd90HMw9CJPFxfxPtmoMfXsodDE6PDTyoTY7J9qCbQuwM2snbHY7FEIJo9Xo0ZK/PaIGI6fyDE6VpQBo2Num0lJZbzL6ljqYe9BlMaKWVVjxyeFPmjcpe2sTjf7pNY294WWVZ0EhKWAVDYvPdVntVmzO2Iys8ix0j+yOziEdcL4iC4U2AyAE7MKGSnMlVHIle6Bd4JikX5IACKgVaiitSljsTuZDE4DJakJBVUFrhUhEREREAeS8Ph0v/XQnSs0XF86LC4tD8t3J9Qs+Fz5oHszbjFWHPsHp0jRoFBpM7DkRc0fP9XrngdTCVHx8+GN8e/JbyCFH7+jeyCzNxNGCo5g3ep5b5yuuLvZqTI1Ry9Qw2Z1/twcAGWQez53evstnzSigrVixAkZjTU+XZ555BkqlErt378bvf/97PP/8814PkFyzCRtMNhNMNjPsQqDUZoAECT+d+wkb0jY4hlx+fPhj5Ffmw36hoGMTQLXVBqvditSimiVs9SY9bHD9hd9it+BIwRGvFoACSWphKjae3giz3QIZ5LDYzLBLMkiShG2Z2xrd/+PDH2NP9h4ICIyJH4NOIZchWtsF6goNTPbGe2VWWirx9Jan8eKuF1FcXQy1XI0BMQNwx5A7XP56sXLvSry460XkVeZBkiR0DuuMcFW42/dvT/Yet/cNRq6GKNfdZ/62+TivPw+FpECkJhK7snYhWhuNEGVIk8M4qyxV+PvmvyMhMgEhihBIIgplpnzYLhTeZJDVFOLsVpga+WWprdqQtgHLf12O3/IPw2ixIErTGZeHDMaYyNkoM+XXLCAAK2rXL4gNiYXFboHJZrowDP2i2tepfTn76r2Oua2Z7+zsgUZERETkf+f16Vi8ewb0lqL62yvP4w9r/4Djjxx3/CB+qvgMfs1Ox5GCnTDZqgCpZjqQ1YdW42jB0QbzQLek51jt1Dl7svegylIFuxA4Vngc4eowaBQaFBuK8eLEF5s8nt3e9JQmLRUfGY/s8myXRTS5TO753OntvILWrCGctWQyGZ566ik89dRTXg2K3FdlroLNboMQAnbUfIEXEMirzMODGx7EKqzC9H7T8eXxLxuMoRYQMNvNyCrPwl++/QsO5B5w65wCAgaLAct/Xe5xAa01Vods7jlSC1Mxf+t86M01XWdr29MubICoKTBeuv/cjXOxP2c/LHYLFJICB3MOotpihkWY0NSrS4W5wlGsMdlM2JOzB3tz9qJ7ZHe8ed2bDYoGK/euxNwf58JsvzA0VAA5+hx3msShsCo4xrk353V5Q9oGPPDNAyipLoEddhzOO4zdZ3fj/RvfrzfP35PJT+JkcTrEhSJNXlUeThafRGJkIqK10RBCDr2lzGUU1dZqnCo+BUmSoFWEw2K/OPecJMkgRM0bksHquhjnL81ZhdOVlXtXYv62+Sg1ljraQW8pRZ7+NNJt+RAQsNkt6BraCyEqBcJUcpwuO43hXYZj+mXT8cK2F1BmKmtwXIvdgr8l/w29o3v7dOixI9OsoBERERH5VWphKj46srBB8cxxfXEqNqRtwJt738SRgqOoMldd+E514RPdhf/ZhA17z+/Fsj3LcMNlN2D5r8ux7/w+6M16CAjIJTki1BH1puqp7RyxJWMLSqprVoOXyWp+HO8W3g3ZFdk4VXKq3ogVq7Cj1FgKAFh/Yj0ySjOw5g9rXH521Sg0LqffaSm1XI1hXYahsKoQJrPzApoEye3vk+f16ThSuAsGSy6Ol+p88j0+GHhcQJswYQLuuusu3HrrrYiMjPRFTOSBclM5ZJLswgTmF9UuTzt/23x8c/IbpJekOz1GlaUK7x5816PzSpLkWI2wMbW9UU4UnYBGoUG4KhyZ5ZkoM5ZdLDSgZn6x/h37o8pahbLqMnQJ69Ki4aHOVjRpav6y2tttz9zudB+TzYQnNj3hKMrV9jyrMhsu9NxreTneDjsyyzPxwDcPYPu92+vFvGzvsovFs2ZKL0kPmnnQajXVqvvK92H1V6vx3cnvYBEXhwTaYUeBoQB/S/4bpvebjg1pG/DEpidwsuRkI+cQyCzPxNBOQxGj7YXz+kzkVZ1xORebHXZAAGarCfY6Kx1YhRk2YQHsQJUbQ2u9yZ0eeN5WOzy8xFjS4DoLLDhZegAd1J1gtVuRXZmGEGUIwlVahCnD0C28Gx698lF8fPhj7MvZ1+jxT5WcwrI9y1BkKHL7frXzH8aIiIiIgtayPctwpGi3y33+8PkfYLVbIS7854xVWPHOwXew5sgaVFuq6422sgorSowl2HZmG5btWYa5o+di7sa5+DX7V+gvWfhKgoTUotQm52kWEDiUfwi3rL0F629f7/Q7V5QmqtEfj71FF6PDvUPvxY6sHXAyLTc0cg0UMgXKjE3HkVqYii9O/AsZpb+hylKGDaeseDXkVcy/an6bG5HWFI8LaIMHD8b8+fPxyCOPYNq0aZg1axamTZsGlUrli/ioCaGqUJdP5N/yf8PhfO8ve1s7dLSx4VUb0jbg0R8exXn9edjsNsdwrEsJCFRbq5GSn+LYVmAowGMbH8O2zG3oH9Mf/0v7H/Iq89wurC3YtgBbM7bCCiukC/+VVJc0OX9Z7UoorgpU5cZy/CflP1AraopyuZW5jl8wvK3AUIAF2xbg8xmfO7ZllGS0+LhGm9HtudwChovm/S79O7yb/S7K7GX1imd1nSg+gRe2voDPj3+O0yWnXZ4qrTgN/TuORml1odt5tQgTVDItTHUW7qi9baHhHA7mbcaILpPdOlZLbEjbgCeTn6zpgScE0orSsPvsbiwcv9Cnb2wfH/4YhZXOezaabAaUmQqhkqmhlGlhshqhksvQOawzRnYbCQCY3Guy0wKaVVjxn9/+A4VMAa1S22DxE29iBzQiIiIi//rPb/9BY/NI1+Vpp4JKS6XT6yzCgm/TvkXHkI7Yl1PTQ+3S76+eft9LK07DTZ/dhFsH3IpZQ2Y1GELq6wXT/jHhH5jebzriwuNQbChu5HwSQpWhkMlkCFWFNvgRfnLPybAIC7LKs6A36fFd+nf1eqpJkJCnz8P8bfOREJng8x/sA4nHBbQ33ngDy5Ytw+bNm7FmzRrcc889kMvluPXWW3HnnXdi/PjxvoiTnBgTPwY7Mne43MdXT1CL3YJbP78V8ZHxGNp5qKNXyIeHPkReZZ7zCcKbYBVWfJH6BYCaJ6dckqOkuqTJeddSC1Ox4eQGWOsMZRUQMNqM+DbtW5dFI2crodRlhx1lpjJIRgnbqrY1+YtHS32d9rWjt1hqYWqTk9u768fTPzbrdq0x/LZxztv4zX1vothS3OTcfUv3LAWAJvcz2ow4UbwXRidz1zUenR0We+NdsG2w4vPU11qlgPbhoQ9RWFUIg7kaZrsZMklCtbUaL+56Edf0vKbRyVa94ZfsX+r9QteQgF3YIZcpYbZXI1QZAout5rVhUs+ahWdmDZmFl3e/7PQIJpsJFpsNJqsJqksWP/GGi83BEhoRERGRv6QWpsJkcz3xvS/kVeVhw8kNMFqNTjt/eCq9JB0v734Z/973b7wy8RXHd9jkjGRoFBoooIQVzfu+rJJUMAvnRcTaz8gquQpquQZ2AVjsxjrfXQUqzBWQIMFiteDRHx5FkaEIZqsZKbkpWHdiHTQyDeywN1qsrP0eXG4s9+pn8mAga9aNZDJMmTIFq1evRn5+PlatWoW9e/di4sSJ3o6PmjBryCy/nt9kN+F0aQY2nNyAGV/OQNzrcfhf2v+8NqZbQMAqrLAKKyotlXh046MYunIoVu5d2WDf5IxkVNsaL4LVjmF3Jr8q3614bMIGK6ywCIvXClrOWOwWLNuzDEDNfZO89OW+xOC6LRrzwtYXcPm7l2POxjl4/ZfXMWfjHIx8ZyRmfD4DqYWpXomrLuHk70sdyDnQZFEMqPnVydUvT3U1503bVSE1R99wyKg3pRam4o1f38CWM1tQYiyB0V4NO2ywCiuEECioKsAnhz9xO15P5ZTnNJkDu7BCIVPV9NSz1bx5dw7t7Cjq6WJ1iFBFuD4Gal4HDFYD9Ca9Y/ETr+CYTyIiIiK/S85I9st5BQSOFRxrskNFc1SYKvDID4/gwW8fRGphKrad2Yaz5WebXTwDgG4R3aCQGu8LFa25OGd9mCoM0doOiA3pDK0ipN73SYvdArPdjN3Zu5FVnoUqSxXMwuz4nmC0G5vs6WeDDYfyDjX7fgSjZhXQauXl5eHtt9/Gq6++isOHD2PUqFHeisupt956Cz179oRGo8HIkSOxa9cun58zkOlidVDIPO5I6GU1ixFUW6uRo89psFiBN9mEDUcKjuDJ5CcbFNFcrSBispvwh7V/wIa0DQ2uSy1MhdnWsrnFfKW2t9jB3IOQS3KvHFMh9+zxsnLvSizZtQRVlqp626ut1fgi9Qvc+dWd3i+iuVHQSC1MdSz44N1Te/r4laCUqZ1ea/PSr1iN2ZC2AZM/moy5G+ei3NRwvrXaN8A92XuQWpiKZ7c8i4n/mYi71k/D2uOv4rze+dyI7p4/qyKryf1sFxbiAIBIdSQkSA1et+ZcOcft81qExeWvg4IFMSIiIqKgk1Xe9OdKX/FWzzNnx3734LuY+dVMbM3c2qJCXQdFB9w+8Hb8acSfGnw/lEtyPHz5w47Lo+NHQyVXIVytgVqhcvojektGVtUuoNBeeFx5qaiowFdffYU1a9Zg+/bt6NWrF2bOnInPPvsMffr08UWMDmvXrsXcuXPx1ltvYdy4cVi1ahWuu+46HD9+HN27d/fpuQNZR21H5FXl+TuMViMgYLAaMO/HefXGXF+6Sual1p9Yjz3Zexwrk9aq7d3l67HozVFurCmK6E16aBQat3tROSODDPER8R7d5tWfX3X5hpKSn9JgvrZL+WL4Z3JGsk/f6NwnYLY7fxNUSMoWn6F2UY4j+UdgEzZ0De+K0fGj8fWJr1FocL2yqk3YUGmuxAvbXsDP536GwVINi92Co+IwMsoO4+7BCxEX3rdZcS3fu9ytHnsCNpSaal6jqiyAUq6E1V6/B+fiiYux9tjaRhd5aIzN7r1Cfe0z38uLkxIRERGRBxIjE/0dgs/ULjDgjFquxoiuI5BVloVyU7mj84IcckACFDIFpvedjmtwDR685kEolUrEhsTi/ZT3UWosRQdNBzww/AEsnrjYccxZQ2YhvTgd6SXpMFl9MzTWYHF/6pu2wOMCWufOndGhQwfMmDEDL730Ei6//HJfxNWo119/HQ888AD+9Kc/AQCWLVuGH3/8EStXrsTLLzufP6etu6HfDfgg5QOf9vwKRCa7CQ9ueNBRELMJm8tCmIBAXmUeXtr9Ur0CWm3vLl8NyZQgYWjnoTVj+u2evXCFKEPwxq9v4Le832CxWyCHosGKq57EoZApMDZ+rEe3O1/hfLXVWj+e/tHp6p6phan40zd/qrcy6tqja/Heje85LaK5U8w8mHswYAufdankGpzXpze7SLVy70o8tfmpesXTouoiHCs45lYBUUAgR5+DgqoCFBmKIYSAXKaEXZiQUfYbdp1bjz8OeMrjuM7r07H7rOsVkurFIQTkMgXkkgSb3dbom+2gToNQYCiExSpgFWaYbM19Qw7sxwQRERERNZTUKwmdQjqhwFDg71BandVuxfs3vo/NGZsdk/efKTuDkuoS9IjsgXuH3Ytre12L77//3nGbxRMX1yuYXUoXq8PiCYuxOWMzXtr1EgxW7xe7vDXNULDwqIAmhMDy5ctx1113ISQkxFcxNcpsNuPAgQN4+umn622fMmUKfv7551aNJdDMGz0PO7N24mTxyYAvJnhbXmUe5m+djw8PfYjtmdubLKjYYcdveb/V2+at3l3ORKojseYPa/Do949ia+ZWj3JUYarAW/veQkFVAay2mnmkhB2QIJzOOyWDDJN7TUakOhIb0jfAarNBoKZ3jUKm8Pgx4s7+1dZqbM7Y3GhB7M/f/Bk/Z198jpptZuw9v9dlr7VNp7/Hsn3vosiQjc9O9MGfR9zfYHJKvUkPGWRuzYHmLzIooJCpcKRwd7MKaOf16Vjy8/xGH5ue9L7L1mdDLskdRfbaSfytdit2Z3+JKE0MBsde7VGMRwp3wWh1f65DO6yQQw5JJgFCanTJbJuwwWIzw2Qzo6kJ/bVyrdPr6j5iv0h9DU9u/QJFhhKEKCMxofsfcZvuSRe3ICIiIiJ/0MXqsP3e7Rjw1gB/h9LqFJICulidy1E6Fovn86bVHnPdiXU+GbUWpY3y+jEDmccFtEceeQQTJkxA377N603RXEVFRbDZbOjcuXO97Z07d0ZeXuMPBJPJBJPpYo+fiooKADUPvOY8+LytNoaWxtInqg9emfgKbvniFm+E1UAg9/Kxw44jBUeQWuz+PGbV1moczj0MXUzNi5PVZoVMkrWod5czarkafaP7ok9UH1SZqzxux0pLJdKK0xyXbReGCjqr9EuQ0Dm0M/5v8v/hsY2PIUoTBatNQqVZD7lMgkwCUnJTPHrMKSVlk70b7cKO/ef3NzjuIz88gp+yf6q3rXZhiG2Z2xqN47v07/D0lnkoqCyEXdiQrT+BXWe3Y9H4RXho5EOO/aw2KyRJ8nntw9PHvxxyyCQFFDIFbMIOu7Ahs+yI43qBmud8vZUr60zaVbdNdp5bhxKj54s+NKZ+DmvOZ4cVZcZCbMv6DCeKf8Vt/Z9stIhms9kb5Cqz/KhH5xcXVuOEXQZJkiCEaHDMSlMlrHYrZJICdrvr52KFuQLd/tUNZdVliNJG4b6h92FQx5rVjcSF9nx2+zRkVlxse7PJiPXpy5FbdQaPjfq34/xWq81xu0B4b2ht3novIt9invyL7R88mKvAxLwED3/nqk9UH9RM1R4IU7U4F62JRpmxzGtTyvSP6d9km7ckN1d0vQI7Mnd49Xu9DDJc3+f6oH9eexK/RwU0mUyGvn37ori4uNULaLWkSyapEUI02Fbr5ZdfxqJFixps37RpU6v3oHMlObnlq434quukAgrEqmJRYi6BCa2/pLA77LB7tAiAgMDirxdjVreaFUwL8gtgt9qhVYTBZDdCsguYvXVf7UCiLRHff/89ThWc8s4x4bpXWKSIxJm9Z1BcXIxqUzWEJK8ZOickVFsrcargFFatW4UETUKT5zlnPAeZaHqtEbuwI/1ser0uxT8U/oB3zr/j9Dbl1eX19q+1MH0hcqvOw1ZTcgGEQKmxFE9vehr5J/NxeWTNsPGs3CxHocSXQmQhqLJXNb3jBXYIKC4MCZZBATusMNou3t5mteL777+HqWMPILQjAMBkNgPymrnSvv/+e6D7SADA0ULfL5JihxU5ladQbixwOpzz5Mk0nNl/4YeKC7GVVHv+C5ZVWKCyK2CFFWa9uUH+s/KzIGwCQhJNrkyUWZ7p+Lu6shqv/PQKbupbhdt0T6K8rBzvn1hSr3hW156cb3BV3i0oPlmJb/K/wRHDMZglgW7aHrgpaqLjMdbeeOO9iHyPefIvtn/wYK4CE/MSPPyZq/sG/wMfHnnOb+d3x+yus/FV/lc4W30WJmFq0agYBRSYHjq90e9GjWlObhKMCeih6YEzxjMe39YZrUyLocahbscdqAwG94e2ejwH2j//+U/87W9/w8qVKzFo0CBPb95sMTExkMvlDXqbFRQUNOiVVuuZZ57B448/7rhcUVGBhIQETJkyBRERET6N1x0WiwXJyclISkqCUtnyicalQ97tKSaX5AhRhuD6AddjzbE1aMFKuwHnN/Nv+HTapwCAD774ADKjDGabBSqZBpLcCrPFOwW0CG0Enr/5eehidNCc1kDS1+ZIggwy2L08/FBAQBGiwLRp0/Dztp/xbsq7MFoMsNkBmzBDAmCUjFictbimt1p4Z/x5+J/r9eyqa8W+FYg6FwVDlesXFQGB2E6xmDZtmmPb8+897/I2Vlgh+gpc3/f6etsfXP4gbBfKZ3UZhAEfFn6Izpd1xtbMrThRfaJVhm+O6T4GO7J2wCKafgLIIINcUsAqLJBLcgjYYbfX9EKrJVfU5GfvuXKcLa8ZAqlSqWC21dzfadOm4cuj+QCArPITPrhHDdmEBRWWYuw8txZXJ9T0ZP3+9Hs4XvQzLHYTLovuh7+Pm4Pr+15fJ7bjzTiTgAUWxIbEYmjPofUeLwDwYv6LOG85D7sA3E1tbQ9BO+zYnPUJbtM9icjISOw8+4XL23198t+IDVVif9n+C/MfSigzFqDEkoVRo0Y1eFy2Zd5+LyLfYJ78i+0fPJirwMS8BI9AyJXhaM0Ptlsy/wujrQgCAmXVZbAKq9PvuxIkaBVaqBVqn68MqZFrsOCOBZhRNANbz2xFVnkWNHIN9uftR0FVAY4XHvdofu37h9+PBdctaHK/lubmd0W/w9B3hnp8O2fiouLw4O8f9Nrx/KV2pKI7PC6g3XXXXTAYDBg6dChUKhW02vrz0JSUeGe40aVUKhVGjhyJ5ORk3HLLxaGKycnJuOmmmxq9jVqthlqtbrBdqVQG1Au3t+LpGtYVOZU5Te4nhxyRmkiXQ8OUMiVClCG4Mu5KPD72cfzv5P9atMKGSqaCVqlFj8geuLHfjdhyZgv2nd8Hq7BCggSZJEOn0E4YlzAOX6V+5fPVFU+VncKPGT9ier/pUMgVkMvkUNhlsAgzQhUarxULu4R2wZCuQwAA/WP747z+fM39haxmiidR8wIcpYlCQVWBV+53sbEYSqUS9w6/F2uPr0WpsQx1xzlWW6tRba2GQlKgxFiCZ7c+C4VMgdlXzG5wrM+Pfe7WWHkJEow2Y73HcVOLDwgIPPLDI+gX26/eWH+bvWHxrFZOZQ6e2vwUFDKFW6s/NkUlU8Fsd917cc7oOTBYDdh3fp/LIpoECWqFGmq5BhZbzST4CkkFSAKyOktMS6h5zstkF3v21fSirbnPtW34ReprsIrW7fWpN5fgixOvobS6AGfKD8N64f7+mpOHv3x3DB/c+AGSzxzGlydeh95S3Kxz2Gsm8UNCZEKD170obVRNQUy4/zyo+1ipNNd8WNpwejUswvX8bGcrjiKr3FYnpzVHyq/Mx1v738LNA252O4a2ItDeG6lxzJN/sf2DB3MVmJiX4OHvXCX1vBtJPe/GHcPjAdSsSr/60GocyjuEbH027HY7JFnN96pwdThu6X8LwtXhSIxMxPsp7+Nw/uFGv1OoZCrIIIPR7v5cvkD9EV89onpAqVRiSNchju96QM3iaZszNuP5bc9Db9K79d1OgoRBnQd51NbNzc2QrkMQogxp8cqZEiRoFBooZIo28Xz25D54XEBbtmyZpzfxmscffxyzZs3CqFGjMGbMGLzzzjs4e/YsHnqo8d4z7c38q+fjrz/81eU+CkmBiT0nYtnUZbj2k2sdRQ5x4T8AUEkqjOs+DmPix+CuIXdBF6tDhCoCRYaiZvVwU0AB0/P1CwF3FN6BZXuWYVvmNhitRvSP6Y/HrngMvaN7I70k3eUSv95y9/q78dEtH8EmbDDbzDBdmFjdm4sJ1C3yzLliDvZm74XeXPNiKgkJCkmBCHUEenbo6bVJHY2WmjcDXazuwgt94zmzCTtkkFBlqcI/f/5ngwLahrQN+DXnV7dyLpfkDSaF1yg0Td7ufOV5fHL4EyyZtMSxrYOmA4qqi5zexmgzOu2dJEFC17CuuLHfjXj7wNsuzx0XHoe3r38bd399t9NfqWJDYjG933T0ju6NZXuW4f2U913OB6eQFLDYL06Cb4MFcklZrweau37I+MDj27SUTdhwruIE8qqyIOo0sgBQZCjCoz88itzKQphs7g9pvZQkSVDJVY0+ruLC46BWqGFo5q+GAnYkn/kIa1NfaXLfmsJpww81NthwOP9ws85PRERERL4xvd90x6JitcW0zPJMxwqVdRcc6xnVEw9ueBAl1SWw2CywwQYJEnpE9sDfxv4NAJr83gzUfBfQm/Sw2q2OOXw1Cg0eu+KxRvevnbD/SMER/Pfwf91a9VIGGbLKs9xpAq+4vs/1+DL1y2aPXNPINYhSR8EGGwZ0aoeLPXh6g3vuuccXcbjl9ttvR3FxMRYvXozc3FwMGjQI33//PRITE/0WUyCZfcVsPJH8BKqt1Y1er5Qpcd+w+zB39FzoYnWY2mcqPjn8CWzC5hgGpZAUmDVkFt6+oX7xYWiXoSgyFKHcXO5xXJ1COzXYpovVYdUNqxrdf80f1mDBtgXYnrUd1dZqxIXHYc4Vc7B87/J6E+q3VKmpFI/+8CiiNFEw22ondReA3XvzyRUZLhaCpvebjlcmvYIXd72I0upSKOQKxGhjMLLbSERro7Ene49XhuCqFRd7Xebqc53uJ+oMID1Xfg6phan1eoLN3zbf7Xgam4cwISLBrR6RWzK21CugJUYlIr003a3zNogDEnpE9cDK6SsBwGUR7e3r38b0ftPx0/0/4eoPrkaxsX6PqhBFCP4y4i8ALj5eO4Z0xMu7X270eAICSrkSVZYqyCQFcGGorl3YYHLynLzU+789i4c2/g96c2XN/G+tTAJQaMiuVzyrJSDqzTvmjAIK2C/81xibsKFPdJ9GexCO6DoCXxxzPfRSDrnLobsbMz5AtdWdAp/z9m2qVyIRERER+U/dYpqz61dhlcsi2xObnkC1zfln9E4hnfD+je/jXPk5rDqwCrmVuega1hUPjnyw0ZE7dc0bPQ9ZZVnYlLGpyfuiVWrRI6pHk/t5y6IJi3Befx77cvbBYvds2JVckiMhIgFV1ipEqiJxzxD/1Yb8xeMCGgCcPn0aH374IU6fPo3ly5ejU6dO2LhxIxISEjBw4EBvx1jPX//6V/z1r01Xi9ur6X2nNzoEUiPX4PUpr9d7stc+sY8WHoXJaoJaocag2EGYM3pOg+PeN+w+HCs8Bn2xe11R6573hn43eHQfdLE6fD7j8wbbf8z4EZmlmTDZvTesraCqAIWGQlgvvHjIIHNrQQatQotwVThsdhtKjCVOC01GW/2uwbOvmI1rel6DzRmbkVWehcTIREzuNRnvpbwHjULjtPjpiSFdLnYjdmfeLqCm1828jfOwcdZGADW/6vyW/1uTt5Mgh0ySYBd2KGQKpBam4oVtL2B75naUVLs3nPvSnnctXRjAemH1xpXTV+Ljwx+jytKwmBKiCHG8gepidVh982o8v+15ZOuzoZAUiNREYnCnwbhzyJ31bjdryCy8uvtVp88BSZIgl+Sw2u3AhV+pIEkwWJseV//klonIqWpe4bDu/Xot6TW3flFrjAQZrKJlxaO4yDioZWqcLD3Z6PUCAqlFqbgy7soG1yX1SsLj1scbuVX929fMH9gwBxIkFFfntLj4GKirDhMRERGRe5oqsg3rOsxpB4ZhnYdhzR/WODoXNFUwu5QuVodlU5dhwbYF+CLV+Y/DEiQM7TwUk3pO8uj4LaGL1eG9G9/D5ozNWHN4DX4r+M3xHVQlV6FLaBdY7VbkV9XMeyyTZBBCQCFToH9Mf8hlcgyJHNKgINleeFxA27FjB6677jqMGzcOO3fuxJIlS9CpUyccPnwY7733Hr788ktfxEluqq0o/5b/G0xWE2SSDHHhcXjjujcaPMBrn9iXFnPq9kKqVXvbJzc9ibQS93qBqWQq/C7xd40W5JqjZlJ2736xNVgNjt53QM2KnhKkJnu5DO40GL/++VcAQPjL4ag0Nz7sM1QZ2mBbbdfeuhIjE6GWq2G0Glt0H2WQ4dHLH3VcVslVMFrdG9+/KWMTVu5diYTIBNz/zf1unKuml5UEQC5T4HzFeYz7YJzHk3ZarBeLfKmFqUjJS/Ho9nXZYUeYKsxx+fHRj2PJriX1ii0yyPDEmCfq3a52mGZTz4WLw2IbF6oKRaW5smYRBHtNDzS5kDkbReuw6uAzbhfPJEiID49HflW+YxVim7BBq9Bi3uh5mH3FbPx9y9+hN+vdOl5d3nh+Te0zFdHaaLyy+xWnxys3ljd6nS5WB6VCCZvV+XPPVQFfQMBub/nCEtXm6gY9MomIiIio7Xj2qmcdwzxtwgYhBNQKNe4cfKdjxFZL1HYKWbl3JRbsWIBCQ2G967UKLab3nY5FExa1+mfO2u+jj1558Xtj7fxttd+FCqsK8U3aNx71vGsPPC6gPf3003jxxRfx+OOPIzw83LF9woQJWL58uVeDI8/VrSg3VRSr3d/dJ2xtkWHI20McvXxcUclVWDZ1mddeEMLV4R59wZcgQSlXwmxz3aOm7jEFBKzCCqWkhAoqVIuGPcJCFCH1ijTdwrvhZHHjvW0m9JjgVqxJvZLwQcoHOFZwzKMVWy5164Bb6xVKx3cfjx8zfnTrtgICL+56EaPjRzd4gW+MSq6CXdghk2SwCQvOVZxr8SIIC7YtcLm4hTvGJIxx/L144mIAwPsp76PUWIoOmg54YPgDju11uftckCSp0YKYBAkdNB1wvuI8bEKgdoigHUCF2fV92pq1tsnz1vrLyL/g7elvu5z7YWrvqViXus7jVUpb2nMrLiwOc66sKZi/f/B9FBgKGt3PZDU5XQQiISIB6SXN74lnRcuHX1qFtcHcfERERETUdrgzzNMbZl8xOygKT419F2rsO1N753EB7ciRI1izZk2D7bGxsSgubt6qbORdnhTFmnPs2JBY5FY6n1urlh12r8YxousI/Pfwf5vcTwYZRsePRpgqDPlV+cgoyYDe4llvHCEEro6+GidtJ3G2/CyAmsKJWq5GlDaqXpFm7hVz8WTykw0miewV2QsLr1no1vl0sTq8OOFFPJn8JE6XnPaoiCaX5JBLcozqNqrB+ZZOXYrBbw12u5CSU5mDn8/97OY5FYCwwS6sHo+fd+b7U9+36PYSJNw5uP6wy8UTF3v1xT8uIq7RiT67hXWDSq660EOtfnsXVp9F8pmPkNTz7ga3O5i32aPVNmsLVK66pS+asAg5+hwcLTh6cdEKSIgNicWDIx/EHYPvwCeHP8EHKR94bfVXAHh7+tuO5/z8q+fjsR8bn2DVIixO53q4dcCtTueZay1ySY492Xv8GgMRERER+VZTwzyJLiXz9AZRUVHIzW1YPElJSUFcXJxXgqLANv2y6dAqtFDKlJA5eQhJkBodvtgSSb2SXK6AWEsuyXFNj2uwbOoyPDD8AXTQdmjW+W7odAOWTlmKwZ0Ho2NIR8SGxCIhMgFj48fWK9LMvmI2Xkt6Df2i+yFMGYYYbQxu092GDXdu8KiAOL3fdKy/fT2eGveU27cJV4WjV1Qv3DvsXrx343uNDjnsFNZwEQdXmloNNFoTjWhtNMw2I0z2areLZ86GPtbePrUwtdH5yjwxtfdUn3eB/vvYvyNEEQIJkmPOvBBFCJ67+jmEqkKdFj+/PLG00e3v//as2+dWSkq37p8uVod3b3wX/5j4D8wbMw9vTH0Dx/56DPl/y8fiiYuhi9VhyaQleObqZyCXyd0+vytqubreB5CHRrpeHdnZXA+zhsyCTPL4rclr5JBDo9BwHjQiIiIiIqrH4x5oM2fOxN///nd88cUXkCQJdrsdP/30E5588kncfXfD3hXU9ly6+ECFqQIWu8VRUIBUUyyZkOje8EV36WJ1UMgUTRdsJMBkMzl64n18+GOcrTjr0bkkSUKCJgHT+k5Dv9h+TQ6J9VbX3NrCxv/9/H8u76cECcM6D8N///DfJgsqHbUdUVBZ4PFwvsYoJSUeHPUgPj3yKUoMJR4N+XNWkCitLsWGtA34Obvpnm+u3D7gdnx222ctOoY7avPc2Go85/TnsD1ze6O301uKcF6fjsTIyxzb3v/tWZSamu7NWWtgZ/cXaXGnJ2pSr6QLq8+2XGPDlUOlUFSJhkXRSFWky2Hlvqhd1Z3r0BWtUotwdTjGxo/1fhBERERERBS0PC6gLVmyBPfeey/i4uIghMCAAQNgs9kwc+ZMzJ8/3xcxUoC5dPEBtVyN79O/R0ZZBsxWM1QKFQbFDsLCCQu9fu7YkFjkVOZABjnsTgpCVru13vCwUJXnPeGUCqXjb18OiXUmVBWKMmMZgIZf/GO0MZjQY4LbE052Ce+CUyWnYLO1vID29FVP447Bd2DF3hVeKcgBgBVWzN82Hyq5yuPbSpCggAJPjH0CLye13rA/ZwXTWUNmuRx++P3p9zF7xKuOy7vPfeXRef9xzT882r8pulgd1HJ1g+HHnhreeThev/b1Btuvj70eXxV8Ve+xIoccj13Z+NBOoKYnojsr4Xqqo7YjiqqLXO4TqgxFXERcoyuwEhERERFR++ZxAU2pVOK///0v/vGPf+DgwYOw2+0YPnw4+vbt64v4KEBdWlS6a8hdbi9c0BIPDH8Ar/z0CmxNrLRXd3jYmPgx2JG5w6MhWbEhsc2O0RuSeiZh3Yl1sAu7o5ggk2T4ff/f4/MZn3t0rLjwOERro5FTmdOimHQddY65xCw278x5VutE0Ql0CvVsqClQ06stRB6COwbd4dV4mksXq4NWoXUsBX2p1KI6vewkwGRvfL/GdArp5JM5GoZ2Hopfzv/S7NuHKcOc9oSc2W0m+vTtg9W/rW5yEYdayRnJiNBEeLyaqysjuoxAdEg0NmdsdrqPBAm3DbgNI7qO8NnrFxERERERBS+PC2i1evXqhV69esFms+HIkSMoLS1Fhw7Nm2uKgl9r9dKqu6pi3YJQ3V5a3cK61Ytl1pBZ+Pfef6PCXOH2eYZ2GuqliJtn0YRFOK8/j6MFR2G2maGSqzCo0yAsmrDI42ON6DoCyaeTWxxT3ZVXvT0/lMlmgt7c+EIPtQVEZ+dUSSroYgKn2DG973R8kfpFo9dVWy/ex8zSNLg7VjFEEYKF4xd6IbqGnr36Wdz02U3NXkhg3uh5Lp/7C8cvxJLJ7q9mmVWehZFdR+Lnc3tQba2GTALswt7sx5wECZ/8/hOcLjmNAzkHnBbmHhz5IFZOX9mscxARERERUdvn8UzNc+fOxfvvvw8AsNlsGD9+PEaMGIGEhARs377d2/ERNbB44mKcf+I83rruLcdk7rX/1U7mXpcuVoc/DvqjR8PCJvac6O2wPaKL1eG9G9/DixNfxMNXPIwXJ77Y6CIB7kjqldTk0DV3GG1Gx98R6ogWH+9StUNWLyWXaiZ1d6bag15crWHRhEVQy9UNtkuQEKKKdFzeePpzSGh8An855OgZ2ROdQjphaKeheC3pNZ8tfz2933REa6ObdVuNQuP15a0TIxMRoY7Ajf2mo19MX8SGxKJreNdmD+tUyVTQxeowvd90fHTzRxjaaSjkddo9Uh2J569+nsUzIiIiIiJyyeMeaF9++SXuuusuAMC3336LjIwMnDhxAh999BGee+45/PTTT14PkqgxriZzv9Tc0XPx9YmvUWAoaPK4SkmJCT0m4EzBGa/H7Alv9erTxepgtTW+MqSnx6k1pNMQbMnc0uJjukOSJISpwpwOi3R3FdDWoovV4aqEq7AzaycswoLaPnQKmRrdwvo49vspe5PTRRjevO5NnxXMGjOs6zCXwxud0cq1Xo8lqVcSjhYcRUl1CcbGj0W5qRzR2misObKmWau01l1llEuVExERERFRc3ncA62oqAhdunQBAHz//feYMWMGLrvsMjzwwAM4cuSI1wMkcmX2FbNxaPYh5P8tH4dmH3JadNDF6jA2YWzNKqFNmNRrUkANCQwEEiQ8evmjjss39r+xWcdRSIp6vX/coVVoYbA4n+ReIWv2SHSfuSL+CnTQdoBKpoUMMsgkOWSQIVIV49gnt/IcGhvCGaGKaNXiGQDMuWIOlDJl0zteQq1o2NOupXSxOswbPQ/jE8ejg7YDxieOx7zR89Azqmezjtc9qruXIyQiIiIiovbI4wJa586dcfz4cdhsNmzcuBGTJ08GABgMBsjlnn0xJmpNE3pOaHKeJ41c0+hqgsEuTBXWotvPGDCjXs+dpF5JUEieFa5kkGFQp0Een7tHZA+YbWan18fUKUoFEoVMAblMBpmkACDBYjcjtXgPsvXpSC1MhcFa2ejtvL1Agzum95uOp8c97XFxc0iXIT6JRxerw6NXPorXpryGR698FLpYHW7odwNiQ2KhlC6u1iqHHLoYHZRS48U/lUyFxy53vuInERERERGRuzwuoN13332YMWMGBg0aBEmSkJSUBAD49ddf0b9/f68HSOQtSb2SmtwnISKhTa6+d23vayGXGhZHRnQZ4fJ2tfNDfXbbZ/W262J1iNJEOb3d2ISxGBs/FhHqCGjkGkSoIzA6fjT+MeEfsMH1CqqXuqH/DbAL54XPyyMu9+h4rcFkMyFMFQaL1QSrMMEurBCwo8hwHrvOrsPHhz+GswUEmjvXV0stnrgYb173JrqFdYNWrkW4KhxxYXHQyBuff65TSKd6vRJ9bdaQWRifOB4DOukwKHYQhnYeilt0t+CrGV9h+dTl6BbWzbGvBAlx4XFYdu2yVu/NR0REREREbZPHY58WLlyIQYMG4dy5c7jtttugVtcM4ZHL5Xj66ae9HiCRt+hidZBD7rKAkxCZ0IoRtZ5FExYhR5+DowVHYbQZoZFrMKjTILx747sY/Nbgem1Su6KpUqZE2dNlTo85rOsw7Diz48I8Xxdp5Bo8M+4Z9I7ujc0Zm5FVnoXEyERM7jW5JgeSHDbhXhFNJVPhzsF34qVdLzndZ3z0eLeO1ZoSIxORq8+FFTVzz9WsIClgEUYcyE3GwQLnCx+EqEJaKcqGZl8xG9f0vKZe3npG9cS3J7/FhpMbUFpdCoVcgcGdBuOZq55p1fnEdLE6LJ6wuNHHlC5Wx0IZERERERH5VLMmD7r11lsbbLvnnntaHAyRr42OH42fsp0vdKGSq5xeF8x0sTq8e+O7jRYf4iPjkVWeBeBi8QwA4sPjXR5zzhVzcKr4FAqqCmC2mWEXdmgUGjwx5glHYaWx3nzR2mgUGgqbjFkGGa7ufjV0sTqEKcOgt+gb7BOiCEGCJvCKnkm9kvDExicave5s5QmXtx3RzXWvQF9rbPGKQJl431sLaxAREREREXmqWQW0LVu2YOnSpUhNTYUkSejfvz/mzp3rmA+NKFC9e+O7GPDWAKfXnyn178qbvuSs+PD3sX/Hk8lPotpa7Rg+qFVo8bexf3N5vNqiyupDq5FZnokekT1w77B7myy2PDTyIby8+2VYheuVQbuEdcHNupsBANf2uRbrUtfVm8NOBhmu63Ody2P4iy5WB0mSnI3SdKk1h0USERERERGRezwuoK1YsQLz5s3Drbfeijlz5gAA9uzZg2nTpuH111/HI4884vUgibxFF6uDRq6B0WZs9PpSY2krR+R/tUPfVh1YhdzKXHQN64oHRz7o1pC46f2me9w7afHExQCAf+z6h8v9Ks2VmNRzUs1tJiyuGYJaeBRmqxkqhQqDYgfhhd+9gDN7A7PoqVFqYDF7tiBAbEhswPT2IiIiIiIioos8LqC9/PLLWLp0ab1C2WOPPYZx48ZhyZIlLKBRwOse1R0ni082el23iG6Nbm/rZl8xu1XnkFo8cTFW/7Ya5yrOOd2n2lrt6DGni9XhvRvfazAEtU9UH5xBYBbQBnUahF+yf/HoNr/X/d5H0RAREREREVFLeLwKZ0VFBaZOndpg+5QpU1BRUeGVoIh8ae4Vc6GSNZzrTCPX4C/D/+KHiNqnLmFdXF5vs9dfaEAXq8OjVz6K16a8hkevfDTg58J69qpnPVpRU4KEOVfO8WFERERERERE1FweF9BuvPFGrF+/vsH2//3vf7jhhhu8EhSRL82+YjaWXbsM3cK6QQ455JIcceFxeH3K61zJrxVN7uV6zkSlTNlKkfjG9H7TMWPADLf3nzFgRsAXBYmIiIiIiNort4ZwvvHGG46/dTodlixZgu3bt2PMmDEAauZA++mnn/DEE42vOkcUaFp7yCI1NGvILPyQ/gMO5R9q9Pq2UEz67LbPgC+AtcfXutwvTBlWsy8REREREREFJLcKaEuXLq13uUOHDjh+/DiOHz/u2BYVFYUPPvgA8+fP926ERNQm6WJ1WPOHNfjzN3/GT9k/ObZLkBATEoN/THC9yECw+Oy2z1DxSQV+OP1Do9fLIcenf/i0laMiIiIiIiIiT7hVQDtzJjAn6Sai4KaL1WH3A7uxIW0DVh9ajczyTPSI7IF7h93bplaj/P6u7zF7w2y8c+Ad2GF3bO8c0hnv3fhem7qvREREREREbZHHq3DWKioqgiRJ6NixozfjIaJ2aHq/6W2+iLRy+kqsnL7S32EQERERERFRM3i0iEBZWRkefvhhxMTEoHPnzujUqRNiYmLwyCOPoKyszEchEhERERERERER+Y/bPdBKSkowZswYnD9/HnfeeSd0Oh2EEEhNTcXq1auxZcsW/Pzzz+jQoYMv4yUiIiIiIiIiImpVbhfQFi9eDJVKhdOnT6Nz584NrpsyZQoWL17cYMEBIiIiIiIiIiKiYOb2EM6vv/4ar732WoPiGQB06dIF//znP7F+/XqvBlfXkiVLMHbsWISEhCAqKspn5yEiIiIiIiIiIqrL7QJabm4uBg4c6PT6QYMGIS8vzytBNcZsNuO2227D7NmzfXYOIiIiIiIiIiKiS7k9hDMmJgaZmZmIj49v9PozZ874dEXORYsWAQBWr17ts3MQERERERERERFdyu0C2tSpU/Hcc88hOTkZKpWq3nUmkwnPP/88pk6d6vUAW8JkMsFkMjkuV1RUAAAsFgssFou/wnKojSEQYqH6mJvgwDwFLuYmeDBXwYF58i+2f/BgrgIT8xI8Ai1XgRJHIAi03LQVnrSnJIQQ7uyYnZ2NUaNGQa1W4+GHH0b//v0BAMePH8dbb70Fk8mE/fv3IyEhoXlRu2n16tWYO3cuysrKmtx34cKFjp5rda1ZswYhISE+iI6IiIiIiIiImsvQfaTj75CzB/wYCbUHBoMBM2fORHl5OSIiIlzu63YBDagZpvnXv/4VmzZtQu3NJElCUlISVqxYgT59+ngUqLMCV1379u3DqFGjHJc9KaA11gMtISEBRUVFTTZMa7BYLEhOTkZSUhKUSqW/w6E6mJvgwDwFLuYmeDBXwYF58i+2f/BgrgIT8xI8AiFXXx7Nd/x966CGixi2V4GQm7aooqICMTExbhXQ3B7CCQA9e/bEDz/8gNLSUqSnpwMA+vTpg+jo6GYF+sgjj+CPf/yjy3169OjRrGMDgFqthlqtbrBdqVQG1AMu0OKhi5ib4MA8BS7mJngwV8GBefIvtn/wYK4CE/MSPAIlV4EQQ6AJlNy0FZ60pUcFtFodOnTAFVdc0Zyb1hMTE4OYmJgWH4eIiIiIiIiIiMhXmlVA84ezZ8+ipKQEZ8+ehc1mw6FDhwDU9IALCwvzb3BERERERERERNRmBU0B7YUXXsB//vMfx+Xhw4cDALZt24ZrrrnGT1EREREREREREVFbJ/N3AO5avXo1hBAN/rF4RkREREREREREvhQ0BTQiIiIiIiIiIiJ/YAGNiIiIiIiIiIjIBRbQiIiIiIiIiIiIXGABjYiIiIiIiIiIyAUW0IiIiIiIiIiIiFxgAY2IiIiIiIiIiMgFFtCIiIiIiIiIiIhcYAGNiIiIiIiIiIjIBRbQiIiIiIiIiIiIXGABjYiIiIiIiIiIyAUW0IiIiIiIiIiIiFxgAY2IiIiIiIiIiMgFFtCIiIiIiIiIiIhcYAGNiIiIiIiIiIjIBRbQiIiIiIiIiIiIXGABjYiIiIiIiIiIyAUW0IiIiIiIiIiIiFxgAY2IiIiIiIiIiMgFFtCIiIiIiIiIiIhcYAGNiIiIiIiIiIjIBRbQiIiIiIiIiIiIXGABjYiIiIiIiIiIyAUW0IiIiIiIiIiIiFxgAY2IiIiIiIiIiMgFFtCIiIiIiIiIiIhcYAGNiIiIiIiIiIjIhaAooGVmZuKBBx5Az549odVq0bt3byxYsABms9nfoRERERERERERURun8HcA7jhx4gTsdjtWrVqFPn364OjRo/jzn/+MqqoqvPbaa/4Oj4iIiIiIiIiI2rCgKKBNnToVU6dOdVzu1asX0tLSsHLlShbQiIiIiIiIiIjIp4JiCGdjysvLER0d7e8wiIiIiIiIiIiojQuKHmiXOn36NN58803861//crmfyWSCyWRyXK6oqAAAWCwWWCwWn8bojtoYAiEWqo+5CQ7MU+BiboIHcxUcmCf/YvsHD+YqMDEvwSPQchUocQSCQMtNW+FJe0pCCOHDWFxauHAhFi1a5HKfffv2YdSoUY7LOTk5GD9+PMaPH4/33nuvWcdfs2YNQkJCmhc0EREREREREfmEoftIx98hZw/4MRJqDwwGA2bOnIny8nJERES43NevBbSioiIUFRW53KdHjx7QaDQAaopnEyZMwJVXXonVq1dDJnM9ArWxHmgJCQkoKipqsmFag8ViQXJyMpKSkqBUKv0dDtXB3AQH5ilwMTfBg7kKDsyTf7H9gwdzFZiYl+ARCLn68mi+4+9bB3X2SwyBKBBy0xZVVFQgJibGrQKaX4dwxsTEICYmxq19z58/jwkTJmDkyJH48MMPmyyeAYBarYZarW6wXalUBtQDLtDioYuYm+DAPAUu5iZ4MFfBgXnyL7Z/8GCuAhPzEjwCJVeBEEOgCZTctBWetGVQzIGWk5ODa665Bt27d8drr72GwsJCx3VdunTxY2RERERERERERNTWBUUBbdOmTTh16hROnTqF+Pj4etf5cQQqERERERERERG1A02PgwwA9957L4QQjf4jIiIiIiIiIiLypaAooBEREREREREREfkLC2hEREREREREREQusIBGRERERERERETkAgtoRERERERERERELrCARkRERERERERE5AILaERERERERERERC6wgEZEREREREREROQCC2hEREREREREREQusIBGRERERERERETkAgtoRERERERERERELrCARkRERERERERE5AILaERERERERERERC6wgEZEREREREREROQCC2hEREREREREREQusIBGRERERERERETkAgtoRERERERERERELrCARkRERERERERE5AILaERERERERERERC6wgEZEREREREREROQCC2hEREREREREREQusIBGRERERERERETkAgtoRERERERERERELrCARkRERERERERE5ILC3wEQEREREREREQFAjGE/epR/hXBzJmAZBPScBcSO9XdYRCygEREREREREVEAKPwZw/MXQWmrgFUeBuRvA0oPAiOWsohGfschnERERERERETkf2c+hlboUanqCbOyExDWBzCXA2c+8XdkROyBRkREREREREQBQH8KmpAohEkKhKoUgCQBinBAn+7vyIiCpwfajTfeiO7du0Oj0aBr166YNWsWcnJy/B0WEREREREREXlDeB/IrZWIVCugkEmAEIBVD0Rc5u/IiIKngDZhwgR8/vnnSEtLw1dffYXTp0/j1ltv9XdYREREREREROQNPWcBqkig8hRQnVfzf1Uk0OMuf0dGFDxDOOfNm+f4OzExEU8//TRuvvlmWCwWKJVKP0ZGRERERERERC0WO7ZmwYAzn9QM2+x4+YVVOMf4OzKi4Cmg1VVSUoL//ve/GDt2rMvimclkgslkclyuqKgAAFgsFlgsFp/H2ZTaGAIhFqqPuQkOzFPgYm6CB3MVHJgn/2L7Bw/mKjAxL8EjIHIVdTkw/PL62/jYCYzctEGetKckhBA+jMWr/v73v2PFihUwGAwYPXo0NmzYgI4dOzrdf+HChVi0aFGD7WvWrEFISIgvQyUiIiIiIiIiogBmMBgwc+ZMlJeXIyIiwuW+fi2gOStw1bVv3z6MGjUKAFBUVISSkhJkZWVh0aJFiIyMxIYNGyBJUqO3bawHWkJCAoqKippsmNZgsViQnJyMpKQkDkMNMMxNcGCeAhdzEzyYq+DAPPkX2z94MFeBiXkJHsxV4GJufKOiogIxMTFuFdD8OoTzkUcewR//+EeX+/To0cPxd0xMDGJiYnDZZZdBp9MhISEBe/bswZgxjY+HVqvVUKvVDbYrlcqAesAFWjx0EXMTHJinwMXcBA/mKjgwT/7F9g8ezFVgYl6CB3MVuJgb7/KkLf1aQKstiDVHbce5uj3MiIiIiIiIiIiIvC0oFhHYu3cv9u7di6uuugodOnRARkYGXnjhBfTu3dtp7zMiIiIiIiIiIiJvkPk7AHdotVqsW7cOkyZNQr9+/XD//fdj0KBB2LFjR6NDNImIiIiIiIiIiLwlKHqgDR48GFu3bvV3GERERERERERE1A4FRQHNW2rnTauoqPBzJDUsFgsMBgMqKio4CWCAYW6CA/MUuJib4MFcBQfmyb/Y/sGDuQpMzEvwYK4CF3PjG7X1odp6kSvtqoCm1+sBAAkJCX6OhIiIiIiIiIiIAoFer0dkZKTLfSThTpmtjbDb7cjJyUF4eDgkSfJ3OKioqEBCQgLOnTuHiIgIf4dDdTA3wYF5ClzMTfBgroID8+RfbP/gwVwFJuYleDBXgYu58Q0hBPR6Pbp16waZzPUyAe2qB5pMJkN8fLy/w2ggIiKCT4AAxdwEB+YpcDE3wYO5Cg7Mk3+x/YMHcxWYmJfgwVwFLubG+5rqeVYrKFbhJCIiIiIiIiIi8hcW0IiIiIiIiIiIiFxgAc2P1Go1FixYALVa7e9Q6BLMTXBgngIXcxM8mKvgwDz5F9s/eDBXgYl5CR7MVeBibvyvXS0iQERERERERERE5Cn2QCMiIiIiIiIiInKBBTQiIiIiIiIiIiIXWEAjIiIiIiIiIiJygQW0S7z88su4/PLLER4ejk6dOuHmm29GWlpavX2EEFi4cCG6desGrVaLa665BseOHau3zzvvvINrrrkGERERkCQJZWVlDc518uRJ3HTTTYiJiUFERATGjRuHbdu2NRnjkSNHMH78eGi1WsTFxWHx4sW4dCq7f//739DpdNBqtejXrx8++ugjzxsjwAR6boxGI+69914MHjwYCoUCN998c6P77dixAyNHjoRGo0GvXr3w9ttve9QOga4t5Ck3NxczZ85Ev379IJPJMHfuXE+bISC1hdysW7cOSUlJiI2NRUREBMaMGYMff/zR47YIdK2Zq4MHDyIpKQlRUVHo2LEj/vKXv6CysrLJGJt6L2qrz6O62kKegvk51Rbaf/fu3Rg3bhw6duwIrVaL/v37Y+nSpc1rkADVFvJU108//QSFQoFhw4a53QaBqi3kZvv27ZAkqcG/EydONK9RAlRbyBUAmEwmPPfcc0hMTIRarUbv3r3xwQcfeN4gAaQt5Obee+9t9Hk0cODA5jVKG8YC2iV27NiBhx9+GHv27EFycjKsViumTJmCqqoqxz7//Oc/8frrr2PFihXYt28funTpgqSkJOj1esc+BoMBU6dOxbPPPuv0XNdffz2sViu2bt2KAwcOYNiwYZg+fTry8vKc3qaiogJJSUno1q0b9u3bhzfffBOvvfYaXn/9dcc+K1euxDPPPIOFCxfi2LFjWLRoER5++GF8++23LWwd/wr03NhsNmi1Wjz22GOYPHlyo/ucOXMG06ZNw9VXX42UlBQ8++yzeOyxx/DVV181o0UCU1vIk8lkQmxsLJ577jkMHTq0Ga0QmNpCbnbu3ImkpCR8//33OHDgACZMmIAbbrgBKSkpzWiRwNVaucrJycHkyZPRp08f/Prrr9i4cSOOHTuGe++912V87rwXtdXnUV1tIU/B/JxqC+0fGhqKRx55BDt37kRqairmz5+P+fPn45133mlZ4wSQtpCnWuXl5bj77rsxadKk5jVGgGlLuUlLS0Nubq7jX9++fZvXKAGqreRqxowZ2LJlC95//32kpaXh008/Rf/+/ZvfMAGgLeRm+fLl9Z4/586dQ3R0NG677baWNU5bJMilgoICAUDs2LFDCCGE3W4XXbp0Ea+88opjH6PRKCIjI8Xbb7/d4Pbbtm0TAERpaWm97YWFhQKA2Llzp2NbRUWFACA2b97sNJ633npLREZGCqPR6Nj28ssvi27dugm73S6EEGLMmDHiySefrHe7OXPmiHHjxrl/x4NAoOWmrnvuuUfcdNNNDbY/9dRTon///vW2Pfjgg2L06NFuHTcYBWOe6ho/fryYM2eOW8cLNsGem1oDBgwQixYtcmvfYOWrXK1atUp06tRJ2Gw2x7aUlBQBQKSnpzuNx533orra8vOormDPU61gfU61lfa/5ZZbxF133dXk/Q1WwZyn22+/XcyfP18sWLBADB061JO7HRSCMTfOztnWBWOufvjhBxEZGSmKi4ubdZ+DRTDm5lLr168XkiSJzMxMt+5ze8IeaE0oLy8HAERHRwOo6UGUl5eHKVOmOPZRq9UYP348fv75Z7eP27FjR+h0Onz00UeoqqqC1WrFqlWr0LlzZ4wcOdLp7X755ReMHz8earXase3aa69FTk4OMjMzAdT86q/RaOrdTqvVYu/evbBYLG7HGOgCLTfu+OWXX+rFB9Tkb//+/W0qN3UFY57ai7aQG7vdDr1e77gPbZWvcmUymaBSqSCTXfw4oNVqAdQMLXPGnfei9qgt5CmYn1Ntof1TUlLw888/Y/z48W7HF2yCNU8ffvghTp8+jQULFrgdU7AJ1twAwPDhw9G1a1dMmjTJrSlxgl0w5uqbb77BqFGj8M9//hNxcXG47LLL8OSTT6K6utrt+IJBMObmUu+//z4mT56MxMREt+NrL1hAc0EIgccffxxXXXUVBg0aBACO4UedO3eut2/nzp1dDk26lCRJSE5ORkpKCsLDw6HRaLB06VJs3LgRUVFRTm+Xl5fX6Lnrxnbttdfivffew4EDByCEwP79+/HBBx/AYrGgqKjI7RgDWSDmxh3O8me1WttMbuoK1jy1B20lN//6179QVVWFGTNmePW4gcSXuZo4cSLy8vLwf//3fzCbzSgtLXUMHcjNzXV6O3fei9qbtpKnYH1OBXv7x8fHQ61WY9SoUXj44Yfxpz/9ye34gkmw5ik9PR1PP/00/vvf/0KhULgdUzAJ1tx07doV77zzDr766iusW7cO/fr1w6RJk7Bz50634ws2wZqrjIwM7N69G0ePHsX69euxbNkyfPnll3j44Yfdji/QBWtu6srNzcUPP/zQZt+HWooFNBceeeQRHD58GJ9++mmD6yRJqndZCNFgmytCCPz1r39Fp06dsGvXLuzduxc33XQTpk+f7ngCDBw4EGFhYQgLC8N1113n8tx1tz///PO47rrrMHr0aCiVStx0002OsdFyudztGANZoObGHU3lry0J5jy1dW0hN59++ikWLlyItWvXolOnTs06RjDwZa4GDhyI//znP/jXv/6FkJAQdOnSBb169ULnzp0d7xfNfS9qb9pCnoL5ORXs7b9r1y7s378fb7/9NpYtW9bo/WgLgjFPNpsNM2fOxKJFi3DZZZe5HU+wCcbcAEC/fv3w5z//GSNGjMCYMWPw1ltv4frrr8drr73mdnzBJlhzZbfbIUkS/vvf/+KKK67AtGnT8Prrr2P16tVtphdasOamrtWrVyMqKsrpgnjtXdv8CcULHn30UXzzzTfYuXMn4uPjHdu7dOkCoKZa27VrV8f2goKCBpVdV7Zu3YoNGzagtLQUERERAIC33noLycnJ+M9//oOnn34a33//vWNYX233zC5dujSoFBcUFAC4WEnWarX44IMPsGrVKuTn5zt+mQkPD0dMTIynTRFwAjU37nCWP4VCgY4dO7p9nGAQzHlq69pCbtauXYsHHngAX3zxhdMFB9oCX+cKAGbOnImZM2ciPz8foaGhkCQJr7/+Onr27AkAzX4vak/aQp6C+TnVFtq/9jiDBw9Gfn4+Fi5ciDvuuMOjGANdsOZJr9dj//79SElJwSOPPAKgphAghIBCocCmTZswceJEj+IMNMGaG2dGjx6NTz75xKP4gkUw56pr166Ii4tDZGSkYx+dTgchBLKzs4N+4Ydgzk0tIQQ++OADzJo1CyqVyqPY2gv2QLuEEAKPPPII1q1bh61btzoejLV69uyJLl26IDk52bHNbDZjx44dGDt2rNvnMRgMAFBvDHPtZbvdDgBITExEnz590KdPH8TFxQEAxowZg507d8JsNjtus2nTJnTr1g09evSodyylUon4+HjI5XJ89tlnmD59eoPzBZNAz407xowZUy8+oCZ/o0aNglKpdPs4gawt5Kmtaiu5+fTTT3HvvfdizZo1uP766z26bbBorVzV1blzZ4SFhWHt2rXQaDRISkoC0PL3orasreQpWJ9TbaX9G7tfJpOpWfEFomDPU0REBI4cOYJDhw45/j300EPo168fDh06hCuvvLJZMQaCYM+NMykpKfUKFW1BW8jVuHHjkJOTg8rKSsc+J0+ehEwmq1dwCjZtITe1duzYgVOnTuGBBx5oVlztgpcXJQh6s2fPFpGRkWL79u0iNzfX8c9gMDj2eeWVV0RkZKRYt26dOHLkiLjjjjtE165dRUVFhWOf3NxckZKSIt59913HanQpKSmOVUcKCwtFx44dxe9//3tx6NAhkZaWJp588kmhVCrFoUOHnMZXVlYmOnfuLO644w5x5MgRsW7dOhERESFee+01xz5paWni448/FidPnhS//vqruP3220V0dLQ4c+aM9xusFQV6boQQ4tixYyIlJUXccMMN4pprrhEpKSkiJSXFcX1GRoYICQkR8+bNE8ePHxfvv/++UCqV4ssvv/RuY/lRW8iTEMKxbeTIkWLmzJkiJSVFHDt2zHsN5QdtITdr1qwRCoVC/Pvf/653H8rKyrzbWH7WWrkSQog333xTHDhwQKSlpYkVK1YIrVYrli9f7jI+d96LhGibz6O62kKegvk51Rbaf8WKFeKbb74RJ0+eFCdPnhQffPCBiIiIEM8995wXW8q/2kKeLtVWVuFsC7lZunSpWL9+vTh58qQ4evSoePrppwUA8dVXX3mxpfyvLeRKr9eL+Ph4ceutt4pjx46JHTt2iL59+4o//elPXmyp1tcWclPrrrvuEldeeaUXWqXtYgHtEgAa/ffhhx869rHb7WLBggWiS5cuQq1Wi9/97nfiyJEj9Y6zYMGCJo+zb98+MWXKFBEdHS3Cw8PF6NGjxffff99kjIcPHxZXX321UKvVokuXLmLhwoX1lqA9fvy4GDZsmNBqtSIiIkLcdNNN4sSJEy1uG38LhtwkJiY2euy6tm/fLoYPHy5UKpXo0aOHWLlyZYvaJdC0lTw1dn1iYmJLmsbv2kJuxo8f3+j199xzT0ubJ6C0Zq5mzZoloqOjhUqlEkOGDBEfffSRWzE29V7k7H4E+/OorraQp2B+TrWF9n/jjTfEwIEDRUhIiIiIiBDDhw8Xb731lrDZbC1qm0DSFvJ0qbZSQGsLuXn11VdF7969hUajER06dBBXXXWV+O6771rULoGoLeRKCCFSU1PF5MmThVarFfHx8eLxxx+vV2gKRm0lN2VlZUKr1Yp33nmn2W3RHkhCXJhBjoiIiIiIiIiIiBoI3gmxiIiIiIiIiIiIWgELaERERERERERERC6wgEZEREREREREROQCC2hEREREREREREQusIBGRERERERERETkAgtoRERERERERERELrCARkRERERERERE5AILaERERERERERERC6wgEZERETUBi1cuBDDhg3zdxhEREREbYIkhBD+DoKIiIiI3CdJksvr77nnHqxYsQImkwkdO3ZspaiIiIiI2i4W0IiIiIiCTF5enuPvtWvX4oX/b+fudSnb4zgOfzdnJCPY3ilEJzs7aMwVTDeFhEyj0IhKN5WCYjIapUItVBJuQthGoXABkhETL1O4AERkm86JM7K7YzvH8ySrWP9ird+//ayXr19zfHz8uPb+/fsUi8V6jAYA8L/kE04AgP+Y/v7+x6NYLKZQKPyx9s9POGdmZjI5OZnl5eX09fWlvb09S0tLub+/z/z8fDo7OzMwMJD19fUn97q8vMzU1FQ6OjrS1dWViYmJ/Pz582U3DABQZwIaAMAbsbOzk1+/fqVSqWRlZSXfvn3L+Ph4Ojo6cnh4mLm5uczNzeX8/DxJcn19nY8fP6alpSWVSiXfv39PS0tLPn36lLu7uzrvBgDg5QhoAABvRGdnZ1ZXV1MqlTI7O5tSqZTr6+ssLi5maGgoCwsLaWpqysHBQZJka2srDQ0NWVtby+joaMrlcjY2NnJ2dpbd3d36bgYA4AX9Ve8BAAB4GcPDw2lo+Pv5aV9fX0ZGRh7PGxsb09XVlaurqyTJ0dFRfvz4kdbW1ifXub29zcnJycsMDQDwCghoAABvxLt3756cFwqFZ9eq1WqSpFqt5sOHD9nc3PzjWj09Pf/eoAAAr4yABgDAs8bGxrK9vZ3e3t60tbXVexwAgLrxDzQAAJ41PT2d7u7uTExMZH9/P6enp9nb28uXL19ycXFR7/EAAF6MgAYAwLOam5tTqVQyODiYz58/p1wuZ3Z2Njc3N95IAwDelMLDw8NDvYcAAAAAgNfKG2gAAAAAUIOABgAAAAA1CGgAAAAAUIOABgAAAAA1CGgAAAAAUIOABgAAAAA1CGgAAAAAUIOABgAAAAA1CGgAAAAAUIOABgAAAAA1CGgAAAAAUIOABgAAAAA1/AYj/vybTa40ngAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -313,7 +319,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNAAAAFgCAYAAAB6wIQ3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLLklEQVR4nOzdeXhU9dn/8feZLQvZgIQ9sghCFEQBLWB9FDTWBbdW6VMUq7WtpS6AtVZbF7Ba2z5WsPoTd6la3LVVqtYgiCIiu4CEfYdAErJvs57fH0NCQpLJTJgwM8nn5cVl5sxZ7jn3bOee72KYpmkiIiIiIiIiIiIiTbJEOgAREREREREREZFopgKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIALZIB3Ai+Xw+Dhw4QHJyMoZhRDocERERERERERGJENM0KS8vp1evXlgsgduYdagC2oEDB8jMzIx0GCIiIiIiIiIiEiX27t1Lnz59Aq7ToQpoycnJgP/EpKSkRDgacLvdfPrpp1x00UXY7fZIhyP1KDexQXmKXspN7FCuYoPyFFk6/7FDuYpOykvsUK6il3LTNsrKysjMzKyrFwXSoQpotd02U1JSoqaAlpiYSEpKil4AUUa5iQ3KU/RSbmKHchUblKfI0vmPHcpVdFJeYodyFb2Um7YVzDBfmkRAREREREREREQkABXQREREREREREREAlABTUREREREREREJAAV0ERERERERERERAJQAU1ERERERERERCQAFdBEREREREREREQCUAFNREREREREREQkAFukAxARkcjYtXUeZZueJr5mLzXxmaQM+TX9Bk3y3+n1wpdfQl4e9OwJ554LVmtkAxYRERGR9q9gKex8Fcq3QfJA6D8ZMsZGOioRFdBERDqiXVvnUfr1zaSZNSQY0Mm5h8qvv+LznR9yfsW1MHUq7Nt3dIM+feCJJ+CHP4xc0CIiIiLSvhUshdXTwVUKtmQ4tAiKV8OIWSqiScSpC6eISAe0+us7STNrSLFAggVcJqRa4Yz5b2D+6EcNi2cA+/fDNdfAe+9FJmARERERaf92vorXWcIhMqm2ZUDSQH8xbedrkY5MRAU0EZGOKNWVT4IBNgMqfeA0odoDKf9sZgPT9P9/2jR/904RERERkXAr30a5NwGPCUXVbjAMf0u08q2RjkxEBTQRkY5oi8ukkwU85tFlcVvAUgRGcxuZJuzd6x8bTUREREQk3JIHYvVVHP3x1jTBUw4pp0Q2LhFiuID26KOPYhgG06ZNi3QoIiIx553qeMp9kGiBeAOSLOAtDnLjvLw2jU1EREREOqj+k/FYU0hy7yLekw8V28CRCv2uj3RkIrFZQFuxYgXPPfccp59+eqRDERGJSacMvpEHDkOx92g3zoqUIDfu2bNNYxMRERGRDipjLN/1nkl+4ljclhToPh5GzIaMMZGOTCT2CmgVFRVcd911PP/883Tu3DnS4YiIxKQ5E+ZQ3udmJh508I8yWOeEBQOScHZL9Y810RTDgMxMOPfcExusiIiIiHQYxfEj2LP/cnbk/hiqJkKXsyMdkggAtkgHEKpbb72Vyy67jAsvvJCHH3444LpOpxOn01l3u6ysDAC3243b7W7TOINRG0M0xCINKTexQXk6Pvef+ze+HTgDgBKLwY9P7YaR9j7m//4vGAaGeXSANPNIUc372GOYPh/4fAH3rdzEDuUqNihPkaXzHzuUq+ikvMSOSOfKeP99LrxjGgmHjg4ZYvbujffxxzGvvjoiMUWLSOemvQrlfBqmWe8KKcq98cYbPPLII6xYsYL4+HjOP/98zjjjDGbPnt3k+jNmzGDmzJmNls+bN4/ExMQ2jlZEJLq5kzJwdznJf8PnJXHfWgB6fv01w154gYTDh+vWrUpPZ8PNN5M3Rs3nRURERCT8en79NWf95S9Aw0mtagsWK373O30XlbCrqqpi0qRJlJaWkpISeEybmCmg7d27l1GjRvHpp58yfPhwgBYLaE21QMvMzKSwsLDFE3MiuN1ucnJyyM7Oxm63RzocqUe5iQ3K0/HZeriKb/PKAbBZDK46tdvRO71evnj1QxIKD9FjUD8yJ1wIVmvQ+1ZuYodyFRuUp8jS+Y8dylV0Ul5iR8Ry5fViGzgQ9u9vckZ40zCgd288W7eG9J20PdHrqG2UlZWRnp4eVAEtZrpwrlq1ivz8fEaOHFm3zOv18sUXX/DUU0/hdDqxHvNCiouLIy4urtG+7HZ7VD3hoi0eOUq5iQ3KU+tYLQ2HwWxwDu128kf5f+FL7ZmCPT6+VcdQbmKHchUblKfI0vmPHcpVdFJeYscJz9VXX8H+/c3ebZgm7NuHfdkyOP/8ExdXFNLrKLxCOZcxU0C74IILWL9+fYNlN910E0OGDOF3v/tdo+KZiIiIiIiIiMSAvLyW1wllPZE2EDMFtOTkZIYOHdpgWadOnejatWuj5SIiIiIiIiISI3r2DO96Im3A0vIqIiIiIiIiIiJt5NxzcXV10OwA7YYBmZlw7rknMiqRBmKmBVpTPv/880iHICIiIiIiIiLHw2ql8MYUev6tEJPGs3AaALNnd9gJBCQ6qAWaiEgHZTbzt4iIiIjIiVZ43mAOT4vH1aVhkcyd7oB33oEf/jBCkYn4xXQLNBERERERERGJfSlDfk1Z5TQqzqzEsslCQqkbd9d4XJP+H/2GqHgmkacCmoiIiIiIiIhEVL9Bk9gFbF81my6nHaDI2ouTR06n36CfRDo0EUAFNBERERERERGJAv0GTeLriv8h/8jtCwb1iWg8IvVpDDQREdEgaCIiIiIiIgGogCYiIiIiIiIiIhKACmgiIiIiIiIiIiIBqIAmIiIiIiIiIiISgApoIiIiIiIiIiIiAaiAJiIiaBYBERERERGR5qmAJiIiIiIiIiIiEoAKaCIiIiIiIiIiIgGogCYiIiIiIiIiIhKACmgiIh2UWW/YM42AJiIiIiIi0jwV0ERERERERERERAJQAU1ERERERERERCQAFdBEREREREREREQCUAFNREREREREREQkABXQREREREREREREAlABTUREREREREREJAAV0ERERERERERERAJQAU1ERERERERERCQAFdBEREREREREREQCUAFNREREREREREQkABXQREREREREREREAlABTUREREREREREJICYKaDNmTOH008/nZSUFFJSUhgzZgwff/xxpMMSEYlZZv2/zWZXExERERER6fBipoDWp08f/vznP7Ny5UpWrlzJ+PHjufLKK/nuu+8iHZqIiIiIiIiIiLRjtkgHEKzLL7+8we1HHnmEOXPmsGzZMk477bQIRSUiIiIiIiIiIu1dzBTQ6vN6vbz99ttUVlYyZsyYSIcjIiIiIiIiIiLtWEwV0NavX8+YMWOoqakhKSmJ999/n1NPPbXZ9Z1OJ06ns+52WVkZAG63G7fb3ebxtqQ2hmiIRRpSbmKD8nR8vF5vg9vNnUefzxfyOVZuYodyFRuUp8jS+Y8dylV0Ul5iR7TlKlriiAbRlpv2IpTzaZhm7Awd7XK52LNnDyUlJbz77ru88MILLF68uNki2owZM5g5c2aj5fPmzSMxMbGtwxURiWru5O64O/fx3zBNEveubnB/1UkjAbCX7MdedvBEhyciIiIiHVDtd1CAxD2rIhiJdARVVVVMmjSJ0tJSUlJSAq4bUwW0Y1144YWcfPLJPPvss03e31QLtMzMTAoLC1s8MSeC2+0mJyeH7Oxs7HZ7pMORepSb2KA8HZ9NBZVsOFQBgAH8aGj3Bve/s+EQAKd1SyKrW6eQ9q3cxA7lKjYoT5Gl8x87lKvopLzEjmjIVe13UIBrjvl+2pFFQ27ao7KyMtLT04MqoMVUF85jmabZoEB2rLi4OOLi4hott9vtUfWEi7Z45CjlJjYoT61jtTaciLm5c2i1Wlp9fpWb2KFcxQblKbJ0/mOHchWdlJfYES25ioYYok205Ka9COVcxkwB7fe//z2XXHIJmZmZlJeX88Ybb/D555/zySefRDo0ERERERERERFpx2KmgHbo0CEmT55MXl4eqampnH766XzyySdkZ2dHOjQRkdgUsx34RURERERETqyYKaC9+OKLkQ5BREREREREREQ6IEvLq4iIiIiIiIiIiHRcKqCJiIiIiIiIiIgEoAKaiEgHZTbzt4iIiIiIiDSkApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBGCLdAAiIiIiIiIiIrkFuXyy420Kq/aRntiHM/pcS1ZGVqTDEgHUAk1EREREREREIiy3IJdZy2aRW7iMSncZuYXL/LcLciMdmgigApqIiIiIiIiIRFjOjhwOVx2mT/Jguib0ok/yYIqqi1iwY0GkQxMBVEATERERERERkQjbXbqbtPg0DMMAwDAMUuNS2V26O8KRifipgCYiIiIiIiIiEdU3tS8lNSWYpgmAaZqUOkvpl9YvsoGJHKECmoiIiIiIiIhEVPaAbLomdmV/xWYOVx9gf8VmuiR04YL+F0Q6NBFABTQRERERERERibCsjCymj57OkK5j6GRPZUjXMUwfPV2zcErUsEU6ABERERERERGRrIwsLh5wU73bfSIYjUhDaoEmItJBmcfeNo9dIiIiIiIiIqACmoiIiIiIiIiISEDqwikiIiIiIiIiEZdbkMsnO96msGof6Yl9OKPPtRoDTaKGWqCJiIiIiIiISETlFuQya9kscguXUekuI7dwmf92QW6kQxMBWllA83g8LFiwgGeffZby8nIADhw4QEVFRViDExEREREREZH2L2dHDoerDtMneTBdE3rRJ3kwRdVFLNixINKhiQCt6MK5e/duLr74Yvbs2YPT6SQ7O5vk5GT++te/UlNTwzPPPNMWcYqIiIiIiIhIO7W7dDdp8WmUVBkAGIZBalwqu0t3RzgyEb+QW6BNnTqVUaNGUVxcTEJCQt3yq6++ms8++yyswYmIiIiIiIhI+9c3tS8lNSV1M8Obpkmps5R+af0iG5jIESG3QFuyZAlfffUVDoejwfK+ffuyf//+sAUmIiIiIiIiIh1D9oBsNuRv4Nu8zSTYUqj2lDG8Zx8u6H9BpEMTAVrRAs3n8+H1ehst37dvH8nJyWEJSkRETjwz0gGIiIiISIeVlZHF9NHTGdJ1DJ3sqQzpOobpo6drFk6JGiG3QMvOzmb27Nk899xzgL9fckVFBQ8++CCXXnpp2AMUEZE2ooqZiIiIiESRrIwsLh5wU73bfSIYjUhDIRfQZs2axbhx4zj11FOpqalh0qRJbN26lfT0dF5//fW2iFFERERERERERCRiQi6g9erVi7Vr1/L666+zevVqfD4fN998M9ddd12DSQVERERERERERETag5ALaAAJCQn87Gc/42c/+1m442nWo48+ynvvvcemTZtISEhg7Nix/OUvf2Hw4MEnLAYREREREREREel4Qi6gvfLKKwHvv+GGG1odTCCLFy/m1ltv5ayzzsLj8fCHP/yBiy66iI0bN9KpU6c2OaaISHumIdBERERERESCE3IBberUqQ1uu91uqqqqcDgcJCYmtlkB7ZNPPmlw++WXX6Zbt26sWrWK//mf/2mTY4qIiIiIiIiIiIRcQCsuLm60bOvWrUyZMoXf/va3YQkqGKWlpQB06dKl2XWcTidOp7PudllZGeAv+rnd7rYNMAi1MURDLNKQchMblKfj4/N5G9x2u91YDKPRel6vL+RzrNzEDuUqNihPkaXzHzuUq+ikvMSOaMtVtMQRDaItN+1FKOfTME0zLL14Vq5cyfXXX8+mTZvCsbuATNPkyiuvpLi4mC+//LLZ9WbMmMHMmTMbLZ83bx6JiYltGaKISNRzp/TEndar7nbCnlXUL59VnTQSAHvJfuxlB09wdCIiIiLSEdV+BwVI3LMqgpFIR1BVVcWkSZMoLS0lJSUl4LphK6CtWbOG8847r66VV1u69dZb+c9//sOSJUvo06dPs+s11QItMzOTwsLCFk/MieB2u8nJySE7Oxu73R7pcKQe5SY2KE/H57tDFeQWVNbd/uFp3Rq0QHtnwyEAhnZPYkhGaGNNKjexQ7mKDcpTZOn8xw7lKjopL7EjGnJV+x0U4Jqh3SMSQzSKhty0R2VlZaSnpwdVQAu5C+cHH3zQ4LZpmuTl5fHUU09xzjnnhLq7kN1+++188MEHfPHFFwGLZwBxcXHExcU1Wm6326PqCRdt8chRyk1sUJ5ax2q1NLhtt9ub7MJpsVhafX6Vm9ihXMUG5SmydP5jh3IVnZSX2BGxXBUsZVTeHJJduyh39MPeZwpkjD3xcUQxvY7CK5RzGXIB7aqrrmpw2zAMMjIyGD9+PH/7299C3V3QTNPk9ttv5/333+fzzz+nf//+bXYsERERERERETmBCpbC6ul0qyzEY02iW+VSWL0FRsxSEU2iQsgFNJ/P1xZxtOjWW29l3rx5/Pvf/yY5OZmDB/3j8aSmppKQkBCRmEREREREREQkDHa+Cq5SKhz9wTDAmkGqax/sfE0FNIkKlpZXiQ5z5syhtLSU888/n549e9b9e/PNNyMdmohIuxCeETFFRERERFqhfBvYkv3FM/D/35YM5VsjG5fIEUG1QLvzzjuD3uHjjz/e6mACCdNcByIiIiIiIiISbZIHwqFFYKb6i2emCZ5ySD870pGJAEEW0NasWRPUzowmBp8WEREREREREQmo/2QoXk1S+S48lk7YfJWQ3BX6XR/pyESAIAtoixYtaus4RERERERERKSjyhgLI2aRv+IZkl07KYofTuqIKZAxJtKRiQCtmERARERERERERCTsMsaysudJdTcHZfSJYDAiDbWqgLZixQrefvtt9uzZg8vlanDfe++9F5bARESkbWlkSRERERERkeCEPAvnG2+8wTnnnMPGjRt5//33cbvdbNy4kYULF5KamtoWMYqIiIiIiIiIiERMyAW0P/3pT8yaNYv58+fjcDh44oknyM3NZeLEiZx00kkt70BERERERERERCSGhFxA2759O5dddhkAcXFxVFZWYhgG06dP57nnngt7gCIiIiIiIiIiIpEUcgGtS5culJeXA9C7d282bNgAQElJCVVVVeGNTkRE2o4GQRMREREREQlKyJMInHvuueTk5DBs2DAmTpzI1KlTWbhwITk5OVxwwQVtEaOIiIiIiIiIiEjEBF1AW7t2LWeccQZPPfUUNTU1ANx7773Y7XaWLFnCD3/4Q+6///42C1RERERERERERCQSgi6gjRgxgjPPPJOf//znTJo0CQCLxcLdd9/N3Xff3WYBioiIiIiIiIiIRFLQY6B99dVXjBgxgnvuuYeePXty/fXXs2jRoraMTURETiANiSYiIiIiItK0oAtoY8aM4fnnn+fgwYPMmTOHffv2ceGFF3LyySfzyCOPsG/fvraMU0REREREREREJCJCnoUzISGBn/70p3z++eds2bKFn/zkJzz77LP079+fSy+9tC1iFBERERERERERiZiQC2j1nXzyydxzzz384Q9/ICUlhf/+97/hiktERERERERERCQqBD2JwLEWL17MSy+9xLvvvovVamXixIncfPPN4YxNJHYVLIWdr0L5NkgeCP0nQ8bYSEcl0gITMCIdhIiIiIiISNQJqYC2d+9e5s6dy9y5c9m5cydjx47lySefZOLEiXTq1KmtYpSWqFgTXQqWwurpUH0QPFVQuBT2vgun/xEG3RLp6ETqaNIAERERERGR4ARdQMvOzmbRokVkZGRwww038LOf/YzBgwe3ZWwSjIKlmKum43UWYzhSsB5aBMWrYcQsFdEiZeerULEbn6sITC8YVgxXMca6ByBtmPIiIiIiIiIiEmOCLqAlJCTw7rvvMmHCBKxWa1vGJKHY+SoeZzH5nARug97JPaBiG+x8TYWaSClaCc5CDHyYGP4iGia4S5UXERERERERkRgUdAHtgw8+aMs4pLXKt+EyOlE3bpFhgC0ZyrdGNKwOzVMF+PBhoXaeDgMPYCgvIiIiIiIiIjHouGbhlCiQPBCrtwLMI6MZmSZ4yiHllMjG1ZFZEzGxYMEHeDHwHhlrylReJLppUDQREREREZEmtXoWTokS/SfjPbSCJOcuPJZOUOEERyr0uz7SkXVctkT8lQgTCyY+LBhYwK68SAdwZFITa9kWTnc6MAo7Q8//iXRUIiIiIiLRSxMDxgS1QIt1GWPZN+AR8hPH4rakQPfxMGI2ZIyJdGQd09Zn4fBywFe3yIIPnyXePwun8iLtWe0MtIcWgbuEdO96LN/e5V8uIiIiIiKN1f8O7Srx/3/1dH2HjkJqgdYOVKZ+j809TwPgJ2f2iXA0Hdzmv2OaXlxGClbTiXGkC6fLlo5t0C8jHZ1I29r5KrhKKbf3w7AYVBoGSZo8Q0RERETaSntouXXkO3R1fH/KnV46J2Zgr9qh79BRqFUFtC1btvD555+Tn5+Pz+drcN8DDzwQlsBEYlJ1Hh6s+CwOfDgAsPkqsHtLIxyYSMuOewi08m14rJ0oc3kBsBoGpi0JI8onz5i/eT4/++BnFFQVRDqUyFob6QAkKGsjHUAHtzbSAUjQ1kY6AGnS2kgHIEFbG+kA/H72n3iq76tu+s4jLbdMVynYkjEOLYLi1TBiVmwVnsq3gS2ZomoPAMXVHrppYsCoFHIB7fnnn2fKlCmkp6fTo0cPDMOou88wDBXQpGNL6ImlbIt/MgfDANPEYnqptvfAHunYRI4R9jkDkgdCxUKgc93z3/BUQProcB8pbOZvns/EdyZS7Wnmi5mIiIiIREyNt4aEhxOaLqIdablVQCY+D3RP6o5RsS32Wm4lD/R32zRTwTDwmT7/xIDpZ0c6MjlGyGOgPfzwwzzyyCMcPHiQtWvXsmbNmrp/q1evbosY63zxxRdcfvnl9OrVC8Mw+Ne//tWmx4sVmjgvigy+A5/hwOErw+arwOErw2fYOdDzF5GOTKTt9Z+MaU8lyb2LeE8+ncyDmFE+ecbLa19W8UxEREQkitV4a5q+40jLLbcJXhPcPhNiseVW/8ngqPcd2rVLEwNGqZALaMXFxVx77bVtEUuLKisrGT58OE899VREji/SokG3sKbb/ZQ7+uMz4il39Gd19wc41P2GSEcm0lDBUnpvuZNxu3/CqLx7Sa9aefz7zBhL+dC/1k1qUmAdhu+Mv0X15Bm7SndFOgQRERERaY3kgf6WWuaRJiWm6b+dckpk4wpVxlgYMavuO3Rh0vc1MWCUCrkL57XXXsunn37Kr371q7aIJ6BLLrmESy655IQfVyQU27tcz/YuDX8t0NQOIWoPg4FGsyPjRSRXFVFpJtKtcimdazZgFKZD9+8f1649XcawsudAABL3rCKza/R23wTol9qP1Xlt23paRERERNpA/8lQvJqk8l14LJ2wVtVAXFpsttzKGMvKnicB0MlhpX9GzwgHVI+uzeqEXEAbOHAg999/P8uWLWPYsGHY7Q1HdrrjjjvCFpyIdEBHijs+ZwmmPRlrrA4GGs02/h9m2WbwGMRZO1Ft64HDV4Kx65/HXUCLCiF8yN90xk18vO1jdeMUERERiVLx1vim78gYi3nm4+SvfJZk107cGWOwDvypWm6F05FrM6+zBJfRifiqvRgd+Nos5ALac889R1JSEosXL2bx4sUN7jMMI6oKaE6nE6fTWXe7rKwMALfbjdvtjlRYdWpjON5Y6s+EGg2Pqz0IV25q+UxTuQmSZfs/MJwl5JmZ4DbomdQNo3I7vh2v4Es7q8G64c5TR2AUfo310EJ83hosRhxx3mIcvnKqbRlQtqXJc+nz+YI+xx6Pp+7vzt5NsGI+vqodmEkDMfteh5netl9ojMKvsa78Fc6Knbi9Lrx5C6jY/CI1yUMYkJTRKI4fDPgB866ex43//gWlrsI2jU1EREREQhNvjafsd2XNfhc1085iZc++AFxwchesCXaI8WsDs5lrx0hc+1i2/wOLs4SDZiZgkOLIIMm1q8lrs1gVyvk0TNOMyTHoDcPg/fff56qrrmp2nRkzZjBz5sxGy+fNm0diYmIbRndiudL64EnpDvi7TElkVZ00stEya1UxcYU7IhBN7BlT/QA2qqlO9H8QWqtLiDOLcZPE1wmNX88SmtOdz9Db8wWGAR4jAQwDm7cS02Jnn+Uc1sfdUrdu7XPZXrIfe9nBoPbvjUvC2X0w6VUrGbn3buxmFR4jHptZg9tIZIPjZoqtQ9rksQGcVfMo6Z4VuEwfHhMcBsQZUOWDHR4HSRYfNWYcSyzX0CP16rrtqnuehmmPJ+7gJqyuyjaLT0REREQCq3891dL1rQlUH1k/Pm8jFnfs9iqofdyGx0nCgQ0RjsZvTPUD2KmkKrE/AIbHRYJrf7u6NquqqmLSpEmUlpaSkpIScN3jKqDVbmoYRmt30WrBFNCaaoGWmZlJYWFhiyfmRHC73eTk5JCdnd2oK2wo1uaVs+1wFQDXDO0ervA6tOPJzTsbDjVa1isljrEnpYUpuvbNsuo2zEOLOMRJYBj0TLL7W6B1G4dvxJMN1g3Xa6gjsS6+GGfZXqyuQximB59hxepz4rM48J07H2u3o02xa5/Lp3VLIqtbp6D2X1DpYvHOYkbl3UuP0kVYu5yGyzRIdliwNJPHcLJ92B9X9X5KvGAYFpIMH/EGOE1Y7YS+DiudDS/7fQ4OZs1kzBm/AeDjzYVUur2MG9CFrokd67mk11FsUJ4iS+c/dihX0Ul5iR3RkKv611MtXd+apsm73+UD/hZonRNi9/lV+7gT7RYuHZzR6P5I5May6jYs+Z9zwMwEwyDeatDFt7vNv9OfSGVlZaSnpwdVQAu5CyfAK6+8wv/93/+xdat/ethTTjmF3/72t0yePLk1u2szcXFxxMXFNVput9uj6o37eOOxWI5OphpNj6s9CNdzxWIYyk2wTv4pnuI1JFX6BwM1Kp0YjjSsA36KtZlzGG2v6aiWcgpG+R5KHYNI8BzC7i0FTLzE4dj3Onur9vNBUSG7S3dTWJ7KsIxzOb3nyKDPr83m71Ke7NqFx4inzOm/bbdY6GRLwVqxvdk8hoVxdCImAJvh/2XSApzqAIfFxIKFPhYXbP0r9n7/w5yd3/KXr56kuKaAPik9ue2sKUw5e0rbxRil9DqKDcpTZOn8xw7lKjopL7EjWnLVUgy+el/8bDZbVMR8vIwWrh1PaG5O/imUrq2bqCHBU4XRqUvAa7NYE8q5DLmA9vjjj3P//fdz2223cc4552CaJl999RW/+tWvKCwsZPr06aHuMmgVFRVs27at7vbOnTtZu3YtXbp04aSTTmqz44rICZQxlqph/0f+uhdJdu2E7sOODALfQQYDbetZbvpPxntoBQ5nCV5LHPFel3+56cS7/UU6bXme/eXJfODJwOWxs+nwck7JeJDTeoQ2xkG5ox+dqnf6q1mGgdfn9U8rnn52+B5LU7qcBVUH6GQx8dS2kgY8gN2AatMg0TApMq3YfVVs+OZe7t3wLVXuaqyGg+3FW7h34b0AHbKIJiIiIiJSJ2MsjJhF/opnSHbtxJk0ksThv+g412bHCLmA9uSTTzJnzhxuuOGGumVXXnklp512GjNmzGjTAtrKlSsZN25c3e0777wTgJ/+9KfMnTu3zY4rIieWt+sYVvY8GYAfn9E7It3ET5TcglxmLZvFop2LOM1SyqOdnWTGJ5OU2BPaYgbSjLHsP/kRjF3/pFd5DiZWfBiYviqqfD5SLHBnUikr892s83ZlR8m3zN/6JldkhVZA25X6I7qWfUOS2/9rlcNbDYmd235a8VN/S8Whr7E6D2HBpMbnb4VmAXwmdDJ8WDBJNgywmFQUrcDpMUm2d8UwLMTbDA5XF/LsqmdVQBMRERGJcrE5onuMyRjLyp7+Bkt9UuPplZEe4YAiJ+QCWl5eHmPHNr6QGzt2LHl5eWEJqjnnn38+MTrngYiEoj28zINoSZZbkMu0T6axdO9SvKaXu7u6sbi9LHO6yCSD/qkDcFTvgJ2vhbUVWlXq98jteRrjXDtJc27E9JRR4TOxmYAJ6VZ4omsVdxUnssoTx7cHV4R8jMLEUWxw3EzP+O9Idu2kIu0s4k+7ue1/rcoYi2Psm6z86nfYqzaw2elhO52YHFdCf7sPi2HiM/2t0jrhpbvh5pyEBNZ6/F3hrRYLdqudvIq2/TwTEREREZHYYml5lYYGDhzIW2+91Wj5m2++yaBBg8ISlIhITCtYCqun+1uQuUr8/1893b+8npwdOWzI34APSLB2ZrDDSqVpweV1k195gMPVbrAlQ/nWMAfob9FX7uiH1VeF2/QRj0ma1T9rpQUY4oDHuxzmLLsTjNZVNIusQ1jZ808s6vs6B075W9sWzwqWwvIp8Fk2jj3z8Pa5h31nbKLT97bx6K8OszD9Hqpw+LtzGlbiLA6stiQ8ho1rEmswTf9YbaZp4va66ZXSq+1iFRERERGJQe2hncPxCLkF2syZM/nxj3/MF198wTnnnINhGCxZsoTPPvusycKaiMjxME1q6z2xY+er4CqlMq4/GAad4rtDxbZGLcl2l+7G6XViwYZhGGxzWzk33sNBTFzeanw+s03GDavtEbsr9Uf0Kf+YBF8NVqPhabYAJ9tMfp1cwQcZbTxu2fGqLVi6SsGWjL3yc870LGdN9wcpTBwFQNc+U8A9H69rH3ZM3JZE4tL6YSvbyynO/ZS7DmOzOKh0e4izxfHLM38Z4QclIiIiIi3p6AUdObFCboH2ox/9iG+++Yb09HT+9a9/8d5775Gens7y5cu5+uqr2yJGEZHYUr4Nny2JkhoPJdVufAZNtiTrm9qXOGscHp8b0zR5uyqRUh+cbDfpabOQ7N4FjtSwjxtWWygrTBzF+vS78GJtUDw70pMTiwFnxZtMOOXHx3mkNnakYFkT358SoyvexJOx+8rpV/peg9WK4k/HZU3jcMIISuOzwJ5Gt7gE0jLG0DNpIA5rPIO7DubR8Y9q/DMRERGRmKASmpw4IbdAAxg5ciSvvfZauGMREYk58zfP5+W1L7OrdBf9Uvtx0xk3MSF5IBxcCGYaGAZmMy3Jsgdk858t/2Hx7iVUuItY6LHg9Nq4PsXG99N6c6jTSFJGTGnTro/bu1xPZtHLdHNt8Q+0D3jxl76sBiRYkzm58+DjP1Bb1tLKt4EtmcPVHsA/nblp6eSfxbWeXak/onPNhrqJDahwgiOV/lkP8+fMk0mKs3H5qT3aMFARERERCahgKaPy5pDs2kW5ox/0mRJ4LGDVz06sDn6+gyqglZWVkZKSUvd3ILXriYiEQzS/R8/fPJ9b5t9CUVURPsPHxkMbWbZvGW+dP40xjlUkVfgLNUZlDTjSGrUky8rIYvbFs5n6n0dYX7AUl68GW/eh5KZPIqHHhVgMGJTRJ+xxHzupaUWns+ni3oOdGjDBYliw4sPEQkliaLNvNqstE5k80D/OnJkKhoHX68Phq+Rw/BkNVitMHMWa7g/Sr/Q9f3Gt+zDoPxlPwgg4XBBzPYVFRERE2pUjw3J0qyzEY02iW+VSWL0l4Iz00Xyt0Bb21uzlqRVPsa9iH31T+5I9IJusjCzAP0FZzo4cdpfubnRfuHS0832soAponTt3Ji8vj27dupGWloZx7NUX/oGXDcPA6/WGPUgR6WAavMVE7yBof1ryJw5VHsIwDXyYgIe8ijxuXfFPvrnySfLXPE+yaye+bmOxDLihYUuyI7N0ZpVvY06PnuwY9DiFiaP4yZl9eH3NvjaOvOH53JX6IzKqvsHq2oXF8GJgYmKh0taLTV1voXd4DtOksHzQ958MxatJKvcXLOPNKqotyexK/WGjVQsTR9WNi/aTM/3FSbPCGdrxRERERCT8jgzLUeHwjyOMNYNU176wz0gf7Zr7Cp1bmMsH+R/QyexEl4Qu7CrexYb8DUwfPR2An3/wczbkb8DpdRJnjePNDW/ywhUvhL2I1pEFVUBbuHAhXbp0AWDRokVtGpAEr/bCc/m+LVjpxrCMc4Hwt1YRiago/pljY8FGfKYP85ggv8v/jlw6k9vzTwBcNbQnNrv16ArHDHrfrXInqVXrWdP9QU7Ea/jY30AKE0exoudfGXL4GbpUfwsGHI4/g01df8XhxJGtL6Ad44GFD/Dimhcprimmc3xnrhh8BTuKd7AhfwM13hrirfH8Z8t/mH3x7NA+6DPGwohZ5K94hmTXTqo6jSA38SoOJ44MU+QiIiIi0uaODMuB+8iXVcNooxnpY9NnOz9jT80ePId8FNeU0jUhjYxO6SzYsYAvd3/Jsn3L8OGfWd7pdbJ031KufvNq3v/x+2ErokXxpdkJEVQB7bzzzqv7u3///mRmZjZqhWaaJnv37g1vdNKs3IJcZi2bxeGqw3h8ieSV7WBv2SYuy+qhCrO0K9H8Ju01vY2KZwAe08Pr6//JGRm3AmDd/ixs+39QnQcJPSEuHdNVQpGlL4k2GxWOVBJdu44Men/ViX0QRxQmjmJJ4gth3uvRz4mHv/wN72x6qe58VVdU88yqZxptcbDiIA8uepC3JoY4q3PGWFb2PMn/ZycHhytdwW8bzU8yERERkY7imGE5MFuekb4jfY37fNfn7Kneg+m0YDXs7Cvbz6HKgyzcuZDPdn5WVzyrb/Phzfz8g5+HryWa2ZHOeGMhz8LZv39/CgoKGi0vKiqif//+YQlKWpazI4cN+RtYd+g7vtj1KfvKt7CvbAsLdiyIdGgiHUZ6fHqz9y3c9RkAJxe9hv3buzHLt2L6nP5f0AqW4HJWUeM1Kap2g2HgaWLQ+7ZyojvE7i/fyr+2vNZksfFYPnz8a/O/yC3Ibf0BW/kAo7OjsIiIiEgH0X8yOFJJcu8i3pNPUjAz0tf7etnev8vtLN2J23Tj9Xqp8pRR462mzFXG2oNrqXJVNbvd8n3Lmb1sdlhi6Njls1YU0GrHOjtWRUUF8fHxYQlKWrZw50LWHVrH9uJtlLjyyavcztaSVby46sVIhybSYfRIan7Gxl0luwA4pfglTK+LGiOFGhLx2VIBE7vr0NFfcEwTm6+SMseAtg+a1n+5yC3I5e/f/J3ffPob/v7N34Mucq0v+BK3L/hxxtw+N6+tO3EzPdcV9tr7ty4RERGRaFY7LEfiWNyWFPITx8KI2W06I30sqXJV4cGDmxpMfJhHWpztK9vXZOuzWh48fLj5wxMVZrsWVBdOgDvvvBMAwzC4//77SUxMrLvP6/XyzTffcMYZZ4Q9QGlabmEule7KRsu/LfiWOcvnMOXsKRGISiT8ovlXjipP87/0lNaUAJDgycdrWOsGHnP5IN7iAJ+HJLd/0Hu7rxLXkUHvTzkRgTfxI0hL6ncbT4tPazBoaUvNwXeVbgj5ePM3z+eRCx4JeTsRERERiWH1huWAlmekj+ZrhXDz+DxNLm9uWJn6CqoKyC3I1XBPxynoFmhr1qxhzZo1mKbJ+vXr626vWbOGTZs2MXz4cObOnduGoUp9pTWlzd73xDdPnMBIRNpYFH8qun3uZu/zmB72l2+l2tYNi+lp0NoM04fT0bvu17WCpHNY3X3GCRv0vjUNrXJ25HC46jCDumRhIZ1BXU6lqLooqG7j1Z6KkI+3tfjEDRZb+xRTAzQRERGRWBPFFwth5vI2PcZvMMOkeEwP0z6ZdnzDpEjwLdBqZ9+86aabeOKJJ0hJSWmzoKRlDquj2fv2lmkyh2iRs/MVFux6jXJXASel9uJXI3+l1oExYM7yOTyz6hkOVhykR1KPZvPWO6U3uYVNfwhZsbK+YAlbOv+MM/P/iMNXhs+wYjG9YHVwoM80VsZdC0CczYLT03yz63BrRQM0dpfu9rc8K6rG7TOpcHlJjUtld+nuQEcCwDR9GBhBfbjXqvZU61cyEREREZEjrBbrcW2/dO9SZi+bzbOXP9vqfXSccmXTQh4D7eWXX1bxLAr0SW6+KavPPHEX4tK0/eVbmfrpOby8/g/sLc+lxFnI+vz13L3gbuYsnxPp8CSABxY+wNRPprIufx35Vfmsy1/Hrz/+Nb0f790gd7kFuViwYDTzNhpnj2dXyXq2d7meNd3up9zRH58RT0VcfxjxOPk9fnqiHlJY9E3tS0lNCS7vkamx3V5KnaX0S+vX4rY1niqshP6Bf8LGQav7JqA2aCIiIiKxpCNNCtk7ufdxbV/pruSt794KaSzjRjrQ+W5K0C3Q6luxYgVvv/02e/bsweVq2IzwvffeC0tgEtgp6afw9f5lNPUMNjGPq+VGbkEuOTty2F26m76pfckekK1WICHYX76VWd/8koKaPQ2Wm5hUuCt44psn1AqtBUa9QsaJfI/OLcjlr0v/itts3DXzQPkB7l5wNwBTzp5Czo4ckhxJjO41nq8PfNYgUofhwGG1U+P1j1O4vcv1bO/inz3IZjG4dlBv2FXU9g+oGa0pE2UPyGZD/ga+zdtMgi2Fak8Zw3v24YL+F7S4bbW7DKvVDl4DD813ez3WZzs+a904aCE+adSFU0RERCT2tefaTm5BLiXVJce1DxOTUmcpf1nyF/6z5T/Mvni2rvNDFHIB7Y033uCGG27goosuIicnh4suuoitW7dy8OBBrr766raIUZowoucI3s99nzJXWaP74qxxLNixoFUvhtyCXB5Y9AArD6zkcNVh3D43f0n8C/d9/z4VfYK0vuBL+vm284cMGGSHrW54rRy+rvHffyK62LavIuiJ+yicvWw2Tm/zs0VWe6p5Yrm/AFrbpTEtbiBbizdxuDoPEx8WLNhsNrw+Lz7Te8JiD0VTMym3JCsji+mjp/PnL96hsGoffVNPY/roawI/r2oPYxhgmlgMGzRRnGyKzbBRVNPKImNrK2GqoImIiIjElFgtmjV1vQbJAHy07R/c98XrdcPJZKVnsXDXQgqqCo77uCYmByoOUFRd1KrunLF6vsMl5ALan/70J2bNmsWtt95KcnIyTzzxBP379+eWW26hZ8+ebRGjNCF7QDYvrXmJ9YfWN5iy1mpYsVlsrM5b3ar9zl42m4+3fUylu4ral0deeR73LryXzNRMJgyeEI7w27WMqlVMSTdJs0K5F8Ynwog4uLPQX0SzGCH3nG5R7QyJi3YuotxVTo27BrfPjc/04bA6eHPDm7xwxQsxXEQ7Md7Y8EbA+03TZH/5fsDfpXH9ofWUVO+k2l2OBQMfBhbDSoI1AR8+LMbxjVMQbbIysrh4wE31bgeeFalWgi0ZDAOHNR68Ji5fTcD1rYYVE5MEa0Kr4lQdTERERESiVW5BLtM+mcaG/A04vU7irHH8Z8t/yO57DxsLv+b1jY/g9jmxGBYKqwpZl78u7DHUeGv4cPOHxzUeWkcUcgFt+/btXHbZZQDExcVRWVmJYRhMnz6d8ePHM3PmzLAHKY1lZWTx8LiHue796yhzlgEGFizEWeMAqHA1Pevd/M3zeXnty+wq3UW/1H7cdMZNdUWx3IJcPtzyIZXuygbb1Db1/NOSP3WYAlpuYS7z8+fz+YLP6d+lf0gtuC6xHyDNC1uP9G4+6IVBDrgu2V9A65rYNbyxHnkD/mL3Fzi9zkYDtdd4a/h639dM/2Q6n0z+JKzHPhFO1LgGuQW5TbborM93pIUZwIC0Aewp3UNhZSlunwsvHsDAarHh9Po/8KK2BdoJPl6X+O4k2VOpcJcHNUajgYHFsNAjuUerjhfqU6aj/5ImIiIi0h7Eyne6Wctm8eWeL3F7PXiO9M44UHGAL3d/jWFYqPFWAQbeNr6WCEeLto4m5AJaly5dKC8vB6B3795s2LCBYcOGUVJSQlVVVdgDlOZNGDyBs3qexZK9S/D4fFgNKxjg8Xnw+DyN1p+zfA4zFs+gwl1Boj2RfaX7+K7gu7p95ezIodRZ2uzx1uat7RCz4uUW5PKbnN+wKn8VRpFBvC0+pD7iJ9t9HK62Akff8Mq9cIrd//fhqsPMWT4nbF1ic3bk8M2+b6jxNt+qx8Tks52fxUz+QpmtMVxyduQEtZ5hGOQW5LKjZAeZKZkk23uTW7gKn8+NFx8en5tEezJgRm8LtBNWQfMfqHN8D0zAYYnHYo0HPJS6mn+v8eHDbrGTaE88MWEeqdKq5ZqIiIhI9NhfvpW/f/NewGFpzGZvtK3jGTLnk22fUO2pbrS82lte71bbPxiP6WnF9WGslCnbRsgFtHPPPZecnByGDRvGxIkTmTp1KgsXLiQnJ4cLLmh5MGkJr9T4VDrZO+Hy+HCbLuIs8RgG2CwNU5tbkMvDSx6msKoQEwOnx0Wc1YHH52Hu2rlMGDyB1XmrcboDjP/krWb4M8PJSs/iVyN/1W7HRHtw0YN8sfsLvD4fNtNOjacmpCl/3Qmnkuk+QJ77YN3bS7IVlh85tRXuigaD0R+v1XmrAxYjanlMD6+te611g7KfaGaTf4ZNUx94u0t3YzNseMzGxef6PD4PC3YsYHfpbk5KPYnuiZ3ZX7abAm8VmCY+00uFqwKH1a4WaEfUDdJvGIBJnC0Ou8eO29fMeGgmOD1O8ivzT1SIIiIiIhJF9pdv5U9fXUexK69uWe+k3uTckNOw4HPki+bqgwt4du1rbC/eTLwtnvH9xzNt9LSwNx7ILcjl1XWv8uGWD7Fi5eQuJ7OreBcb8jcwffT0oI53uPpwWGNqSpwlDqev+Wt7AAuWkMdO79jls1YU0J566ilqavwtXe69917sdjtLlizhhz/8Iffff3/YA5TAvKYXp9eJ0+vCZ5oUe6swMPhq71fM3zy/rsvlq+te5VDFobrx0rwmVHu8eHwecgv9U9iWO8vxEviC3+1zsz5/fVgLQNEktyCXT7Z/gsvnxoIVt9eFz7BgGAaLdi1qcv1X173Ksn3LMDEZ02cMQ+1nc751JYPjCinxeEi2QonXP5FArQp3Bfd8dg8Pf/kwh6sPE2eN49T0U/nJ6T8J+OvFnOVzePjLhzlYcRDDMOie1J1kR3LQj2/ZvmUhn5NYEqiLcv117lt0H/vL92MzbKTGp/Ll7i/pktCFRHtii904K92V/G7B78hMzSTRlohhplHiPIT3SOHNgsVfiPN5cDbxy1J7NX/zfJ745gm+PbSOGrebtPjunJU4jDGpUyhxHvJPIICH2vkLMhIzcPvcOL3OI93Qj6p9n1pxYEWD97GgtfKTXS3QRERERCJvf/lWHloykXJ3YcPlFfv50Zs/YuNtG+t+EN92eCff7NvK+vwvcHorwfAPBzJ37Vw25G9oNA708bQcqx06Z9m+ZVS6K/GZJt8VbCQ5Lol4WzyHqw7z8PiHW9yfz9fykCbHq09qH/aV7gtYRLNarKGPnd7BK2it6sJZy2KxcPfdd3P33XeHNSgJXqWrEq/Pi2ma+PBfwJuYHKw4yC3zb+FZnmXC4Am8s/GdRn2oTUxcPhe7S3fzyw9/yaq8VUEd08Skyl3FE988EXIB7UTMDtnaY+QW5HLfwvsod/krXbXn02d6wfQXGI9df9on01h5YCVunxubYWP1gdWcYXWSkOZkVBz0sMHyGnisBJYd08OyzFVWV6xxep0sO7CM5QeWc1LqSTx5yZONigZzls9h2n+n4fIdGVzNhAPlB0I6NwWVsdHPvTXvy/M3z+fmD26mqLoIHz7WHVzHkj1LePGKFxuM83dXzl1sObwV80iR5mDlQbYc3kLf1L50SeiCaVopd5cEjKLaU822w9swDIMEWzJu39Gx5wzDgmn6P5CqPIGLcZHSmlk4A5mzfA73LbqP4priuvNQ7i7mYPl2tnoPYWLi9bnp2WkAiQ4bSQ4r20u2c2aPM5lwygQeWPQAJc6SRvt1+9z8Nue3nNzl5DbtelyXaVXQRERERCIqtyCXV9bPaFQ8q7v/cC7zN8/nyeVPsj5/A5WuyiPXVEe+0R35n9f0snz/cmYvm83lp1zOE988wYr9Kyh3lWNiYjWspMSlNBiqp7ZxxGc7PqOo2j8bvMXi/3G8V3Iv9pXtY1vRtgY9Vjymj+KaYgDe3/Q+O4p3MO9H8wJ+d423xQccfud4xVnjOKPHGRRUFuB0NV9AMzCCvp7cX76V9QVfUuXOY2NxVptcx8eCkAto48aN4/rrr+eaa64hNTW1LWKSEJQ6S7EYliMDmB9VOz3tfYvu44MtH7C1aGuz+6h0V/L86udDOq5hGHWzETaltjXKpsJNxNviSXYks6t0FyU1JUcLDfjHFxvSdQiVnkpKqkvokdTjuLqHNjejSUvjl9Vu9/muz5tdx+l18ptPf1NXlKtteVbpqjrScs9kTDz8pSukWeGgx991s7ct+OtyHz52le7i5g9u5vMbP28Q8+zls48Wz1ppa9HWmBkHrVZLxbQVpSuY++5c/rPlP7jNo10CffjIr8rntzm/ZcLgCczfPJ/ffPobthRtaeIYJrtKdzG823DSEwawv3wXByt3BhyLzYcPTHB5nPjqzXTgMV14TTf4oDKIrrXhFEwLvHCr7R5eVFPU6D43brYUr6JzXDc8Pg/7KjaTaE8k2ZFAkj2JXsm9uP17t/PquldZcWBFk/vfVrSN2ctmU1hVGPTj6uA/jImIiIjErNnLZrO+cEnAdX701o/w+DyYR/5rjsf08Nzq55i3fh7V7uoGva08poeimiIW7VzE7GWzmTZ6GtM+mcY3+76h/JiJrwwMcgtzWxyn2cRk7aG1XP3m1bz/4/ebveZKi09r8sfjcMlKz+LG4TeyePdiaObyMd4aj81io6Sm5ThyC3J5e9Pf2FH8LZXuEuZv8/CXxL9w3/fva3c90loScgFt2LBh3Hfffdx2221ceumlTJ48mUsvvRSHw9EW8UkLOjk6BXwhf3voW9YdCv+0t7VdR5vqXjV/83xu//h29pfvx+vz1nXHOpaJSbWnmjWH1tQty6/K545P7mDRrkUMSR/Cvzf/m4MVB4MurD246EEW7liIBw/Gkf+KqotaHL+sdiaUQAWq0ppS/rHmH8TZ/EW5vIq8ul8wal2f7C+eNTcDZ7Dyq/J5cNGDvDXxrbplO4p2BL+DZtR4a4Ieyy1qBPic+s/W//D8vucp8ZU0KJ7Vt+nwJh5Y+ABvbXyL7UXbAx5q8+HNDOk6muLqgqAnMnCbThyWBJz1Ju6o3bagai+rDy5gRI8Lg9rX8Zi/eT535dzlb4Fnmmwu3MySPUuYcd6MNv1ge3XdqxRUNN+y0emtosRZgMMSh92SgNNTg8NqoXtSd0b2GgnAhQMubLaA5jE9/OPbf2Cz2EiwJzSa/CSc1ABNREREJLK2bJrLol4+RsaD3YD9HvhLMTxfr2NHqI0KKtwVzd7nNt18uPlDuiZ2ZcUBfwu1Y69fQ53gbPPhzVz5xpVcc+o1TD59cqMupG09Ydofx/2RCYMn0Du5N4erDjdxPINO9k5YLBY6OTo1+hH+wv4X4jbd7C7dTbmznP9s/U+DlmoGBgfLD3LfovvITM1s8x/so0nIBbS///3vzJ49mwULFjBv3jx++tOfYrVaueaaa7juuus477zz2iJOacaYPmNYvGtxwHXa6gXq9rm55q1r6JPah+Hdh9e1Cnl57cscrDjY/ADhLfCYHt7OfRvwvzithpWi6qIWx13LLchl/pb5eOp1ZTUxqfHW8OHmDwMWjZqbCaU+Hz5KnCUYNQaLKhc1+YvHILt/xs366s/AGYp/bf5XXWux3ILcFge3D9Z/t/+3VdudiO63TWv++fvkiic57D7c4th9s5bNAmhxvRpvDZsOL6fGF/yMwiY+3L6mq6NePLyV+9gJKaC9vPZlCioLqHJV4/K5sBgG1Z5qHv7yYc7vf36Tg62Gw9f7vm7wC11jJj7Th9Vix+WrppM9EbfX/95wQX//xDOTT5/Mo0sebXYPTq8Tt9eL0+PEcczkJ+Fw9HSohCYiIiISMQVLeSHDRT+7/1uZCfS3w+wM/93Pt9HoKAcrDzJ/y3xqPDXNNv4I1dairTy65FH+34r/x5/H/7nuGjZnRw7xtnhs2PHQuutlh+HAZTZfRKz9juywOoizxuMzwe2rqXftalLmKsPAwO1xc/vHt1NYVYjL42JN3hre2/Qe8ZZ4fPiaLFbWXgeX1pSG9Tt5LLC0aiOLhYsuuoi5c+dy6NAhnn32WZYvX8748ePDHZ+0YPLpkyN6fKfPyfbiHczfMp+J70yk9+O9+ffmf4etT7eJicf04DE9VLgruP2T2xk+Zzhzls9ptG7OjhyqvU0XwWr7sDfnUOWhoOLxml48eHCb7iYLWlvd/m6b9SVbYUsr3hvdPjezl80G/I/NCNPFfVFV4HPRlAcWPsBZz5/F1E+m8vjXjzP1k6mMfG4kE9+aSG5Bbljiqs9s5u9jrTqwqsWiGPh/dQr0y1N9Tm/g2WqaEqhIfaC8cZfRcMotyOXv3/ydz3Z+RlFNETW+anx48ZgeTNMkvzKf19a9FnS8oTpQeqDFHPhMDzaLw99Sz+v/8O7eqXtdUS8rI4sUR0rgfeB/H6jyVFHuLK+b/CQs1OdTREREJPJ2vkrvI018XCa4TfABcQbc3oajR5mYfJf/XYsNKlqjzFnGbR/fxi0f3kJuQS6Ldi5iT+meVhfPAHql9MJmNN0Wqkv80THrkxxJdEnoTEZidxJsiQ2uJ90+Ny6fiyX7lrC7dDeV7kpcpqvuOqHGV9NiSz8vXtYeXNvqxxGLWlVAq3Xw4EGeeeYZ/vKXv7Bu3TpGjRoVrria9fTTT9O/f3/i4+MZOXIkX375ZZsfM5plZWRhs4TckDDM/JMRVHuqOVB+oNFkBeHkNb2sz1/PXTl3NSqiBZpBxOlz8qM3f8T8zfMb3ZdbkIvLe3xji9V6rdw/4+YgB/Sw+v9/7AycoahtLbY6bzVWw9rC2sGxWUN7vsxZPodHvnyESndlg+XVnmrezn2b6969LvxFtCAKGrkFuXUTPoT30KE+fw3slrhm7/WG6VespszfPJ8LX7mQaZ9Mo9TZeLy12g/AZfuWkVuQy+8/+z3j/zGe69+/lDc3/oX95c2PjRjs8XeX7W5xPe+RiTgAUuNSMTAavW9N/d7UoI/rNt0Bfx00VRATERERiT3l27AaNPiWZx7516uNL3nD1fKsuX0/v/p5Jr07iYW7Fh5Xoa6zrTM/Pu3H/HzEzxtdH1oNK7eedWvd7dF9RuOwOkiOiyfO5mj2R/SWxpILpHYChY4i5KdhWVkZ7777LvPmzePzzz9nwIABTJo0iTfeeIOBAwe2RYx13nzzTaZNm8bTTz/NOeecw7PPPssll1zCxo0bOemkk9r02NGsa0JXDlYejHQYJ4yJSZWniun/nd6gz/Wxs2Qe6/1N77Ns37K6mUlr1bbuCkernK9r4M5C/5hnp9hhudNfPDt2Bs5gldb4iyLlznLibfFBt6JqjgULfVL6hLTNX5b+JeAHyppDaxqN13astuj+mbMjp00/6IJn4vI1/yFoM1rRf/cYtZNyrD+0Hq/ppWdyT0b3Gc2/Nv2LgqrAM6t6TS8VrgoeWPQAS/cupcpdjdvnZoO5jh0l67hh2Ax6Jw9qVVxPLH8iqBZ7Jl6Knf73qEo32K12PL6GLTgfGv8Qb373ZpOTPDTF6wtfob72lR/myUlFREREJBTJA/HmLcBuUPeTtnHk34HwjGYTMbUTDDQnzhrHiJ4j2F2ym1JnaV3jBStWMMBmsTFh0ATO53xuOf8W7HY7GYkZvLjmRYpriukc35mbz7yZh8Y/VLfPyadPZuvhrWwt2orTE3ovm2DUeNpuNtFoFHIBrXv37nTu3JmJEyfypz/9ibPOOqst4mrS448/zs0338zPf/5zAGbPns1///tf5syZw6OPNj9+Tnt3+eDLeWnNS23a8isaOX1Obpl/S11BzGt6AxbCTEwOVhzkT0v+1KCAVtu6K1xjjH1d03DCAAODM7oPJ7cgF6cvtDeuRHsif//m73x78FvcPjdWbI1mXA1WbaufsX3GhrTd/rLmZ1ut9d/t/212ds/cglx+/sHPG8yM+uaGN3nhiheaLaIFU8xcnbc6bIXPtuSwxrO/fGuri1Rzls/h7gV3NyieFlYX8l3+d0EVEE1MDpQfIL8yn8Kqw5imidVix2c62VHyLV/ufZ//PfXukOPaX76VJXsCz5DUIA7TxGqxYTUMvD4vVe7G48wN7TaU/KoC3B4Tj+nC6Q1+LLpjjtbK7UREREQkYvpPpnTbK6SbVTgM/zc6A6gx4e8ndnL7E87j8/DiFS+yYMeCusH7d5bspKi6iH6p/bjxjBv5wYAf8NFHH9Vt89D4hxoUzI6VlZHFQ+MeYsGOBfzpyz9R5Wntd+vmOawdazLJkApopmnyxBNPcP3115OYmNhWMTXJ5XKxatUq7rnnngbLL7roIpYuXXpCY4k200dP54vdX7Dl8JaoLyaE28GKg9y38D5eXvsyn+/6vMWCig8f3x78tsGycLXuak5qXCrzfjSP2z+6nYW7FoaUozJnGU+veJr8ynw8Xv84UqYPDMxmx52yYOHCAReSGpfK/K3z8Xi9/g+fI79chPocCWb9ak81C3YsaLIg9osPfsHSfUdfoy6vi+X7lwdstfbp9o+YveJ5Cqv28camgfxixM8aDU5Z7izHgiWoMdAixYINm8XB+oIlrSqg7S/fyiNL72vyuRlK67t95fuwGta6InvtIP4en4cl+94hLT6dYRnnhhTj+oIvQ/rFyYcHK1YMiwGm0eSU2V7Ti9vrwul10dKA/gnWhGbvq/+MfTv3Me5a+DaFVUUk2lMZd9L/cm3WXQG2EBEREZGIyBhL9+wcFv3rHEbVm4Xzz8XwQhtNIBAtbIaNrIysgL103O7Qx02r3ed7m95rk15rp2acGvZ9RrOQC2i33XYb48aNY9Cg1rWmaK3CwkK8Xi/du3dvsLx79+4cPNj0E8HpdOJ0Hm3xU1bmf9W53e5WPfnCrTaG441lYNpA/jz+z1z99tXhCKuRaG7l48PH+vz15B4Ofhyzak816/LWkZXuf3PyeD1YDMtxte5qTpw1jkFdBjEwbSCVrsqQz2OFu4LNhzfX3fYe6SrY3IQCBgbdO3Xn/y78P+745A7S4tPweA0qXOVYLQYWA9bkrQnpOWc37C22bvSZPlbuX9lov7d9fBtf7fuqwbLaiSEW7VrUZBz/2fof7vlsOvkVBfhML/vKN/Hlns+Zed5MfjXyV3XrebweDMNo89pHqM9/K1Yshg2bxYbX9OEzvewqWV93v4n/Nd9g5sp6g3bVPydf7H2PoprQJ31oSsMc+o/nw0NJTQGLdr/BpsPfcO2Qu5osonm9vka52lW6IaTjm0dm48RnwTAMTNNstM8KZwUenweLYcPnC/xaLHOV0etvvSipLiEtIY2bht/E0K7+2Y3MI+fz959fyq6yo+fe5azh/a1PkFe5kztG/b+643s83rrtouGz4UQL12eRtC3lKbJ0/mOHchWdlJfYEfFcpZ3F+AMWiIqhWprXJb4LJTUlYRtSZkj6kBbP+fHk5uyeZ7N41+KwXtfHWeP47ZjfxvzrOpT4QyqgWSwWBg0axOHDh094Aa2WccwgNaZpNlpW69FHH2XmzJmNln/66acnvAVdIDk5Oce9j3DN0HgsGzYyHBkUuYpw0jb9po+XD19IkwCYmDz0r4eY3Ms/g2n+oXx8Hh8JtiScvhoMn4krXI/VB329ffnoo4/Ylr8tPPskcKuwVDOVnct3cvjwYaqd1ZiG1d91zjSo9lSwLX8bz773LJnxmS0eZ2/NXixmy3ON+EwfW/dsbdCk+OOCj3lu/3PNblNaXdpg/Vozts4gr3I/Xn/JBUyT4ppi7vn0Hg5tOcRZqf5u47vzdtcVStpSoiWRSl9lyyse4cPEdqRLsAUbPjzUeI9u7/V4+Oijj3B27QedugLgdLnA6h8r7aOPPoKTRgKwoaDtJ0nx4eFAxTZKa/Kb7c65Zctmdq488kPFkdiKqkP/BctjunH4bHjw4Cp3Ncr/7kO7Mb0mpmG2ODPRrtJddX9XV1Tz56/+zJWDKrk26y5KS0p5cdMjDYpn9S078AHfP3g1h7dU8MGhD1hf9R0uw6RXQj+uTBtf9xzraMLxWSRtT3mKLJ3/2KFcRSflJXZEMlc3DfsjL6//Q8SOH4wpPafw7qF32VO9B6fpPK5eMTZsTOg0oclro6a0JjeZNZn0i+/HzpqdIW/bnB62HhhbDT7aGlzc0aqqKviurSGPgfbXv/6V3/72t8yZM4ehQ4eGunmrpaenY7VaG7U2y8/Pb9Qqrda9997LnXfeWXe7rKyMzMxMLrroIlJSUto03mC43W5ycnLIzs7Gbj/+gcaNteFtKWY1rCTaE7ns1MuY9908jmOm3ajzretbXr/0dQBeevslLDUWXF43Dks8htWDyx2eAlpKQgr3X3U/WelZxG+PxyivzZGBBQu+MHc/NDGxJdq49NJLWbpoKc+veZ4adxVeH3hNl38MAaOGh3Y/5G+tltydX5z5iwYtu+p7asVTpO1No6oy8JuKiUlGtwwuvfTSumX3v3B/wG08eDAHmVw26LIGy2954ha8R8pn9VWZVbxc8DLdT+nOwl0L2VS96YR03xxz0hgW716M22z5BWDBgtWw4THdWA0rJj58Pn8rtFpWmz8/y/eWsqfU3wXS4XDg8vof76WXXso7Gw4BsLt0Uxs8oobGxMP1yW4G2Q9zsOpV0qvG8603lY+2v8DGwqW4fU5O6TKY350zlcsGXVYvto2tOJqJGzcZiRkM7z+8wfMF4OFDD7PfvR+fCcGmtraFoA8fC3a/xrVZd5GamsoXe94OuN2/tvw/MjrZWVmy8sj4hwYlNfkUuXczatSoRs/L9izcn0XSNpSnyNL5jx3KVXRSXmJHNOSqaoP/B9vPdv2TGm8hJiYl1SV4TE+z17sGBgm2BOJscW0+M2S8NZ4Hf/IgEwsnsnDnQnaX7ibeGs/KgyvJr8xnY8HGkMbX/tmZP+PBSx5scb3jzc3/FP4Pw58bHvJ2zUlNTW30fT4W1fZUDEbIBbTrr7+eqqoqhg8fjsPhICGh4Tg0RUXh6W50LIfDwciRI8nJyeHqq492VczJyeHKK69scpu4uDji4uIaLbfb7VH1xh2ueHom9eRAxYEW17NiJTU+NWDXMLvFTqI9ke/1/h53jr2Tf2/5d5ODfgfLYXGQYE+gX2o/rhh8BZ/t/IwV+1fgMT0YGFgMC906deOczHN4N/fdNp9dcVvJNv67479MGDwBm9WG1WLF5rPgNl10ssWHrVjYo1MPTu95OgBDMoawv3y///Fi8Q/xZPrfgNPi08ivzA/L4z5ccxi73c6NZ97ImxvfpLimhPr9HKs91VR7qrEZNopqivj9wt9js9iYcvaURvt667u3guorb2BQ461p8DxuafIBE5PbPr6NwRmDG/T19/oaF89qHag4wN0L7sZmsQU1+2NLHBYHLl/g1otTR0+lylPFiv0rAhbRDAzibHHEWeNxe/2D4NsMBxgmlnpTTBv4X/MWy9GWff5WtP7HXHsO3859DI/Zdq0+x8TDXWlwQaK/gXyeB04ySkk+cC+vHI7DU5bLg0luBtlNtnkO8vKCDdisL5Ozcx3vbHqccvfhVh3X5x/Ej8zUzEbve2kJaf6CmBn866D+c6XC5f+ylLj3MVZn1tDT5n9cfy+B54/5XNxTtoHdpd56OfXv6VDFIZ5e+TRXnXpV6A8uxkXbZ6M0TXmKLJ3/2KFcRSflJXZEOlfZ/W8gu/8N/OTMPoB/Vvq5a+ey9uBa9pXvw+fzYVj811XJcclcPeRqkuOS6ZvalxfXvMi6Q+uavKZwWBxYsFDjC232yPo9vvql9cNut3N6z9PrrvXAP3nagh0LuH/R/ZQ7y4O6tjMwGNp9aEjnurW5Ob3n6STaE4/ruh78Mcfb4vH4PO3i9RzKYwi5gDZ79uxQNwmbO++8k8mTJzNq1CjGjBnDc889x549e/jVr5puPdPR3Hfuffz6418HXMdm2BjffzyzL57ND177QV2RwzzyH4DDcHDOSecwps8Yrj/9erIyskhxpFBYVdiqFm42bDjvb1gI+EnBT5i9bDaLdi2ixlPDkPQh3HH2HZzc5WS2Fm0NOMVvuNzw/g28cvUreE0vLq8L55GB1cM5mUD9Is/Us6eyfN9yyl3+N1PDNLAZNlLiUujfuX/YBnWscfs/DLIyso680TedM6/pw4JBpbuSvy79a6MC2vzN8/nmwDdB5dxqWBsNCh9vi29xu/0V+3lt3Ws8csEjdcs6x3emsLqw2W1qvDXNtk4yMOiZ1JMrBl/BM6ueCXjs3sm9eeayZ7jhXzc0+ytVRmIGEwZP4OQuJzN72WxeXPNiwPHgbIYNt+/oIPhe3FgNe4MWaMH6eMdLIW8TrDHx8Hg6DHaA48g04T1tsNFl0sl1kB9ayujZ1UeaFcq9cH6CyYi4QmYtvJX3Dx/G6Q2+S+uxDMPAYXU0+bzqndybOFscVa381dDER9e8v3FW8ZNYHODxwSAHzEqHScngNmGrG14rh69rXDQ1toYXL+sOrWvV8UVERESkbUwYPKFuUrHaYtqu0l11M1TWn3Csf1p/bpl/C0XVRbi9brx4MTDol9qP3479LUCL183gvxYod5bj8XnqxvCNt8Vzx9l3NLl+7YD96/PX8891/wxq1ksLFnaX7g7mFITFZQMv453cd1rdcy3eGk9aXBpevJzarWNNIACtKKD99Kc/bYs4gvLjH/+Yw4cP89BDD5GXl8fQoUP56KOP6Nu3b8RiiiZTzp7Cb3J+Q7Wnusn77RY7N51xE9NGTyMrI4uLB17Ma+tew2t667pB2Qwbk0+fzDOXNyw+DO8xnMKqQkpdoc8f3K1Tt0bLsjKyePbyZ5tcf96P5vHgogf5fPfnVHuq6Z3cm6lnT+WJ5U80GFD/eBU7i7n949tJi0/D5a0d1N0EX/jGkyusOloImjB4An++4M88/OXDFFcXY7PaSE9IZ2SvkXRJ6MKyfcvC0gU3zna01WVeeV6z65n1OpDuLd1LbkFug5Zg9y26L+h4mhqHMDMlM6gWkZ/t+KxBAa1vWl+2Fm8N6riN4sCgX1o/5kyYAxCwiPbMZc8wYfAEvvrZV5z70rkcrmnYoirRlsgvR/wSOPp87ZrYlUeXPNrk/kxM7FY7le5KLIaN2om3faYXZzOvyWO9+O3v+dUn/6bcVeEf/62NXJ8MaVbwmFADOE1IskBvGxxylTMqzkelCVuPNM476PUXov7H3MMbLdQCbdjwHfmvKV7Ty8AuA5tsQTii5wje/i5w10sr1oBddwcX/wMrXoqOrGL3QmcrjI6H9U4Ynwgj4uDOQh9fN/PDY0utEkVEREQkcuoX05q7/1meDVhk+82nv6Ha2/x39G6J3XjxihfZW7qXZ1c9S15FHj2TenLLyFua7LlT3/TR09ldsptPd3za4mNJsCfQL61fi+uFy8xxM9lfvp8VB1bg9oXW7cpqWMlMyaTSU0mqI5Wfnh652lCkhFxAA9i+fTsvv/wy27dv54knnqBbt2588sknZGZmctppp4U7xgZ+/etf8+tft1wt7qgmDJrQZBfIeGs8j1/0eIMXe+0Le0PBBpweJ3G2OIZmDGXq6KmN9nvTGTfxXcF3lB8Orilq/eNePvjykB5DVkYWb018q9Hy/+74L7uKd+H0ha9bW35lPgVVBXiOvHlYsAQ1IUOCLYFkRzJen5eimqJmC0013oZX6FPOnsL5/c9nwY4F7C7dTd/Uvlw44EJeWPMC8bb4ZoufoTi9x9FmxMGM2wX+VjfTP5nOJ5M/Afy/6nx76NsWtzOwYjEMfKYPm8VGbkEuDyx6gM93fU5RdXDduY9teXe8EwN4jszeOGfCHF5d9yqV7satpRJtiXUfoFkZWcy9ai73L7qffeX7sBk2UuNTGdZtGNedfl2D7SafPpm/LPlLs68BwzCwGlY8Ph8c+ZUKw6DK03K/+rs+G8+BytYVDus/rseyH2vxF7VBdn/Lsnigq81fQPMcKaLVmLUzUsIwB3SyQKUPqk0YGETr5t6pvYmzxLGleEuT95uY5Bbm8r3e32t0X/aAbO703NnEVg23948f2DgHBgYpZinuek+h+CM9ZS34C4G1xcDrkmm2gBatsw6LiIiISHBaKrKd0fOMZhswnNH9DOb9aF5d44KWCmbHysrIYvbFs3lw0YO8ndv8j8MGBsO7D+eC/heEtP/jkZWRxQtXvMCCHQuYt24e3+Z/W3cN6rA66NGpBx6fh0OV/nGPLYYF0zSxWWwMSR+C1WLl9NTTGxUkO4qQC2iLFy/mkksu4ZxzzuGLL77gkUceoVu3bqxbt44XXniBd955py3ilCDVVpS/PfQtTo8Ti2Ghd3Jv/n7J3xs9wWtf2McWc+q3QqpVu+1dn97F5qLgWoE5LA7+p+//NFmQaw3/oOzhvbCt8lTVtb4D/4yeBkaLrVyGdRvGN7/4BoDkR5OpcDXd7bOTvVOjZbVNe+vrm9qXOGscNZ6a43qMFizcftbtdbcdVgc1nuD693+641PmLJ9DZmomP/vgZ0Ecy9/KygCsFhv7y/ZzzkvnhDxop9tztMiXW5DLmoNrQtq+Ph8+khxJdbfvHH0nj3z5SINiiwULvxnzmwbb1XbTbOm1cLRbbNM6OTpR4arwT4Lg87dAs5qW5nrR1nl29b1BF88MDPok9+FQ5aG6WYi9ppcEWwLTR09nytlT+N1nv6PcVd7sPra6/S2x9nkg1eovktnwF81KvJDng9EJ4MFfWOtq89+/MYiGWRcPvJguCV3485I/N/tcLq0pbfK+rIws7DY7Xk/zr71ABXwTkzy3hZMd1HXzrW0LWFPvcOVeOCVAMbDaVd2oRaaIiIiItB+///7v67p5ek0vpmkSZ4vjumHX1fXYOh61jULmLJ/Dg4sfpKCqoMH9CbYEJgyawMxxM0/4d87a69Hbv3f0urF2/Lbaa6GCygI+2PxBSC3vOoKQC2j33HMPDz/8MHfeeSfJycl1y8eNG8cTTzwR1uAkdPUryi0VxWrXD/YFW1tkOP2Z0+ta+QTisDqYffHssL0hJMclh1RcMjCwW+24vIGv+uvv08TEY3qwG3YcOKg2G7cIS7QlNijS9EruxZbDTbe2GddvXFCxZg/I5qU1L/Fd/nchzdhyrGtOvaZBofS8k87jvzv+G9S2JiYPf/kwo/uMbvQG3xSH1YHP9GExLHhNN3vL9h73JAgPLnow4OQWwRiTOabu74fGPwTAi2tepLimmM7xnbn5zJvrltcX7GvBMIwmC2IGBp3jO7O/bD9e06R2fC0fUOYK/JgW7n6zxePW+uXIX/LMhGcCjv1w8ckX817ue80WgV8r93djTLfBQQ/0sPnrTQur4LES+G1a7WM6+i8YvZN6M/V7/oL5i6tfJL8qv8n1nB5ns5NAZKZksrWo9S3xZpd4+Vu6v9umxwfWI8HvrPeySrbC8gANWT2mp9HYfCIiIiLSfgTTzTMcppw9JSYKT01dCzV1zdTRhVxAW79+PfPmzWu0PCMjg8OHWzcrm4RXKEWx1uw7IzGDvIrmx9aq5cMX1jhG9BzBP9f9s8X1LFgY3Wc0SY4kDlUeYkfRDsrdzbfGaYppmpzb5Vy2eLewp3QP4C+cxFnjSEtIa1CkmXb2NO7KuavRIJEDUgcw4/wZQR0vKyOLh8c9zF05d7G9aHtIRTSrYcVqWBnVa1Sj4826eBbDnh4WsDVdfQcqDrB079Igj2kD04vP9ITcf745H2376Li2NzC4bljDbpcPjX8orG/+vVN6NznQZ6+kXjisjiMt1Bqe74LqPeTsfIXs/jc02m71wQUhzbZZW6AK1Cx95riZHCg/wIb8DUcnrcAgIzGDW0bewk+G/YQNG59j5/Z/0M1XwsJqk9fKYdmRxorJFtjphgQLJBlQ7INqH6RYmjxcnWcmPFP3mr/v3Pu4479ND7DqNt3NjvVwzanXNDvOXDBqZ9u8PRV62eCgCwwD4gzoYfUXz0q8/iJic6yGlWX7lrU6BhERERGJfi118xQ5VguXQ42lpaWRl9e4eLJmzRp69+4dlqAkuk04ZQIJtgTsFjuWZp5CBkaT3RePR/aA7IAzINayGlbO73c+sy+ezc1n3kznhM6tOt7l3S5n1kWzGNZ9GF0Tu5KRmEFmaiZj+4xtUKSZcvYUHst+jMFdBpNkTyI9IZ1rs65l/nXzQyogThg8gfd//D53n3N30NskO5IZkDaAG8+4kReueKHJLofdkhpP4hBIS7OBdonvQpeELri8NTh91UEXz5rr+li7fW5BbpPjlYXi4pMvbvMm0L8b+zsSbYkYGHVj5iXaEvnDuX+gk6NTs8XPdzbNanL5i9/+Puhj2w17UI8vKyOL5694nj+O/yPTx0zn7xf/ne9+/R2HfnuIh8Y/RFZGFteeN4uC02ZwSZ6N2wqOFs/A38XTYsAGp3/5Bqf/9pYAqY6zxjX4AvKrkYFnR25urIfJp0/GYoT80dTA82Vw+l5I3wkD98D1h+CzKijx+f8/vbDh463PipV4W7zGQRMRERERkQZCboE2adIkfve73/H2229jGAY+n4+vvvqKu+66ixtuaNy6QtqfYycfKHOW4fa56woKGP5iybi+wXVfDFZWRhY2i63lgo0BTq+zriXeq+teZU/ZnpCOZRgGmfGZXDroUgZnDG6xS2y4muZmZWTxyAWP8H9L/y/g4zQwOKP7GfzzR/9ssaDSNaEr+RX5QbdCC8Ru2Lll1C28vv51iqqKQpopsrmCRHF1MfM3z2fpvpZbvgXy41N/zBvXvnFc+whGbZ6bmo1nb/lePt/1eZPblbsL2V++lb6pp9Qte/Hb31PsbLk1Z63Tugc/SUswLVGzB2QfmX22odounoMc/vHCgmm11VR35U5GJyrNxkXRVEdqwG7l4a5dfV0Dy2qMoIpiCfYEkuOSGdtnbHiDEBERERGRmBZyAe2RRx7hxhtvpHfv3pimyamnnorX62XSpEncd999bRGjRJljJx+Is8bx0daP2FGyA5fHhcPmYGjGUGaMmxH2Y2ckZnCg4gAWrPiaKQh5fJ4G3cM6OUJvCWe3HR1hvC27xDank6MTJTUlAA0mOQBIT0hnXL9xQQ842SO5B9uKtuH1Hn8B7Z7v38NPhv2Ep5Y/FZaCHIAHD/ctug+H1RHytgYGNmz8ZuxveDS79d3+QtVcwXTy6ZMDdj/8aPuLTBnxl7rbS/a+G9Jx/3j+H0NavyVZGVnEWeMadT/+ugbuLPTPVHmK3T9eWP0unsc6s/uZPP6DxxstvyzjMt7Nf7fBc8WKlTu+13TXTvC3RAxmJtxQdU3oSmF1YcB1Otk70Tuld5MzsIqIiIiISMcWcgHNbrfzz3/+kz/+8Y+sXr0an8/HmWeeyaBBg9oiPolSxxaVrj/9+qAnLjgeN595M3/+6s94fYGLN/W7h43pM4bFuxaH1CUrIzGj1TGGQ3b/bN7b9B4+01dXTLAYFn445Ie8NfGtkPbVO7k3XRK6cKDiwHHFlNU1q24sMbc3PGOe1dpUuIlunULragr+Vm2J1kR+MvQnYY2ntbIyskiwJdRNBX2s3MJ6rewMcPqaXq8p3RK7tckYDcO7D+fr/V83Wv51jf9fS5LsSc22hJzUaxIDBw1k7rdzW5zEoVbOjhxS4lNCns01kBE9RtAlsQsLdixodh0Dg2tPvZYRPUe02fuXiIiIiIjErpALaLUGDBjAgAED8Hq9rF+/nuLiYjp3bt1YUxL7TlQrrfqzKtYvCNVvpdUrqVeDWCafPpn/t/z/UeYqC/o4w7sND1PErTNz3Ez2l+9nQ/4GXF4XDquDod2GMnPczJD3NaLnCHK25xx3TPVnXg33+FBOr5NyV9P9A2sLiM0d02E4yEqPnmLHhEETeDv37Sbvq/YcfYy7ijcTbF/FRFsiM86bEYboGvv9ub/nyjeubPUMqtNHTw/42p9x3gweuTD42Sx3l+5mZM+RLN27jGpPNRYDfKav1c85A4PXfvga24u2s+rAqmYLc7eMvIU5E+a06hgiIiIiItL+hTxS87Rp03jxxRcB8Hq9nHfeeYwYMYLMzEw+//zzcMcn0shD4x9i/2/28/QlT9cN5l77X+1g7vVlZWTxv0P/N6RuYeP7jw932CHJysjihSte4OHxD3Pr2bfy8PiHm5wkIBjZA7Jb7LoWjBrv0eZIKXEpx72/Y9V2WT2W1fAP6t6c6hBacZ0IM8fNJM4a12i5gUGiI7Xu9ifb38LA2uQ+rFjpn9qfbondGN5tOI9lP9Zm019PGDyBLgldWrVtvC0+7NNb903tS0pcClcMnsDg9EFkJGbQM7lnq7t1OiwOsjKymDB4Aq9c9QrDuw3HWu+8p8alcv+596t4JiIiIiIiAYXcAu2dd97h+uuvB+DDDz9kx44dbNq0iVdeeYU//OEPfPXVV2EPUqQpgQZzP9a00dP416Z/kV+V3+J+7Yadcf3GsTN/Z9hjDkW4WvVlZWTh8TY9M2So+6l1erfT+WzXZ8e9z2AYhkGSI6nZbpHBzgJ6omRlZPH9zO/zxe4vcJtuatvQ2Sxx9EoaWLfeV/s+bXYShicvebLNCmZNOaPnGQG7NzYnwZoQ9liyB2SzIX8DRdVFjO0zllJnKV0SujBv/bxWzdJqtRwtlmmqchERERERaa2QW6AVFhbSo0cPAD766CMmTpzIKaecws0338z69evDHqBIIFPOnsLaKWs59NtDrJ2yttmiQ1ZGFmMzx/pnCW3BBQMuiKougdHAwOD2s26vu33FkCtatR+bYWvQ+icYCbYEqtxVzd5vs7S6J3qbObvP2XRO6IzDkoAFCxbDigULqY70unXyKvbSVBfOFEfKCS2eAUw9eyp2i73lFY8RZ2vc0u54ZWVkMX30dM7rex6dEzpzXt/zmD56Ov3T+rdqfyelnRTmCEVEREREpCMKuYDWvXt3Nm7ciNfr5ZNPPuHCCy8EoKqqCqs1tAtjkRNpXP9xLY7zFG+Nb3I2wViX5Eg6ru0nnjqxQcud7AHZ2IzQClcWLAztNjTkY/dL7YfL62r2/vR6RaloYrPYsFosWAwbYOD2ucg9vIx95VvJLcilylPR5HbhnqAhGBMGT+Cec+4Jubh5eo/T2ySerIwsbv/e7Tx20WPc/r3bycrI4vLBl5ORmIHdODpbqxUrWelZ2I2mi38Oi4M7zmp+xk8REREREZFghVxAu+mmm5g4cSJDhw7FMAyys7MB+OabbxgyZEjYAxQJl+wB2S2uk5mS2S5n3/vByT/AajQujozoMSLgdrXjQ71x7RsNlmdlZJEWn9bsdmMzxzK2z1hS4lKIt8aTEpfC6D6j+eO4P+Il8Ayqx7p8yOX4zOYLn2elnBXS/k4Ep9dJkiMJt8eJx3TiMz2Y+Cis2s+Xe97j1XWv0twEAq0d6+t4PTT+IZ685El6JfUiwZpAsiOZ3km9ibc2Pf5ct8RuDVoltrXJp0/mvL7ncWq3LIZmDGV49+FcnXU17058lycufoJeSb3q1jUw6J3cm9k/mH3CW/OJiIiIiEj7FHLfpxkzZjB06FD27t3LtddeS1ycvwuP1WrlnnvuCXuAIuGSlZGFFWvAAk5mauYJjOjEmTluJgfKD7AhfwM13hrirfEM7TaU5694nmFPD2twTmpnNLVb7JTcU9LsPs/oeQaLdy4+Ms7XUfHWeO49515O7nIyC3YsYHfpbvqm9uXCARf6c2BY8ZrBFdEcFgfXDbuOP335p2bXOa/LeUHt60Tqm9qXvPI8PPjHnvPPIGniNmtYlZfD6vzmJz5IdCSeoCgbm3L2FM7vf36DvPVP68+HWz5k/pb5FFcXY7PaGNZtGPd+/94TOp5YVkYWD417qMnnVFZGlgplIiIiIiLSplo1eNA111zTaNlPf/rT4w5GpK2N7jOar/Y1P9GFw+po9r5YlpWRxfNXPN9k8aFPah92l+4GjhbPAPok9wm4z6lnT2Xb4W3kV+bj8rrwmT7ibfH8Zsxv6gorTbXm65LQhYKqghZjtmDh3JPOJSsjiyR7EuXu8kbrJNoSyYyPvqJn9oBsfvPJb5q8b0/FpoDbjugVuFVgW2tq8opoGXg/XBNriIiIiIiIhKpVBbTPPvuMWbNmkZubi2EYDBkyhGnTptWNhyYSrZ6/4nlOffrUZu/fWRzZmTfbUnPFh9+N/R135dxFtae6rvtggi2B3479bcD91RZV5q6dy67SXfRL7ceNZ9zYYrHlVyN/xaNLHsVjBp4ZtEdSD67KugqAHwz8Ae/lvtdgDDsLFi4ZeEnAfURKVkYWhmE010szoBPZLVJERERERESCE3IB7amnnmL69Olcc801TJ06FYBly5Zx6aWX8vjjj3PbbbeFPUiRcMnKyCLeGk+Nt6bJ+4trik9wRJFX2/Xt2VXPkleRR8+kntwy8pagusRNGDwh5NZJD41/CIA/fvnHgOtVuCq4oP8F/m3GPeTvglqwAZfHhcPmYGjGUB74nwfYuTw6i57x9njcrtAmBMhIzIia1l4iIiIiIiJyVMgFtEcffZRZs2Y1KJTdcccdnHPOOTzyyCMqoEnUOyntJLYc3tLkfb1SejW5vL2bcvaUEzqG1EPjH2Lut3PZW7a32XWqPdV1LeayMrJ44YoXGnVBHZg2kJ1EZwFtaLehfL3v65C2+WHWD9soGhERERERETkeIc/CWVZWxsUXX9xo+UUXXURZWVlYghJpS9POnobD0niss3hrPL8885cRiKhj6pHUI+D9Xl/DiQayMrK4/Xu389hFj3H7926P+rGwfv/934c0o6aBwdTvTW3DiERERERERKS1Qi6gXXHFFbz//vuNlv/73//m8ssvD0tQIm1pytlTmP2D2fRK6oUVK1bDSu/k3jx+0eOaye8EunBA4DET7Rb7CYqkbUwYPIGJp04Mev2Jp06M+qKgiIiIiIhIRxVUF86///3vdX9nZWXxyCOP8PnnnzNmzBjAPwbaV199xW9+0/SscyLR5kR3WZTGJp8+mY+3fszaQ2ubvL89FJPeuPYNeBve3PhmwPWS7En+dUVERERERCQqBVVAmzVrVoPbnTt3ZuPGjWzcuLFuWVpaGi+99BL33XdfeCMUkXYpKyOLeT+axy8++AVf7fuqbrmBQXpiOn8cF3iSgVjxxrVvUPZaGR9v/7jJ+61Yef1Hr5/gqERERERERCQUQRXQdu6MzkG6RSS2ZWVkseTmJczfPJ+5a+eyq3QX/VL7ceMZN7ar2Sg/uv4jpsyfwnOrnsOHr25598TuvHDFC+3qsYqIiIiIiLRHIc/CWauwsBDDMOjatWs44xGRDmjC4Antvog0Z8Ic5kyYE+kwREREREREpBVCmkSgpKSEW2+9lfT0dLp37063bt1IT0/ntttuo6SkpI1CFBERERERERERiZygW6AVFRUxZswY9u/fz3XXXUdWVhamaZKbm8vcuXP57LPPWLp0KZ07d27LeEVERERERERERE6ooAtoDz30EA6Hg+3bt9O9e/dG91100UU89NBDjSYcEBERERERERERiWVBd+H817/+xWOPPdaoeAbQo0cP/vrXv/L++++HNbj6HnnkEcaOHUtiYiJpaWltdhwREREREREREZH6gi6g5eXlcdpppzV7/9ChQzl48GBYgmqKy+Xi2muvZcqUKW12DBERERERERERkWMF3YUzPT2dXbt20adPnybv37lzZ5vOyDlz5kwA5s6d22bHEBEREREREREROVbQBbSLL76YP/zhD+Tk5OBwOBrc53Q6uf/++7n44ovDHuDxcDqdOJ3OuttlZWUAuN1u3G53pMKqUxtDNMQiDSk3sUF5il7KTexQrmKD8hRZOv+xQ7mKTspL7Ii2XEVLHNEg2nLTXoRyPg3TNM1gVty3bx+jRo0iLi6OW2+9lSFDhgCwceNGnn76aZxOJytXriQzM7N1UQdp7ty5TJs2jZKSkhbXnTFjRl3LtfrmzZtHYmJiG0QnIiIiIiIiIq1VddLIur8T96yKYCTSEVRVVTFp0iRKS0tJSUkJuG7QBTTwd9P89a9/zaeffkrtZoZhkJ2dzVNPPcXAgQNDCrS5Ald9K1asYNSoUXW3QymgNdUCLTMzk8LCwhZPzIngdrvJyckhOzsbu90e6XCkHuUmNihP0Uu5iR3KVWxQniJL5z92KFfRSXmJHdGQq3c2HKr7+5qhjScx7KiiITftUVlZGenp6UEV0ILuwgnQv39/Pv74Y4qLi9m6dSsAAwcOpEuXLq0K9LbbbuN///d/A67Tr1+/Vu0bIC4ujri4uEbL7XZ7VD3hoi0eOUq5iQ3KU/RSbmKHchUblKfI0vmPHcpVdFJeYke05CoaYog20ZKb9iKUcxlSAa1W586dOfvss1uzaQPp6emkp6cf935ERERERERERETaSqsKaJGwZ88eioqK2LNnD16vl7Vr1wL+FnBJSUmRDU5ERERERERERNqtmCmgPfDAA/zjH/+ou33mmWcCsGjRIs4///wIRSUiIiIiIiIiIu2dJdIBBGvu3LmYptnon4pnIiIiIiIiIiLSlmKmgCYiIiIiIiIiIhIJKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEEBMFtF27dnHzzTfTv39/EhISOPnkk3nwwQdxuVyRDk1ERERERERERNo5W6QDCMamTZvw+Xw8++yzDBw4kA0bNvCLX/yCyspKHnvssUiHJyIiIiIiIiIi7VhMFNAuvvhiLr744rrbAwYMYPPmzcyZM0cFNBERERERERERaVMx0YWzKaWlpXTp0iXSYYiIiIiIiIiISDsXEy3QjrV9+3aefPJJ/va3vwVcz+l04nQ6626XlZUB4Ha7cbvdbRpjMGpjiIZYpCHlJjYoT9FLuYkdylVsUJ4iS+c/dihX0Ul5iR3RlqtoiSMaRFtu2otQzqdhmqbZhrEENGPGDGbOnBlwnRUrVjBq1Ki62wcOHOC8887jvPPO44UXXmjV/ufNm0diYmLrghYRERERERGRNlF10si6vxP3rIpgJNIRVFVVMWnSJEpLS0lJSQm4bkQLaIWFhRQWFgZcp1+/fsTHxwP+4tm4ceP43ve+x9y5c7FYAvdAbaoFWmZmJoWFhS2emBPB7XaTk5NDdnY2drs90uFIPcpNbFCeopdyEzuUq9igPEWWzn/sUK6ik/ISO6IhV+9sOFT39zVDu0ckhmgUDblpj8rKykhPTw+qgBbRLpzp6emkp6cHte7+/fsZN24cI0eO5OWXX26xeAYQFxdHXFxco+V2uz2qnnDRFo8cpdzEBuUpeik3sUO5ig3KU2Tp/McO5So6KS+xI1pyFQ0xRJtoyU17Ecq5jIkx0A4cOMD555/PSSedxGOPPUZBQUHdfT169IhgZCIiIiIiIiIi0t7FRAHt008/Zdu2bWzbto0+ffo0uC+CPVBFRERERERERKQDaLkfZBS48cYbMU2zyX8iIiIiIiIiIiJtKSYKaCIiIiIiIiIiIpGiApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEYIt0ACIiIiIiIiIiAIbXS8aa5SQUHoLSoXDuuWC1RjosERXQRERERERERCQKvPcel0+5jU75eUeX9ekDTzwBP/xh5OISQV04RURERERERCTS3nsPrrmGxPrFM4D9++Gaa/z3i0SQCmgiIiIiIiIiEjleL0ydCqaJcex9pun//7Rp/vVEIkQFNBERERERERGJnC+/hH37mr/fNGHvXv96IhGiApqIiIiIiIiIRE5eXsvrhLKeSBuImQLaFVdcwUknnUR8fDw9e/Zk8uTJHDhwINJhiYiIiIiIiMjx6NkzvOuJtIGYKaCNGzeOt956i82bN/Puu++yfft2rrnmmkiHJSIiIiIiIiLH49xz/bNtGo1GQPMzDMjM9K8nEiG2SAcQrOnTp9f93bdvX+655x6uuuoq3G43drs9gpGJiIiIiIiISKtZrfDEE/7ZNg3j6MQBcLSoNnu2fz2RCImZAlp9RUVF/POf/2Ts2LEBi2dOpxOn01l3u6ysDAC3243b7W7zOFtSG0M0xCINKTexQXmKXspN7FCuYoPyFFk6/7FDuYpOykvsiGiuLr8c4403sN55J8b+/XWLzd698f7tb5iXXw4d+Dmk11HbCOV8GqZZv7Qb3X73u9/x1FNPUVVVxejRo5k/fz5du3Ztdv0ZM2Ywc+bMRsvnzZtHYmJiW4YqIiIiIiIiIqHyeum6cSPxxcXUdO7M4VNPVcszaTNVVVVMmjSJ0tJSUlJSAq4b0QJacwWu+lasWMGoUaMAKCwspKioiN27dzNz5kxSU1OZP38+RjP9pJtqgZaZmUlhYWGLJ+ZEcLvd5OTkkJ2drW6oUUa5iQ3KU/RSbmKHchUblKfI0vmPHcpVdFJeYodyFb2Um7ZRVlZGenp6UAW0iHbhvO222/jf//3fgOv069ev7u/09HTS09M55ZRTyMrKIjMzk2XLljFmzJgmt42LiyMuLq7RcrvdHlVPuGiLR45SbmKD8hS9lJvYoVzFBuUpsnT+Y4dyFZ2Ul9ihXEUv5Sa8QjmXES2g1RbEWqO24Vz9FmYiIiIiIiIiIiLhFhOTCCxfvpzly5fz/e9/n86dO7Njxw4eeOABTj755GZbn4mIiIiIiIiIiISDJdIBBCMhIYH33nuPCy64gMGDB/Ozn/2MoUOHsnjx4ia7aIqIiIiIiIiIiIRLTLRAGzZsGAsXLox0GCIiIiIiIiIi0gHFRAEtXGrHTSsrK4twJH5ut5uqqirKyso0CGCUUW5ig/IUvZSb2KFcxQblKbJ0/mOHchWdlJfYoVxFL+WmbdTWh2rrRYF0qAJaeXk5AJmZmRGOREREREREREREokF5eTmpqakB1zHMYMps7YTP5+PAgQMkJydjGEakw6GsrIzMzEz27t1LSkpKpMORepSb2KA8RS/lJnYoV7FBeYosnf/YoVxFJ+UldihX0Uu5aRumaVJeXk6vXr2wWAJPE9ChWqBZLBb69OkT6TAaSUlJ0QsgSik3sUF5il7KTexQrmKD8hRZOv+xQ7mKTspL7FCuopdyE34ttTyrFROzcIqIiIiIiIiIiESKCmgiIiIiIiIiIiIBqIAWQXFxcTz44IPExcVFOhQ5hnITG5Sn6KXcxA7lKjYoT5Gl8x87lKvopLzEDuUqeik3kdehJhEQEREREREREREJlVqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgAtoxHn30Uc466yySk5Pp1q0bV111FZs3b26wjmmazJgxg169epGQkMD555/Pd99912Cd5557jvPPP5+UlBQMw6CkpKTRsbZs2cKVV15Jeno6KSkpnHPOOSxatKjFGNevX895551HQkICvXv35qGHHuLYoez+3//7f2RlZZGQkMDgwYN55ZVXQj8ZUSbac1NTU8ONN97IsGHDsNlsXHXVVU2ut3jxYkaOHEl8fDwDBgzgmWeeCek8RLv2kKe8vDwmTZrE4MGDsVgsTJs2LdTTEJXaQ27ee+89srOzycjIICUlhTFjxvDf//435HMR7U5krlavXk12djZpaWl07dqVX/7yl1RUVLQYY0ufRe31dVRfe8hTLL+m2sP5X7JkCeeccw5du3YlISGBIUOGMGvWrNadkCjVHvJU31dffYXNZuOMM84I+hxEq/aQm88//xzDMBr927RpU+tOSpRqD7kCcDqd/OEPf6Bv377ExcVx8skn89JLL4V+QqJIe8jNjTfe2OTr6LTTTmvdSWnHVEA7xuLFi7n11ltZtmwZOTk5eDweLrroIiorK+vW+etf/8rjjz/OU089xYoVK+jRowfZ2dmUl5fXrVNVVcXFF1/M73//+2aPddlll+HxeFi4cCGrVq3ijDPOYMKECRw8eLDZbcrKysjOzqZXr16sWLGCJ598kscee4zHH3+8bp05c+Zw7733MmPGDL777jtmzpzJrbfeyocffnicZyeyoj03Xq+XhIQE7rjjDi688MIm19m5cyeXXnop5557LmvWrOH3v/89d9xxB++++24rzkh0ag95cjqdZGRk8Ic//IHhw4e34ixEp/aQmy+++ILs7Gw++ugjVq1axbhx47j88stZs2ZNK85I9DpRuTpw4AAXXnghAwcO5JtvvuGTTz7hu+++48YbbwwYXzCfRe31dVRfe8hTLL+m2sP579SpE7fddhtffPEFubm53Hfffdx3330899xzx3dyokh7yFOt0tJSbrjhBi644ILWnYwo055ys3nzZvLy8ur+DRo0qHUnJUq1l1xNnDiRzz77jBdffJHNmzfz+uuvM2TIkNafmCjQHnLzxBNPNHj97N27ly5dunDttdce38lpj0wJKD8/3wTMxYsXm6Zpmj6fz+zRo4f55z//uW6dmpoaMzU11XzmmWcabb9o0SITMIuLixssLygoMAHziy++qFtWVlZmAuaCBQuajefpp582U1NTzZqamrpljz76qNmrVy/T5/OZpmmaY8aMMe+6664G202dOtU855xzgn/gMSDaclPfT3/6U/PKK69stPzuu+82hwwZ0mDZLbfcYo4ePTqo/caiWMxTfeedd545derUoPYXa2I9N7VOPfVUc+bMmUGtG6vaKlfPPvus2a1bN9Pr9dYtW7NmjQmYW7dubTaeYD6L6mvPr6P6Yj1PtWL1NdVezv/VV19tXn/99S0+3lgVy3n68Y9/bN53333mgw8+aA4fPjyUhx0TYjE3zR2zvYvFXH388cdmamqqefjw4VY95lgRi7k51vvvv28ahmHu2rUrqMfckagFWgtKS0sB6NKlC+BvQXTw4EEuuuiiunXi4uI477zzWLp0adD77dq1K1lZWbzyyitUVlbi8Xh49tln6d69OyNHjmx2u6+//przzjuPuLi4umU/+MEPOHDgALt27QL8v/rHx8c32C4hIYHly5fjdruDjjHaRVtugvH11183iA/8+Vu5cmW7yk19sZinjqI95Mbn81FeXl73GNqrtsqV0+nE4XBgsRz9OpCQkAD4u5Y1J5jPoo6oPeQpll9T7eH8r1mzhqVLl3LeeecFHV+sidU8vfzyy2zfvp0HH3ww6JhiTazmBuDMM8+kZ8+eXHDBBUENiRPrYjFXH3zwAaNGjeKvf/0rvXv35pRTTuGuu+6iuro66PhiQSzm5lgvvvgiF154IX379g06vo5CBbQATNPkzjvv5Pvf/z5Dhw4FqOt+1L179wbrdu/ePWDXpGMZhkFOTg5r1qwhOTmZ+Ph4Zs2axSeffEJaWlqz2x08eLDJY9eP7Qc/+AEvvPACq1atwjRNVq5cyUsvvYTb7aawsDDoGKNZNOYmGM3lz+PxtJvc1BereeoI2ktu/va3v1FZWcnEiRPDut9o0pa5Gj9+PAcPHuT//u//cLlcFBcX13UdyMvLa3a7YD6LOpr2kqdYfU3F+vnv06cPcXFxjBo1iltvvZWf//znQccXS2I1T1u3buWee+7hn//8JzabLeiYYkms5qZnz54899xzvPvuu7z33nsMHjyYCy64gC+++CLo+GJNrOZqx44dLFmyhA0bNvD+++8ze/Zs3nnnHW699dag44t2sZqb+vLy8vj444/b7efQ8VIBLYDbbruNdevW8frrrze6zzCMBrdN02y0LBDTNPn1r39Nt27d+PLLL1m+fDlXXnklEyZMqHsBnHbaaSQlJZGUlMQll1wS8Nj1l99///1ccskljB49GrvdzpVXXlnXN9pqtQYdYzSL1twEo6X8tSexnKf2rj3k5vXXX2fGjBm8+eabdOvWrVX7iAVtmavTTjuNf/zjH/ztb38jMTGRHj16MGDAALp37173edHaz6KOpj3kKZZfU7F+/r/88ktWrlzJM888w+zZs5t8HO1BLObJ6/UyadIkZs6cySmnnBJ0PLEmFnMDMHjwYH7xi18wYsQIxowZw9NPP81ll13GY489FnR8sSZWc+Xz+TAMg3/+85+cffbZXHrppTz++OPMnTu33bRCi9Xc1Dd37lzS0tKanRCvo2ufP6GEwe23384HH3zAF198QZ8+feqW9+jRA/BXa3v27Fm3PD8/v1FlN5CFCxcyf/58iouLSUlJAeDpp58mJyeHf/zjH9xzzz189NFHdd36aptn9ujRo1GlOD8/HzhaSU5ISOCll17i2Wef5dChQ3W/zCQnJ5Oenh7qqYg60ZqbYDSXP5vNRteuXYPeTyyI5Ty1d+0hN2+++SY333wzb7/9drMTDrQHbZ0rgEmTJjFp0iQOHTpEp06dMAyDxx9/nP79+wO0+rOoI2kPeYrl11R7OP+1+xk2bBiHDh1ixowZ/OQnPwkpxmgXq3kqLy9n5cqVrFmzhttuuw3wFwJM08Rms/Hpp58yfvz4kOKMNrGam+aMHj2a1157LaT4YkUs56pnz5707t2b1NTUunWysrIwTZN9+/bF/MQPsZybWqZp8tJLLzF58mQcDkdIsXUUaoF2DNM0ue2223jvvfdYuHBh3ZOxVv/+/enRowc5OTl1y1wuF4sXL2bs2LFBH6eqqgqgQR/m2ts+nw+Avn37MnDgQAYOHEjv3r0BGDNmDF988QUul6tum08//ZRevXrRr1+/Bvuy2+306dMHq9XKG2+8wYQJExodL5ZEe26CMWbMmAbxgT9/o0aNwm63B72faNYe8tRetZfcvP7669x4443MmzePyy67LKRtY8WJylV93bt3JykpiTfffJP4+Hiys7OB4/8sas/aS55i9TXVXs5/U4/L6XS2Kr5oFOt5SklJYf369axdu7bu369+9SsGDx7M2rVr+d73vteqGKNBrOemOWvWrGlQqGgP2kOuzjnnHA4cOEBFRUXdOlu2bMFisTQoOMWa9pCbWosXL2bbtm3cfPPNrYrr/7d3L6FNPFocx0+qSU1oE5OoiRCsIKWUqrR2oQufIOJCiRSh1AeV4qKuRFHwATZuREEUa1Tw0YKiWNAKgi4ljbooUlKsqSaoFV8V3QSF+EBz7ubeXKv9j3KbmzTT7wcGmplheuYchsAvycyEkOOHEhS9bdu2qcvl0kgkosPDw9klnU5n9zl8+LC6XC7t7u7WgYEBbWpq0pkzZ+rHjx+z+wwPD2ssFtNz585ln0YXi8WyTx358OGDer1ebWho0P7+fk0kErpr1y61Wq3a39//j/WlUin1+Xza1NSkAwMD2t3drU6nU48ePZrdJ5FI6KVLlzSZTGpvb682Njaqx+PRoaGh3Dcsj8b7bFRV4/G4xmIxXbt2rS5fvlxjsZjGYrHs9ufPn6vD4dAdO3bo4OCgXrhwQa1Wq167di23zSogM8xJVbPr6uvrdcOGDRqLxTQej+euUQVghtlcuXJFJ0+erKdOnRpxDqlUKrfNKrB8zUpV9eTJk9rX16eJRELD4bDa7XY9ceKEYX1/816kas7r6GdmmFMxX1Nm6H84HNabN29qMpnUZDKpHR0d6nQ6df/+/TnsVGGZYU6/MstTOM0wm+PHj+uNGzc0mUzqo0ePdM+ePSoiev369Rx2qvDMMKtPnz5pIBDQ9evXazwe156eHq2srNStW7fmsFP5Z4bZ/MemTZt04cKFOeiKeRGg/UJERl06Ozuz+2QyGW1ra1O/36+lpaW6dOlSHRgYGHGctra2Px7nwYMHumrVKvV4PFpeXq6LFi3S27dv/7HGhw8f6pIlS7S0tFT9fr+GQqERj6AdHBzU2tpatdvt6nQ6NRgM6pMnT8bcm0IrhtlUVFSMeuyfRSIRraurU5vNprNnz9YzZ86MqS/jjVnmNNr2ioqKsbSm4Mwwm2XLlo26vbm5eaztGVfyOavNmzerx+NRm82m8+fP14sXL/5VjX96L/qn8yj26+hnZphTMV9TZuh/e3u71tTUqMPhUKfTqXV1dXr69Gn98ePHmHoznphhTr8yS4BmhtkcOXJE58yZo1OmTFG3262LFy/WW7dujakv45EZZqWq+vjxY125cqXa7XYNBAK6c+fOEUFTMTLLbFKplNrtdj179uz/3IuJwKL67zvIAQAAAAAAAPhN8d4QCwAAAAAAAMgDAjQAAAAAAADAAAEaAAAAAAAAYIAADQAAAAAAADBAgAYAAAAAAAAYIEADAAAAAAAADBCgAQAAAAAAAAYI0AAAAAAAAAADBGgAAAAmFAqFpLa2ttBlAAAAmIJFVbXQRQAAAODvWSwWw+3Nzc0SDofl69ev4vV681QVAACAeRGgAQAAFJl3795l/+7q6pIDBw5IIpHIrrPb7eJyuQpRGgAAgCnxE04AAIAi4/f7s4vL5RKLxfLbul9/wrllyxZZt26dHDp0SHw+n0ydOlUOHjwo379/l927d4vH45FAICAdHR0j/tebN2+ksbFR3G63eL1eCQaD8uLFi/yeMAAAQIERoAEAAEwQd+7ckbdv30o0GpVjx45JKBSSNWvWiNvtlt7eXmltbZXW1lZ59eqViIik02lZsWKFlJWVSTQalXv37klZWZmsXr1avn37VuCzAQAAyB8CNAAAgAnC4/FIe3u7VFVVSUtLi1RVVUk6nZZ9+/ZJZWWl7N27V2w2m9y/f19ERK5evSolJSVy/vx5mTdvnlRXV0tnZ6e8fPlSIpFIYU8GAAAgjyYXugAAAADkR01NjZSU/PfzU5/PJ3Pnzs2+njRpkni9Xnn//r2IiPT19cnTp0+lvLx8xHG+fPkiz549y0/RAAAA4wABGgAAwARhtVpHvLZYLKOuy2QyIiKSyWSkvr5eLl++/Nuxpk+f/v8rFAAAYJwhQAMAAMCoFixYIF1dXTJjxgxxOp2FLgcAAKBguAcaAAAARrVx40aZNm2aBINBuXv3rgwNDUlPT49s375dXr9+XejyAAAA8oYADQAAAKNyOBwSjUZl1qxZ0tDQINXV1dLS0iKfP3/mG2kAAGBCsaiqFroIAAAAAAAAYLziG2gAAAAAAACAAQI0AAAAAAAAwAABGgAAAAAAAGCAAA0AAAAAAAAwQIAGAAAAAAAAGCBAAwAAAAAAAAwQoAEAAAAAAAAGCNAAAAAAAAAAAwRoAAAAAAAAgAECNAAAAAAAAMAAARoAAAAAAABggAANAAAAAAAAMPAv5ypU7X+GeBIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNAAAAFgCAYAAAB6wIQ3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLLklEQVR4nOzdeXhU9dn/8feZLQvZgIQ9sghCFEQBLWB9FDTWBbdW6VMUq7WtpS6AtVZbF7Ba2z5WsPoTd6la3LVVqtYgiCIiu4CEfYdAErJvs57fH0NCQpLJTJgwM8nn5cVl5sxZ7jn3bOee72KYpmkiIiIiIiIiIiIiTbJEOgAREREREREREZFopgKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIALZIB3Ai+Xw+Dhw4QHJyMoZhRDocERERERERERGJENM0KS8vp1evXlgsgduYdagC2oEDB8jMzIx0GCIiIiIiIiIiEiX27t1Lnz59Aq7ToQpoycnJgP/EpKSkRDgacLvdfPrpp1x00UXY7fZIhyP1KDexQXmKXspN7FCuYoPyFFk6/7FDuYpOykvsUK6il3LTNsrKysjMzKyrFwXSoQpotd02U1JSoqaAlpiYSEpKil4AUUa5iQ3KU/RSbmKHchUblKfI0vmPHcpVdFJeYodyFb2Um7YVzDBfmkRAREREREREREQkABXQREREREREREREAlABTUREREREREREJAAV0ERERERERERERAJQAU1ERERERERERCQAFdBEREREREREREQCUAFNREREREREREQkAFukAxARkcjYtXUeZZueJr5mLzXxmaQM+TX9Bk3y3+n1wpdfQl4e9OwJ554LVmtkAxYRERGR9q9gKex8Fcq3QfJA6D8ZMsZGOioRFdBERDqiXVvnUfr1zaSZNSQY0Mm5h8qvv+LznR9yfsW1MHUq7Nt3dIM+feCJJ+CHP4xc0CIiIiLSvhUshdXTwVUKtmQ4tAiKV8OIWSqiScSpC6eISAe0+us7STNrSLFAggVcJqRa4Yz5b2D+6EcNi2cA+/fDNdfAe+9FJmARERERaf92vorXWcIhMqm2ZUDSQH8xbedrkY5MRAU0EZGOKNWVT4IBNgMqfeA0odoDKf9sZgPT9P9/2jR/904RERERkXAr30a5NwGPCUXVbjAMf0u08q2RjkxEBTQRkY5oi8ukkwU85tFlcVvAUgRGcxuZJuzd6x8bTUREREQk3JIHYvVVHP3x1jTBUw4pp0Q2LhFiuID26KOPYhgG06ZNi3QoIiIx553qeMp9kGiBeAOSLOAtDnLjvLw2jU1EREREOqj+k/FYU0hy7yLekw8V28CRCv2uj3RkIrFZQFuxYgXPPfccp59+eqRDERGJSacMvpEHDkOx92g3zoqUIDfu2bNNYxMRERGRDipjLN/1nkl+4ljclhToPh5GzIaMMZGOTCT2CmgVFRVcd911PP/883Tu3DnS4YiIxKQ5E+ZQ3udmJh508I8yWOeEBQOScHZL9Y810RTDgMxMOPfcExusiIiIiHQYxfEj2LP/cnbk/hiqJkKXsyMdkggAtkgHEKpbb72Vyy67jAsvvJCHH3444LpOpxOn01l3u6ysDAC3243b7W7TOINRG0M0xCINKTexQXk6Pvef+ze+HTgDgBKLwY9P7YaR9j7m//4vGAaGeXSANPNIUc372GOYPh/4fAH3rdzEDuUqNihPkaXzHzuUq+ikvMSOSOfKeP99LrxjGgmHjg4ZYvbujffxxzGvvjoiMUWLSOemvQrlfBqmWe8KKcq98cYbPPLII6xYsYL4+HjOP/98zjjjDGbPnt3k+jNmzGDmzJmNls+bN4/ExMQ2jlZEJLq5kzJwdznJf8PnJXHfWgB6fv01w154gYTDh+vWrUpPZ8PNN5M3Rs3nRURERCT8en79NWf95S9Aw0mtagsWK373O30XlbCrqqpi0qRJlJaWkpISeEybmCmg7d27l1GjRvHpp58yfPhwgBYLaE21QMvMzKSwsLDFE3MiuN1ucnJyyM7Oxm63RzocqUe5iQ3K0/HZeriKb/PKAbBZDK46tdvRO71evnj1QxIKD9FjUD8yJ1wIVmvQ+1ZuYodyFRuUp8jS+Y8dylV0Ul5iR8Ry5fViGzgQ9u9vckZ40zCgd288W7eG9J20PdHrqG2UlZWRnp4eVAEtZrpwrlq1ivz8fEaOHFm3zOv18sUXX/DUU0/hdDqxHvNCiouLIy4urtG+7HZ7VD3hoi0eOUq5iQ3KU+tYLQ2HwWxwDu128kf5f+FL7ZmCPT6+VcdQbmKHchUblKfI0vmPHcpVdFJeYscJz9VXX8H+/c3ebZgm7NuHfdkyOP/8ExdXFNLrKLxCOZcxU0C74IILWL9+fYNlN910E0OGDOF3v/tdo+KZiIiIiIiIiMSAvLyW1wllPZE2EDMFtOTkZIYOHdpgWadOnejatWuj5SIiIiIiIiISI3r2DO96Im3A0vIqIiIiIiIiIiJt5NxzcXV10OwA7YYBmZlw7rknMiqRBmKmBVpTPv/880iHICIiIiIiIiLHw2ql8MYUev6tEJPGs3AaALNnd9gJBCQ6qAWaiEgHZTbzt4iIiIjIiVZ43mAOT4vH1aVhkcyd7oB33oEf/jBCkYn4xXQLNBERERERERGJfSlDfk1Z5TQqzqzEsslCQqkbd9d4XJP+H/2GqHgmkacCmoiIiIiIiIhEVL9Bk9gFbF81my6nHaDI2ouTR06n36CfRDo0EUAFNBERERERERGJAv0GTeLriv8h/8jtCwb1iWg8IvVpDDQREdEgaCIiIiIiIgGogCYiIiIiIiIiIhKACmgiIiIiIiIiIiIBqIAmIiIiIiIiIiISgApoIiIiIiIiIiIiAaiAJiIiaBYBERERERGR5qmAJiIiIiIiIiIiEoAKaCIiIiIiIiIiIgGogCYiIiIiIiIiIhKACmgiIh2UWW/YM42AJiIiIiIi0jwV0ERERERERERERAJQAU1ERERERERERCQAFdBEREREREREREQCUAFNREREREREREQkABXQREREREREREREAlABTUREREREREREJAAV0ERERERERERERAJQAU1ERERERERERCQAFdBEREREREREREQCUAFNREREREREREQkABXQREREREREREREAlABTUREREREREREJICYKaDNmTOH008/nZSUFFJSUhgzZgwff/xxpMMSEYlZZv2/zWZXExERERER6fBipoDWp08f/vznP7Ny5UpWrlzJ+PHjufLKK/nuu+8iHZqIiIiIiIiIiLRjtkgHEKzLL7+8we1HHnmEOXPmsGzZMk477bQIRSUiIiIiIiIiIu1dzBTQ6vN6vbz99ttUVlYyZsyYSIcjIiIiIiIiIiLtWEwV0NavX8+YMWOoqakhKSmJ999/n1NPPbXZ9Z1OJ06ns+52WVkZAG63G7fb3ebxtqQ2hmiIRRpSbmKD8nR8vF5vg9vNnUefzxfyOVZuYodyFRuUp8jS+Y8dylV0Ul5iR7TlKlriiAbRlpv2IpTzaZhm7Awd7XK52LNnDyUlJbz77ru88MILLF68uNki2owZM5g5c2aj5fPmzSMxMbGtwxURiWru5O64O/fx3zBNEveubnB/1UkjAbCX7MdedvBEhyciIiIiHVDtd1CAxD2rIhiJdARVVVVMmjSJ0tJSUlJSAq4bUwW0Y1144YWcfPLJPPvss03e31QLtMzMTAoLC1s8MSeC2+0mJyeH7Oxs7HZ7pMORepSb2KA8HZ9NBZVsOFQBgAH8aGj3Bve/s+EQAKd1SyKrW6eQ9q3cxA7lKjYoT5Gl8x87lKvopLzEjmjIVe13UIBrjvl+2pFFQ27ao7KyMtLT04MqoMVUF85jmabZoEB2rLi4OOLi4hott9vtUfWEi7Z45CjlJjYoT61jtTaciLm5c2i1Wlp9fpWb2KFcxQblKbJ0/mOHchWdlJfYES25ioYYok205Ka9COVcxkwB7fe//z2XXHIJmZmZlJeX88Ybb/D555/zySefRDo0ERERERERERFpx2KmgHbo0CEmT55MXl4eqampnH766XzyySdkZ2dHOjQRkdgUsx34RURERERETqyYKaC9+OKLkQ5BREREREREREQ6IEvLq4iIiIiIiIiIiHRcKqCJiIiIiIiIiIgEoAKaiEgHZTbzt4iIiIiIiDSkApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBGCLdAAiIiIiIiIiIrkFuXyy420Kq/aRntiHM/pcS1ZGVqTDEgHUAk1EREREREREIiy3IJdZy2aRW7iMSncZuYXL/LcLciMdmgigApqIiIiIiIiIRFjOjhwOVx2mT/Jguib0ok/yYIqqi1iwY0GkQxMBVEATERERERERkQjbXbqbtPg0DMMAwDAMUuNS2V26O8KRifipgCYiIiIiIiIiEdU3tS8lNSWYpgmAaZqUOkvpl9YvsoGJHKECmoiIiIiIiIhEVPaAbLomdmV/xWYOVx9gf8VmuiR04YL+F0Q6NBFABTQRERERERERibCsjCymj57OkK5j6GRPZUjXMUwfPV2zcErUsEU6ABERERERERGRrIwsLh5wU73bfSIYjUhDaoEmItJBmcfeNo9dIiIiIiIiIqACmoiIiIiIiIiISEDqwikiIiIiIiIiEZdbkMsnO96msGof6Yl9OKPPtRoDTaKGWqCJiIiIiIiISETlFuQya9kscguXUekuI7dwmf92QW6kQxMBWllA83g8LFiwgGeffZby8nIADhw4QEVFRViDExEREREREZH2L2dHDoerDtMneTBdE3rRJ3kwRdVFLNixINKhiQCt6MK5e/duLr74Yvbs2YPT6SQ7O5vk5GT++te/UlNTwzPPPNMWcYqIiIiIiIhIO7W7dDdp8WmUVBkAGIZBalwqu0t3RzgyEb+QW6BNnTqVUaNGUVxcTEJCQt3yq6++ms8++yyswYmIiIiIiIhI+9c3tS8lNSV1M8Obpkmps5R+af0iG5jIESG3QFuyZAlfffUVDoejwfK+ffuyf//+sAUmIiIiIiIiIh1D9oBsNuRv4Nu8zSTYUqj2lDG8Zx8u6H9BpEMTAVrRAs3n8+H1ehst37dvH8nJyWEJSkRETjwz0gGIiIiISIeVlZHF9NHTGdJ1DJ3sqQzpOobpo6drFk6JGiG3QMvOzmb27Nk899xzgL9fckVFBQ8++CCXXnpp2AMUEZE2ooqZiIiIiESRrIwsLh5wU73bfSIYjUhDIRfQZs2axbhx4zj11FOpqalh0qRJbN26lfT0dF5//fW2iFFERERERERERCRiQi6g9erVi7Vr1/L666+zevVqfD4fN998M9ddd12DSQVERERERERERETag5ALaAAJCQn87Gc/42c/+1m442nWo48+ynvvvcemTZtISEhg7Nix/OUvf2Hw4MEnLAYREREREREREel4Qi6gvfLKKwHvv+GGG1odTCCLFy/m1ltv5ayzzsLj8fCHP/yBiy66iI0bN9KpU6c2OaaISHumIdBERERERESCE3IBberUqQ1uu91uqqqqcDgcJCYmtlkB7ZNPPmlw++WXX6Zbt26sWrWK//mf/2mTY4qIiIiIiIiIiIRcQCsuLm60bOvWrUyZMoXf/va3YQkqGKWlpQB06dKl2XWcTidOp7PudllZGeAv+rnd7rYNMAi1MURDLNKQchMblKfj4/N5G9x2u91YDKPRel6vL+RzrNzEDuUqNihPkaXzHzuUq+ikvMSOaMtVtMQRDaItN+1FKOfTME0zLL14Vq5cyfXXX8+mTZvCsbuATNPkyiuvpLi4mC+//LLZ9WbMmMHMmTMbLZ83bx6JiYltGaKISNRzp/TEndar7nbCnlXUL59VnTQSAHvJfuxlB09wdCIiIiLSEdV+BwVI3LMqgpFIR1BVVcWkSZMoLS0lJSUl4LphK6CtWbOG8847r66VV1u69dZb+c9//sOSJUvo06dPs+s11QItMzOTwsLCFk/MieB2u8nJySE7Oxu73R7pcKQe5SY2KE/H57tDFeQWVNbd/uFp3Rq0QHtnwyEAhnZPYkhGaGNNKjexQ7mKDcpTZOn8xw7lKjopL7EjGnJV+x0U4Jqh3SMSQzSKhty0R2VlZaSnpwdVQAu5C+cHH3zQ4LZpmuTl5fHUU09xzjnnhLq7kN1+++188MEHfPHFFwGLZwBxcXHExcU1Wm6326PqCRdt8chRyk1sUJ5ax2q1NLhtt9ub7MJpsVhafX6Vm9ihXMUG5SmydP5jh3IVnZSX2BGxXBUsZVTeHJJduyh39MPeZwpkjD3xcUQxvY7CK5RzGXIB7aqrrmpw2zAMMjIyGD9+PH/7299C3V3QTNPk9ttv5/333+fzzz+nf//+bXYsERERERERETmBCpbC6ul0qyzEY02iW+VSWL0FRsxSEU2iQsgFNJ/P1xZxtOjWW29l3rx5/Pvf/yY5OZmDB/3j8aSmppKQkBCRmEREREREREQkDHa+Cq5SKhz9wTDAmkGqax/sfE0FNIkKlpZXiQ5z5syhtLSU888/n549e9b9e/PNNyMdmohIuxCeETFFRERERFqhfBvYkv3FM/D/35YM5VsjG5fIEUG1QLvzzjuD3uHjjz/e6mACCdNcByIiIiIiIiISbZIHwqFFYKb6i2emCZ5ySD870pGJAEEW0NasWRPUzowmBp8WEREREREREQmo/2QoXk1S+S48lk7YfJWQ3BX6XR/pyESAIAtoixYtaus4RERERERERKSjyhgLI2aRv+IZkl07KYofTuqIKZAxJtKRiQCtmERARERERERERCTsMsaysudJdTcHZfSJYDAiDbWqgLZixQrefvtt9uzZg8vlanDfe++9F5bARESkbWlkSRERERERkeCEPAvnG2+8wTnnnMPGjRt5//33cbvdbNy4kYULF5KamtoWMYqIiIiIiIiIiERMyAW0P/3pT8yaNYv58+fjcDh44oknyM3NZeLEiZx00kkt70BERERERERERCSGhFxA2759O5dddhkAcXFxVFZWYhgG06dP57nnngt7gCIiIiIiIiIiIpEUcgGtS5culJeXA9C7d282bNgAQElJCVVVVeGNTkRE2o4GQRMREREREQlKyJMInHvuueTk5DBs2DAmTpzI1KlTWbhwITk5OVxwwQVtEaOIiIiIiIiIiEjEBF1AW7t2LWeccQZPPfUUNTU1ANx7773Y7XaWLFnCD3/4Q+6///42C1RERERERERERCQSgi6gjRgxgjPPPJOf//znTJo0CQCLxcLdd9/N3Xff3WYBioiIiIiIiIiIRFLQY6B99dVXjBgxgnvuuYeePXty/fXXs2jRoraMTURETiANiSYiIiIiItK0oAtoY8aM4fnnn+fgwYPMmTOHffv2ceGFF3LyySfzyCOPsG/fvraMU0REREREREREJCJCnoUzISGBn/70p3z++eds2bKFn/zkJzz77LP079+fSy+9tC1iFBERERERERERiZiQC2j1nXzyydxzzz384Q9/ICUlhf/+97/hiktERERERERERCQqBD2JwLEWL17MSy+9xLvvvovVamXixIncfPPN4YxNJHYVLIWdr0L5NkgeCP0nQ8bYSEcl0gITMCIdhIiIiIiISNQJqYC2d+9e5s6dy9y5c9m5cydjx47lySefZOLEiXTq1KmtYpSWqFgTXQqWwurpUH0QPFVQuBT2vgun/xEG3RLp6ETqaNIAERERERGR4ARdQMvOzmbRokVkZGRwww038LOf/YzBgwe3ZWwSjIKlmKum43UWYzhSsB5aBMWrYcQsFdEiZeerULEbn6sITC8YVgxXMca6ByBtmPIiIiIiIiIiEmOCLqAlJCTw7rvvMmHCBKxWa1vGJKHY+SoeZzH5nARug97JPaBiG+x8TYWaSClaCc5CDHyYGP4iGia4S5UXERERERERkRgUdAHtgw8+aMs4pLXKt+EyOlE3bpFhgC0ZyrdGNKwOzVMF+PBhoXaeDgMPYCgvIiIiIiIiIjHouGbhlCiQPBCrtwLMI6MZmSZ4yiHllMjG1ZFZEzGxYMEHeDHwHhlrylReJLppUDQREREREZEmtXoWTokS/SfjPbSCJOcuPJZOUOEERyr0uz7SkXVctkT8lQgTCyY+LBhYwK68SAdwZFITa9kWTnc6MAo7Q8//iXRUIiIiIiLRSxMDxgS1QIt1GWPZN+AR8hPH4rakQPfxMGI2ZIyJdGQd09Zn4fBywFe3yIIPnyXePwun8iLtWe0MtIcWgbuEdO96LN/e5V8uIiIiIiKN1f8O7Srx/3/1dH2HjkJqgdYOVKZ+j809TwPgJ2f2iXA0Hdzmv2OaXlxGClbTiXGkC6fLlo5t0C8jHZ1I29r5KrhKKbf3w7AYVBoGSZo8Q0RERETaSntouXXkO3R1fH/KnV46J2Zgr9qh79BRqFUFtC1btvD555+Tn5+Pz+drcN8DDzwQlsBEYlJ1Hh6s+CwOfDgAsPkqsHtLIxyYSMuOewi08m14rJ0oc3kBsBoGpi0JI8onz5i/eT4/++BnFFQVRDqUyFob6QAkKGsjHUAHtzbSAUjQ1kY6AGnS2kgHIEFbG+kA/H72n3iq76tu+s4jLbdMVynYkjEOLYLi1TBiVmwVnsq3gS2ZomoPAMXVHrppYsCoFHIB7fnnn2fKlCmkp6fTo0cPDMOou88wDBXQpGNL6ImlbIt/MgfDANPEYnqptvfAHunYRI4R9jkDkgdCxUKgc93z3/BUQProcB8pbOZvns/EdyZS7Wnmi5mIiIiIREyNt4aEhxOaLqIdablVQCY+D3RP6o5RsS32Wm4lD/R32zRTwTDwmT7/xIDpZ0c6MjlGyGOgPfzwwzzyyCMcPHiQtWvXsmbNmrp/q1evbosY63zxxRdcfvnl9OrVC8Mw+Ne//tWmx4sVmjgvigy+A5/hwOErw+arwOErw2fYOdDzF5GOTKTt9Z+MaU8lyb2LeE8+ncyDmFE+ecbLa19W8UxEREQkitV4a5q+40jLLbcJXhPcPhNiseVW/8ngqPcd2rVLEwNGqZALaMXFxVx77bVtEUuLKisrGT58OE899VREji/SokG3sKbb/ZQ7+uMz4il39Gd19wc41P2GSEcm0lDBUnpvuZNxu3/CqLx7Sa9aefz7zBhL+dC/1k1qUmAdhu+Mv0X15Bm7SndFOgQRERERaY3kgf6WWuaRJiWm6b+dckpk4wpVxlgYMavuO3Rh0vc1MWCUCrkL57XXXsunn37Kr371q7aIJ6BLLrmESy655IQfVyQU27tcz/YuDX8t0NQOIWoPg4FGsyPjRSRXFVFpJtKtcimdazZgFKZD9+8f1649XcawsudAABL3rCKza/R23wTol9qP1Xlt23paRERERNpA/8lQvJqk8l14LJ2wVtVAXFpsttzKGMvKnicB0MlhpX9GzwgHVI+uzeqEXEAbOHAg999/P8uWLWPYsGHY7Q1HdrrjjjvCFpyIdEBHijs+ZwmmPRlrrA4GGs02/h9m2WbwGMRZO1Ft64HDV4Kx65/HXUCLCiF8yN90xk18vO1jdeMUERERiVLx1vim78gYi3nm4+SvfJZk107cGWOwDvypWm6F05FrM6+zBJfRifiqvRgd+Nos5ALac889R1JSEosXL2bx4sUN7jMMI6oKaE6nE6fTWXe7rKwMALfbjdvtjlRYdWpjON5Y6s+EGg2Pqz0IV25q+UxTuQmSZfs/MJwl5JmZ4DbomdQNo3I7vh2v4Es7q8G64c5TR2AUfo310EJ83hosRhxx3mIcvnKqbRlQtqXJc+nz+YI+xx6Pp+7vzt5NsGI+vqodmEkDMfteh5netl9ojMKvsa78Fc6Knbi9Lrx5C6jY/CI1yUMYkJTRKI4fDPgB866ex43//gWlrsI2jU1EREREQhNvjafsd2XNfhc1085iZc++AFxwchesCXaI8WsDs5lrx0hc+1i2/wOLs4SDZiZgkOLIIMm1q8lrs1gVyvk0TNOMyTHoDcPg/fff56qrrmp2nRkzZjBz5sxGy+fNm0diYmIbRndiudL64EnpDvi7TElkVZ00stEya1UxcYU7IhBN7BlT/QA2qqlO9H8QWqtLiDOLcZPE1wmNX88SmtOdz9Db8wWGAR4jAQwDm7cS02Jnn+Uc1sfdUrdu7XPZXrIfe9nBoPbvjUvC2X0w6VUrGbn3buxmFR4jHptZg9tIZIPjZoqtQ9rksQGcVfMo6Z4VuEwfHhMcBsQZUOWDHR4HSRYfNWYcSyzX0CP16rrtqnuehmmPJ+7gJqyuyjaLT0REREQCq3891dL1rQlUH1k/Pm8jFnfs9iqofdyGx0nCgQ0RjsZvTPUD2KmkKrE/AIbHRYJrf7u6NquqqmLSpEmUlpaSkpIScN3jKqDVbmoYRmt30WrBFNCaaoGWmZlJYWFhiyfmRHC73eTk5JCdnd2oK2wo1uaVs+1wFQDXDO0ervA6tOPJzTsbDjVa1isljrEnpYUpuvbNsuo2zEOLOMRJYBj0TLL7W6B1G4dvxJMN1g3Xa6gjsS6+GGfZXqyuQximB59hxepz4rM48J07H2u3o02xa5/Lp3VLIqtbp6D2X1DpYvHOYkbl3UuP0kVYu5yGyzRIdliwNJPHcLJ92B9X9X5KvGAYFpIMH/EGOE1Y7YS+DiudDS/7fQ4OZs1kzBm/AeDjzYVUur2MG9CFrokd67mk11FsUJ4iS+c/dihX0Ul5iR3RkKv611MtXd+apsm73+UD/hZonRNi9/lV+7gT7RYuHZzR6P5I5May6jYs+Z9zwMwEwyDeatDFt7vNv9OfSGVlZaSnpwdVQAu5CyfAK6+8wv/93/+xdat/ethTTjmF3/72t0yePLk1u2szcXFxxMXFNVput9uj6o37eOOxWI5OphpNj6s9CNdzxWIYyk2wTv4pnuI1JFX6BwM1Kp0YjjSsA36KtZlzGG2v6aiWcgpG+R5KHYNI8BzC7i0FTLzE4dj3Onur9vNBUSG7S3dTWJ7KsIxzOb3nyKDPr83m71Ke7NqFx4inzOm/bbdY6GRLwVqxvdk8hoVxdCImAJvh/2XSApzqAIfFxIKFPhYXbP0r9n7/w5yd3/KXr56kuKaAPik9ue2sKUw5e0rbxRil9DqKDcpTZOn8xw7lKjopL7EjWnLVUgy+el/8bDZbVMR8vIwWrh1PaG5O/imUrq2bqCHBU4XRqUvAa7NYE8q5DLmA9vjjj3P//fdz2223cc4552CaJl999RW/+tWvKCwsZPr06aHuMmgVFRVs27at7vbOnTtZu3YtXbp04aSTTmqz44rICZQxlqph/0f+uhdJdu2E7sOODALfQQYDbetZbvpPxntoBQ5nCV5LHPFel3+56cS7/UU6bXme/eXJfODJwOWxs+nwck7JeJDTeoQ2xkG5ox+dqnf6q1mGgdfn9U8rnn52+B5LU7qcBVUH6GQx8dS2kgY8gN2AatMg0TApMq3YfVVs+OZe7t3wLVXuaqyGg+3FW7h34b0AHbKIJiIiIiJSJ2MsjJhF/opnSHbtxJk0ksThv+g412bHCLmA9uSTTzJnzhxuuOGGumVXXnklp512GjNmzGjTAtrKlSsZN25c3e0777wTgJ/+9KfMnTu3zY4rIieWt+sYVvY8GYAfn9E7It3ET5TcglxmLZvFop2LOM1SyqOdnWTGJ5OU2BPaYgbSjLHsP/kRjF3/pFd5DiZWfBiYviqqfD5SLHBnUikr892s83ZlR8m3zN/6JldkhVZA25X6I7qWfUOS2/9rlcNbDYmd235a8VN/S8Whr7E6D2HBpMbnb4VmAXwmdDJ8WDBJNgywmFQUrcDpMUm2d8UwLMTbDA5XF/LsqmdVQBMRERGJcrE5onuMyRjLyp7+Bkt9UuPplZEe4YAiJ+QCWl5eHmPHNr6QGzt2LHl5eWEJqjnnn38+MTrngYiEoj28zINoSZZbkMu0T6axdO9SvKaXu7u6sbi9LHO6yCSD/qkDcFTvgJ2vhbUVWlXq98jteRrjXDtJc27E9JRR4TOxmYAJ6VZ4omsVdxUnssoTx7cHV4R8jMLEUWxw3EzP+O9Idu2kIu0s4k+7ue1/rcoYi2Psm6z86nfYqzaw2elhO52YHFdCf7sPi2HiM/2t0jrhpbvh5pyEBNZ6/F3hrRYLdqudvIq2/TwTEREREZHYYml5lYYGDhzIW2+91Wj5m2++yaBBg8ISlIhITCtYCqun+1uQuUr8/1893b+8npwdOWzI34APSLB2ZrDDSqVpweV1k195gMPVbrAlQ/nWMAfob9FX7uiH1VeF2/QRj0ma1T9rpQUY4oDHuxzmLLsTjNZVNIusQ1jZ808s6vs6B075W9sWzwqWwvIp8Fk2jj3z8Pa5h31nbKLT97bx6K8OszD9Hqpw+LtzGlbiLA6stiQ8ho1rEmswTf9YbaZp4va66ZXSq+1iFRERERGJQe2hncPxCLkF2syZM/nxj3/MF198wTnnnINhGCxZsoTPPvusycKaiMjxME1q6z2xY+er4CqlMq4/GAad4rtDxbZGLcl2l+7G6XViwYZhGGxzWzk33sNBTFzeanw+s03GDavtEbsr9Uf0Kf+YBF8NVqPhabYAJ9tMfp1cwQcZbTxu2fGqLVi6SsGWjL3yc870LGdN9wcpTBwFQNc+U8A9H69rH3ZM3JZE4tL6YSvbyynO/ZS7DmOzOKh0e4izxfHLM38Z4QclIiIiIi3p6AUdObFCboH2ox/9iG+++Yb09HT+9a9/8d5775Gens7y5cu5+uqr2yJGEZHYUr4Nny2JkhoPJdVufAZNtiTrm9qXOGscHp8b0zR5uyqRUh+cbDfpabOQ7N4FjtSwjxtWWygrTBzF+vS78GJtUDw70pMTiwFnxZtMOOXHx3mkNnakYFkT358SoyvexJOx+8rpV/peg9WK4k/HZU3jcMIISuOzwJ5Gt7gE0jLG0DNpIA5rPIO7DubR8Y9q/DMRERGRmKASmpw4IbdAAxg5ciSvvfZauGMREYk58zfP5+W1L7OrdBf9Uvtx0xk3MSF5IBxcCGYaGAZmMy3Jsgdk858t/2Hx7iVUuItY6LHg9Nq4PsXG99N6c6jTSFJGTGnTro/bu1xPZtHLdHNt8Q+0D3jxl76sBiRYkzm58+DjP1Bb1tLKt4EtmcPVHsA/nblp6eSfxbWeXak/onPNhrqJDahwgiOV/lkP8+fMk0mKs3H5qT3aMFARERERCahgKaPy5pDs2kW5ox/0mRJ4LGDVz06sDn6+gyqglZWVkZKSUvd3ILXriYiEQzS/R8/fPJ9b5t9CUVURPsPHxkMbWbZvGW+dP40xjlUkVfgLNUZlDTjSGrUky8rIYvbFs5n6n0dYX7AUl68GW/eh5KZPIqHHhVgMGJTRJ+xxHzupaUWns+ni3oOdGjDBYliw4sPEQkliaLNvNqstE5k80D/OnJkKhoHX68Phq+Rw/BkNVitMHMWa7g/Sr/Q9f3Gt+zDoPxlPwgg4XBBzPYVFRERE2pUjw3J0qyzEY02iW+VSWL0l4Iz00Xyt0Bb21uzlqRVPsa9iH31T+5I9IJusjCzAP0FZzo4cdpfubnRfuHS0832soAponTt3Ji8vj27dupGWloZx7NUX/oGXDcPA6/WGPUgR6WAavMVE7yBof1ryJw5VHsIwDXyYgIe8ijxuXfFPvrnySfLXPE+yaye+bmOxDLihYUuyI7N0ZpVvY06PnuwY9DiFiaP4yZl9eH3NvjaOvOH53JX6IzKqvsHq2oXF8GJgYmKh0taLTV1voXd4DtOksHzQ958MxatJKvcXLOPNKqotyexK/WGjVQsTR9WNi/aTM/3FSbPCGdrxRERERCT8jgzLUeHwjyOMNYNU176wz0gf7Zr7Cp1bmMsH+R/QyexEl4Qu7CrexYb8DUwfPR2An3/wczbkb8DpdRJnjePNDW/ywhUvhL2I1pEFVUBbuHAhXbp0AWDRokVtGpAEr/bCc/m+LVjpxrCMc4Hwt1YRiago/pljY8FGfKYP85ggv8v/jlw6k9vzTwBcNbQnNrv16ArHDHrfrXInqVXrWdP9QU7Ea/jY30AKE0exoudfGXL4GbpUfwsGHI4/g01df8XhxJGtL6Ad44GFD/Dimhcprimmc3xnrhh8BTuKd7AhfwM13hrirfH8Z8t/mH3x7NA+6DPGwohZ5K94hmTXTqo6jSA38SoOJ44MU+QiIiIi0uaODMuB+8iXVcNooxnpY9NnOz9jT80ePId8FNeU0jUhjYxO6SzYsYAvd3/Jsn3L8OGfWd7pdbJ031KufvNq3v/x+2ErokXxpdkJEVQB7bzzzqv7u3///mRmZjZqhWaaJnv37g1vdNKs3IJcZi2bxeGqw3h8ieSV7WBv2SYuy+qhCrO0K9H8Ju01vY2KZwAe08Pr6//JGRm3AmDd/ixs+39QnQcJPSEuHdNVQpGlL4k2GxWOVBJdu44Men/ViX0QRxQmjmJJ4gth3uvRz4mHv/wN72x6qe58VVdU88yqZxptcbDiIA8uepC3JoY4q3PGWFb2PMn/ZycHhytdwW8bzU8yERERkY7imGE5MFuekb4jfY37fNfn7Kneg+m0YDXs7Cvbz6HKgyzcuZDPdn5WVzyrb/Phzfz8g5+HryWa2ZHOeGMhz8LZv39/CgoKGi0vKiqif//+YQlKWpazI4cN+RtYd+g7vtj1KfvKt7CvbAsLdiyIdGgiHUZ6fHqz9y3c9RkAJxe9hv3buzHLt2L6nP5f0AqW4HJWUeM1Kap2g2HgaWLQ+7ZyojvE7i/fyr+2vNZksfFYPnz8a/O/yC3Ibf0BW/kAo7OjsIiIiEgH0X8yOFJJcu8i3pNPUjAz0tf7etnev8vtLN2J23Tj9Xqp8pRR462mzFXG2oNrqXJVNbvd8n3Lmb1sdlhi6Njls1YU0GrHOjtWRUUF8fHxYQlKWrZw50LWHVrH9uJtlLjyyavcztaSVby46sVIhybSYfRIan7Gxl0luwA4pfglTK+LGiOFGhLx2VIBE7vr0NFfcEwTm6+SMseAtg+a1n+5yC3I5e/f/J3ffPob/v7N34Mucq0v+BK3L/hxxtw+N6+tO3EzPdcV9tr7ty4RERGRaFY7LEfiWNyWFPITx8KI2W06I30sqXJV4cGDmxpMfJhHWpztK9vXZOuzWh48fLj5wxMVZrsWVBdOgDvvvBMAwzC4//77SUxMrLvP6/XyzTffcMYZZ4Q9QGlabmEule7KRsu/LfiWOcvnMOXsKRGISiT8ovlXjipP87/0lNaUAJDgycdrWOsGHnP5IN7iAJ+HJLd/0Hu7rxLXkUHvTzkRgTfxI0hL6ncbT4tPazBoaUvNwXeVbgj5ePM3z+eRCx4JeTsRERERiWH1huWAlmekj+ZrhXDz+DxNLm9uWJn6CqoKyC3I1XBPxynoFmhr1qxhzZo1mKbJ+vXr626vWbOGTZs2MXz4cObOnduGoUp9pTWlzd73xDdPnMBIRNpYFH8qun3uZu/zmB72l2+l2tYNi+lp0NoM04fT0bvu17WCpHNY3X3GCRv0vjUNrXJ25HC46jCDumRhIZ1BXU6lqLooqG7j1Z6KkI+3tfjEDRZb+xRTAzQRERGRWBPFFwth5vI2PcZvMMOkeEwP0z6ZdnzDpEjwLdBqZ9+86aabeOKJJ0hJSWmzoKRlDquj2fv2lmkyh2iRs/MVFux6jXJXASel9uJXI3+l1oExYM7yOTyz6hkOVhykR1KPZvPWO6U3uYVNfwhZsbK+YAlbOv+MM/P/iMNXhs+wYjG9YHVwoM80VsZdC0CczYLT03yz63BrRQM0dpfu9rc8K6rG7TOpcHlJjUtld+nuQEcCwDR9GBhBfbjXqvZU61cyEREREZEjrBbrcW2/dO9SZi+bzbOXP9vqfXSccmXTQh4D7eWXX1bxLAr0SW6+KavPPHEX4tK0/eVbmfrpOby8/g/sLc+lxFnI+vz13L3gbuYsnxPp8CSABxY+wNRPprIufx35Vfmsy1/Hrz/+Nb0f790gd7kFuViwYDTzNhpnj2dXyXq2d7meNd3up9zRH58RT0VcfxjxOPk9fnqiHlJY9E3tS0lNCS7vkamx3V5KnaX0S+vX4rY1niqshP6Bf8LGQav7JqA2aCIiIiKxpCNNCtk7ufdxbV/pruSt794KaSzjRjrQ+W5K0C3Q6luxYgVvv/02e/bsweVq2IzwvffeC0tgEtgp6afw9f5lNPUMNjGPq+VGbkEuOTty2F26m76pfckekK1WICHYX76VWd/8koKaPQ2Wm5hUuCt44psn1AqtBUa9QsaJfI/OLcjlr0v/itts3DXzQPkB7l5wNwBTzp5Czo4ckhxJjO41nq8PfNYgUofhwGG1U+P1j1O4vcv1bO/inz3IZjG4dlBv2FXU9g+oGa0pE2UPyGZD/ga+zdtMgi2Fak8Zw3v24YL+F7S4bbW7DKvVDl4DD813ez3WZzs+a904aCE+adSFU0RERCT2tefaTm5BLiXVJce1DxOTUmcpf1nyF/6z5T/Mvni2rvNDFHIB7Y033uCGG27goosuIicnh4suuoitW7dy8OBBrr766raIUZowoucI3s99nzJXWaP74qxxLNixoFUvhtyCXB5Y9AArD6zkcNVh3D43f0n8C/d9/z4VfYK0vuBL+vm284cMGGSHrW54rRy+rvHffyK62LavIuiJ+yicvWw2Tm/zs0VWe6p5Yrm/AFrbpTEtbiBbizdxuDoPEx8WLNhsNrw+Lz7Te8JiD0VTMym3JCsji+mjp/PnL96hsGoffVNPY/roawI/r2oPYxhgmlgMGzRRnGyKzbBRVNPKImNrK2GqoImIiIjElFgtmjV1vQbJAHy07R/c98XrdcPJZKVnsXDXQgqqCo77uCYmByoOUFRd1KrunLF6vsMl5ALan/70J2bNmsWtt95KcnIyTzzxBP379+eWW26hZ8+ebRGjNCF7QDYvrXmJ9YfWN5iy1mpYsVlsrM5b3ar9zl42m4+3fUylu4ral0deeR73LryXzNRMJgyeEI7w27WMqlVMSTdJs0K5F8Ynwog4uLPQX0SzGCH3nG5R7QyJi3YuotxVTo27BrfPjc/04bA6eHPDm7xwxQsxXEQ7Md7Y8EbA+03TZH/5fsDfpXH9ofWUVO+k2l2OBQMfBhbDSoI1AR8+LMbxjVMQbbIysrh4wE31bgeeFalWgi0ZDAOHNR68Ji5fTcD1rYYVE5MEa0Kr4lQdTERERESiVW5BLtM+mcaG/A04vU7irHH8Z8t/yO57DxsLv+b1jY/g9jmxGBYKqwpZl78u7DHUeGv4cPOHxzUeWkcUcgFt+/btXHbZZQDExcVRWVmJYRhMnz6d8ePHM3PmzLAHKY1lZWTx8LiHue796yhzlgEGFizEWeMAqHA1Pevd/M3zeXnty+wq3UW/1H7cdMZNdUWx3IJcPtzyIZXuygbb1Db1/NOSP3WYAlpuYS7z8+fz+YLP6d+lf0gtuC6xHyDNC1uP9G4+6IVBDrgu2V9A65rYNbyxHnkD/mL3Fzi9zkYDtdd4a/h639dM/2Q6n0z+JKzHPhFO1LgGuQW5TbborM93pIUZwIC0Aewp3UNhZSlunwsvHsDAarHh9Po/8KK2BdoJPl6X+O4k2VOpcJcHNUajgYHFsNAjuUerjhfqU6aj/5ImIiIi0h7Eyne6Wctm8eWeL3F7PXiO9M44UHGAL3d/jWFYqPFWAQbeNr6WCEeLto4m5AJaly5dKC8vB6B3795s2LCBYcOGUVJSQlVVVdgDlOZNGDyBs3qexZK9S/D4fFgNKxjg8Xnw+DyN1p+zfA4zFs+gwl1Boj2RfaX7+K7gu7p95ezIodRZ2uzx1uat7RCz4uUW5PKbnN+wKn8VRpFBvC0+pD7iJ9t9HK62Akff8Mq9cIrd//fhqsPMWT4nbF1ic3bk8M2+b6jxNt+qx8Tks52fxUz+QpmtMVxyduQEtZ5hGOQW5LKjZAeZKZkk23uTW7gKn8+NFx8en5tEezJgRm8LtBNWQfMfqHN8D0zAYYnHYo0HPJS6mn+v8eHDbrGTaE88MWEeqdKq5ZqIiIhI9NhfvpW/f/NewGFpzGZvtK3jGTLnk22fUO2pbrS82lte71bbPxiP6WnF9WGslCnbRsgFtHPPPZecnByGDRvGxIkTmTp1KgsXLiQnJ4cLLmh5MGkJr9T4VDrZO+Hy+HCbLuIs8RgG2CwNU5tbkMvDSx6msKoQEwOnx0Wc1YHH52Hu2rlMGDyB1XmrcboDjP/krWb4M8PJSs/iVyN/1W7HRHtw0YN8sfsLvD4fNtNOjacmpCl/3Qmnkuk+QJ77YN3bS7IVlh85tRXuigaD0R+v1XmrAxYjanlMD6+te611g7KfaGaTf4ZNUx94u0t3YzNseMzGxef6PD4PC3YsYHfpbk5KPYnuiZ3ZX7abAm8VmCY+00uFqwKH1a4WaEfUDdJvGIBJnC0Ou8eO29fMeGgmOD1O8ivzT1SIIiIiIhJF9pdv5U9fXUexK69uWe+k3uTckNOw4HPki+bqgwt4du1rbC/eTLwtnvH9xzNt9LSwNx7ILcjl1XWv8uGWD7Fi5eQuJ7OreBcb8jcwffT0oI53uPpwWGNqSpwlDqev+Wt7AAuWkMdO79jls1YU0J566ilqavwtXe69917sdjtLlizhhz/8Iffff3/YA5TAvKYXp9eJ0+vCZ5oUe6swMPhq71fM3zy/rsvlq+te5VDFobrx0rwmVHu8eHwecgv9U9iWO8vxEviC3+1zsz5/fVgLQNEktyCXT7Z/gsvnxoIVt9eFz7BgGAaLdi1qcv1X173Ksn3LMDEZ02cMQ+1nc751JYPjCinxeEi2QonXP5FArQp3Bfd8dg8Pf/kwh6sPE2eN49T0U/nJ6T8J+OvFnOVzePjLhzlYcRDDMOie1J1kR3LQj2/ZvmUhn5NYEqiLcv117lt0H/vL92MzbKTGp/Ll7i/pktCFRHtii904K92V/G7B78hMzSTRlohhplHiPIT3SOHNgsVfiPN5cDbxy1J7NX/zfJ745gm+PbSOGrebtPjunJU4jDGpUyhxHvJPIICH2vkLMhIzcPvcOL3OI93Qj6p9n1pxYEWD97GgtfKTXS3QRERERCJvf/lWHloykXJ3YcPlFfv50Zs/YuNtG+t+EN92eCff7NvK+vwvcHorwfAPBzJ37Vw25G9oNA708bQcqx06Z9m+ZVS6K/GZJt8VbCQ5Lol4WzyHqw7z8PiHW9yfz9fykCbHq09qH/aV7gtYRLNarKGPnd7BK2it6sJZy2KxcPfdd3P33XeHNSgJXqWrEq/Pi2ma+PBfwJuYHKw4yC3zb+FZnmXC4Am8s/GdRn2oTUxcPhe7S3fzyw9/yaq8VUEd08Skyl3FE988EXIB7UTMDtnaY+QW5HLfwvsod/krXbXn02d6wfQXGI9df9on01h5YCVunxubYWP1gdWcYXWSkOZkVBz0sMHyGnisBJYd08OyzFVWV6xxep0sO7CM5QeWc1LqSTx5yZONigZzls9h2n+n4fIdGVzNhAPlB0I6NwWVsdHPvTXvy/M3z+fmD26mqLoIHz7WHVzHkj1LePGKFxuM83dXzl1sObwV80iR5mDlQbYc3kLf1L50SeiCaVopd5cEjKLaU822w9swDIMEWzJu39Gx5wzDgmn6P5CqPIGLcZHSmlk4A5mzfA73LbqP4priuvNQ7i7mYPl2tnoPYWLi9bnp2WkAiQ4bSQ4r20u2c2aPM5lwygQeWPQAJc6SRvt1+9z8Nue3nNzl5DbtelyXaVXQRERERCIqtyCXV9bPaFQ8q7v/cC7zN8/nyeVPsj5/A5WuyiPXVEe+0R35n9f0snz/cmYvm83lp1zOE988wYr9Kyh3lWNiYjWspMSlNBiqp7ZxxGc7PqOo2j8bvMXi/3G8V3Iv9pXtY1vRtgY9Vjymj+KaYgDe3/Q+O4p3MO9H8wJ+d423xQccfud4xVnjOKPHGRRUFuB0NV9AMzCCvp7cX76V9QVfUuXOY2NxVptcx8eCkAto48aN4/rrr+eaa64hNTW1LWKSEJQ6S7EYliMDmB9VOz3tfYvu44MtH7C1aGuz+6h0V/L86udDOq5hGHWzETaltjXKpsJNxNviSXYks6t0FyU1JUcLDfjHFxvSdQiVnkpKqkvokdTjuLqHNjejSUvjl9Vu9/muz5tdx+l18ptPf1NXlKtteVbpqjrScs9kTDz8pSukWeGgx991s7ct+OtyHz52le7i5g9u5vMbP28Q8+zls48Wz1ppa9HWmBkHrVZLxbQVpSuY++5c/rPlP7jNo10CffjIr8rntzm/ZcLgCczfPJ/ffPobthRtaeIYJrtKdzG823DSEwawv3wXByt3BhyLzYcPTHB5nPjqzXTgMV14TTf4oDKIrrXhFEwLvHCr7R5eVFPU6D43brYUr6JzXDc8Pg/7KjaTaE8k2ZFAkj2JXsm9uP17t/PquldZcWBFk/vfVrSN2ctmU1hVGPTj6uA/jImIiIjErNnLZrO+cEnAdX701o/w+DyYR/5rjsf08Nzq55i3fh7V7uoGva08poeimiIW7VzE7GWzmTZ6GtM+mcY3+76h/JiJrwwMcgtzWxyn2cRk7aG1XP3m1bz/4/ebveZKi09r8sfjcMlKz+LG4TeyePdiaObyMd4aj81io6Sm5ThyC3J5e9Pf2FH8LZXuEuZv8/CXxL9w3/fva3c90loScgFt2LBh3Hfffdx2221ceumlTJ48mUsvvRSHw9EW8UkLOjk6BXwhf3voW9YdCv+0t7VdR5vqXjV/83xu//h29pfvx+vz1nXHOpaJSbWnmjWH1tQty6/K545P7mDRrkUMSR/Cvzf/m4MVB4MurD246EEW7liIBw/Gkf+KqotaHL+sdiaUQAWq0ppS/rHmH8TZ/EW5vIq8ul8wal2f7C+eNTcDZ7Dyq/J5cNGDvDXxrbplO4p2BL+DZtR4a4Ieyy1qBPic+s/W//D8vucp8ZU0KJ7Vt+nwJh5Y+ABvbXyL7UXbAx5q8+HNDOk6muLqgqAnMnCbThyWBJz1Ju6o3bagai+rDy5gRI8Lg9rX8Zi/eT535dzlb4Fnmmwu3MySPUuYcd6MNv1ge3XdqxRUNN+y0emtosRZgMMSh92SgNNTg8NqoXtSd0b2GgnAhQMubLaA5jE9/OPbf2Cz2EiwJzSa/CSc1ABNREREJLK2bJrLol4+RsaD3YD9HvhLMTxfr2NHqI0KKtwVzd7nNt18uPlDuiZ2ZcUBfwu1Y69fQ53gbPPhzVz5xpVcc+o1TD59cqMupG09Ydofx/2RCYMn0Du5N4erDjdxPINO9k5YLBY6OTo1+hH+wv4X4jbd7C7dTbmznP9s/U+DlmoGBgfLD3LfovvITM1s8x/so0nIBbS///3vzJ49mwULFjBv3jx++tOfYrVaueaaa7juuus477zz2iJOacaYPmNYvGtxwHXa6gXq9rm55q1r6JPah+Hdh9e1Cnl57cscrDjY/ADhLfCYHt7OfRvwvzithpWi6qIWx13LLchl/pb5eOp1ZTUxqfHW8OHmDwMWjZqbCaU+Hz5KnCUYNQaLKhc1+YvHILt/xs366s/AGYp/bf5XXWux3ILcFge3D9Z/t/+3VdudiO63TWv++fvkiic57D7c4th9s5bNAmhxvRpvDZsOL6fGF/yMwiY+3L6mq6NePLyV+9gJKaC9vPZlCioLqHJV4/K5sBgG1Z5qHv7yYc7vf36Tg62Gw9f7vm7wC11jJj7Th9Vix+WrppM9EbfX/95wQX//xDOTT5/Mo0sebXYPTq8Tt9eL0+PEcczkJ+Fw9HSohCYiIiISMQVLeSHDRT+7/1uZCfS3w+wM/93Pt9HoKAcrDzJ/y3xqPDXNNv4I1dairTy65FH+34r/x5/H/7nuGjZnRw7xtnhs2PHQuutlh+HAZTZfRKz9juywOoizxuMzwe2rqXftalLmKsPAwO1xc/vHt1NYVYjL42JN3hre2/Qe8ZZ4fPiaLFbWXgeX1pSG9Tt5LLC0aiOLhYsuuoi5c+dy6NAhnn32WZYvX8748ePDHZ+0YPLpkyN6fKfPyfbiHczfMp+J70yk9+O9+ffmf4etT7eJicf04DE9VLgruP2T2xk+Zzhzls9ptG7OjhyqvU0XwWr7sDfnUOWhoOLxml48eHCb7iYLWlvd/m6b9SVbYUsr3hvdPjezl80G/I/NCNPFfVFV4HPRlAcWPsBZz5/F1E+m8vjXjzP1k6mMfG4kE9+aSG5Bbljiqs9s5u9jrTqwqsWiGPh/dQr0y1N9Tm/g2WqaEqhIfaC8cZfRcMotyOXv3/ydz3Z+RlFNETW+anx48ZgeTNMkvzKf19a9FnS8oTpQeqDFHPhMDzaLw99Sz+v/8O7eqXtdUS8rI4sUR0rgfeB/H6jyVFHuLK+b/CQs1OdTREREJPJ2vkrvI018XCa4TfABcQbc3oajR5mYfJf/XYsNKlqjzFnGbR/fxi0f3kJuQS6Ldi5iT+meVhfPAHql9MJmNN0Wqkv80THrkxxJdEnoTEZidxJsiQ2uJ90+Ny6fiyX7lrC7dDeV7kpcpqvuOqHGV9NiSz8vXtYeXNvqxxGLWlVAq3Xw4EGeeeYZ/vKXv7Bu3TpGjRoVrria9fTTT9O/f3/i4+MZOXIkX375ZZsfM5plZWRhs4TckDDM/JMRVHuqOVB+oNFkBeHkNb2sz1/PXTl3NSqiBZpBxOlz8qM3f8T8zfMb3ZdbkIvLe3xji9V6rdw/4+YgB/Sw+v9/7AycoahtLbY6bzVWw9rC2sGxWUN7vsxZPodHvnyESndlg+XVnmrezn2b6969LvxFtCAKGrkFuXUTPoT30KE+fw3slrhm7/WG6VespszfPJ8LX7mQaZ9Mo9TZeLy12g/AZfuWkVuQy+8/+z3j/zGe69+/lDc3/oX95c2PjRjs8XeX7W5xPe+RiTgAUuNSMTAavW9N/d7UoI/rNt0Bfx00VRATERERiT3l27AaNPiWZx7516uNL3nD1fKsuX0/v/p5Jr07iYW7Fh5Xoa6zrTM/Pu3H/HzEzxtdH1oNK7eedWvd7dF9RuOwOkiOiyfO5mj2R/SWxpILpHYChY4i5KdhWVkZ7777LvPmzePzzz9nwIABTJo0iTfeeIOBAwe2RYx13nzzTaZNm8bTTz/NOeecw7PPPssll1zCxo0bOemkk9r02NGsa0JXDlYejHQYJ4yJSZWniun/nd6gz/Wxs2Qe6/1N77Ns37K6mUlr1bbuCkernK9r4M5C/5hnp9hhudNfPDt2Bs5gldb4iyLlznLibfFBt6JqjgULfVL6hLTNX5b+JeAHyppDaxqN13astuj+mbMjp00/6IJn4vI1/yFoM1rRf/cYtZNyrD+0Hq/ppWdyT0b3Gc2/Nv2LgqrAM6t6TS8VrgoeWPQAS/cupcpdjdvnZoO5jh0l67hh2Ax6Jw9qVVxPLH8iqBZ7Jl6Knf73qEo32K12PL6GLTgfGv8Qb373ZpOTPDTF6wtfob72lR/myUlFREREJBTJA/HmLcBuUPeTtnHk34HwjGYTMbUTDDQnzhrHiJ4j2F2ym1JnaV3jBStWMMBmsTFh0ATO53xuOf8W7HY7GYkZvLjmRYpriukc35mbz7yZh8Y/VLfPyadPZuvhrWwt2orTE3ovm2DUeNpuNtFoFHIBrXv37nTu3JmJEyfypz/9ibPOOqst4mrS448/zs0338zPf/5zAGbPns1///tf5syZw6OPNj9+Tnt3+eDLeWnNS23a8isaOX1Obpl/S11BzGt6AxbCTEwOVhzkT0v+1KCAVtu6K1xjjH1d03DCAAODM7oPJ7cgF6cvtDeuRHsif//m73x78FvcPjdWbI1mXA1WbaufsX3GhrTd/rLmZ1ut9d/t/212ds/cglx+/sHPG8yM+uaGN3nhiheaLaIFU8xcnbc6bIXPtuSwxrO/fGuri1Rzls/h7gV3NyieFlYX8l3+d0EVEE1MDpQfIL8yn8Kqw5imidVix2c62VHyLV/ufZ//PfXukOPaX76VJXsCz5DUIA7TxGqxYTUMvD4vVe7G48wN7TaU/KoC3B4Tj+nC6Q1+LLpjjtbK7UREREQkYvpPpnTbK6SbVTgM/zc6A6gx4e8ndnL7E87j8/DiFS+yYMeCusH7d5bspKi6iH6p/bjxjBv5wYAf8NFHH9Vt89D4hxoUzI6VlZHFQ+MeYsGOBfzpyz9R5Wntd+vmOawdazLJkApopmnyxBNPcP3115OYmNhWMTXJ5XKxatUq7rnnngbLL7roIpYuXXpCY4k200dP54vdX7Dl8JaoLyaE28GKg9y38D5eXvsyn+/6vMWCig8f3x78tsGycLXuak5qXCrzfjSP2z+6nYW7FoaUozJnGU+veJr8ynw8Xv84UqYPDMxmx52yYOHCAReSGpfK/K3z8Xi9/g+fI79chPocCWb9ak81C3YsaLIg9osPfsHSfUdfoy6vi+X7lwdstfbp9o+YveJ5Cqv28camgfxixM8aDU5Z7izHgiWoMdAixYINm8XB+oIlrSqg7S/fyiNL72vyuRlK67t95fuwGta6InvtIP4en4cl+94hLT6dYRnnhhTj+oIvQ/rFyYcHK1YMiwGm0eSU2V7Ti9vrwul10dKA/gnWhGbvq/+MfTv3Me5a+DaFVUUk2lMZd9L/cm3WXQG2EBEREZGIyBhL9+wcFv3rHEbVm4Xzz8XwQhtNIBAtbIaNrIysgL103O7Qx02r3ed7m95rk15rp2acGvZ9RrOQC2i33XYb48aNY9Cg1rWmaK3CwkK8Xi/du3dvsLx79+4cPNj0E8HpdOJ0Hm3xU1bmf9W53e5WPfnCrTaG441lYNpA/jz+z1z99tXhCKuRaG7l48PH+vz15B4Ofhyzak816/LWkZXuf3PyeD1YDMtxte5qTpw1jkFdBjEwbSCVrsqQz2OFu4LNhzfX3fYe6SrY3IQCBgbdO3Xn/y78P+745A7S4tPweA0qXOVYLQYWA9bkrQnpOWc37C22bvSZPlbuX9lov7d9fBtf7fuqwbLaiSEW7VrUZBz/2fof7vlsOvkVBfhML/vKN/Hlns+Zed5MfjXyV3XrebweDMNo89pHqM9/K1Yshg2bxYbX9OEzvewqWV93v4n/Nd9g5sp6g3bVPydf7H2PoprQJ31oSsMc+o/nw0NJTQGLdr/BpsPfcO2Qu5osonm9vka52lW6IaTjm0dm48RnwTAMTNNstM8KZwUenweLYcPnC/xaLHOV0etvvSipLiEtIY2bht/E0K7+2Y3MI+fz959fyq6yo+fe5azh/a1PkFe5kztG/b+643s83rrtouGz4UQL12eRtC3lKbJ0/mOHchWdlJfYEfFcpZ3F+AMWiIqhWprXJb4LJTUlYRtSZkj6kBbP+fHk5uyeZ7N41+KwXtfHWeP47ZjfxvzrOpT4QyqgWSwWBg0axOHDh094Aa2WccwgNaZpNlpW69FHH2XmzJmNln/66acnvAVdIDk5Oce9j3DN0HgsGzYyHBkUuYpw0jb9po+XD19IkwCYmDz0r4eY3Ms/g2n+oXx8Hh8JtiScvhoMn4krXI/VB329ffnoo4/Ylr8tPPskcKuwVDOVnct3cvjwYaqd1ZiG1d91zjSo9lSwLX8bz773LJnxmS0eZ2/NXixmy3ON+EwfW/dsbdCk+OOCj3lu/3PNblNaXdpg/Vozts4gr3I/Xn/JBUyT4ppi7vn0Hg5tOcRZqf5u47vzdtcVStpSoiWRSl9lyyse4cPEdqRLsAUbPjzUeI9u7/V4+Oijj3B27QedugLgdLnA6h8r7aOPPoKTRgKwoaDtJ0nx4eFAxTZKa/Kb7c65Zctmdq488kPFkdiKqkP/BctjunH4bHjw4Cp3Ncr/7kO7Mb0mpmG2ODPRrtJddX9XV1Tz56/+zJWDKrk26y5KS0p5cdMjDYpn9S078AHfP3g1h7dU8MGhD1hf9R0uw6RXQj+uTBtf9xzraMLxWSRtT3mKLJ3/2KFcRSflJXZEMlc3DfsjL6//Q8SOH4wpPafw7qF32VO9B6fpPK5eMTZsTOg0oclro6a0JjeZNZn0i+/HzpqdIW/bnB62HhhbDT7aGlzc0aqqKviurSGPgfbXv/6V3/72t8yZM4ehQ4eGunmrpaenY7VaG7U2y8/Pb9Qqrda9997LnXfeWXe7rKyMzMxMLrroIlJSUto03mC43W5ycnLIzs7Gbj/+gcaNteFtKWY1rCTaE7ns1MuY9908jmOm3ajzretbXr/0dQBeevslLDUWXF43Dks8htWDyx2eAlpKQgr3X3U/WelZxG+PxyivzZGBBQu+MHc/NDGxJdq49NJLWbpoKc+veZ4adxVeH3hNl38MAaOGh3Y/5G+tltydX5z5iwYtu+p7asVTpO1No6oy8JuKiUlGtwwuvfTSumX3v3B/wG08eDAHmVw26LIGy2954ha8R8pn9VWZVbxc8DLdT+nOwl0L2VS96YR03xxz0hgW716M22z5BWDBgtWw4THdWA0rJj58Pn8rtFpWmz8/y/eWsqfU3wXS4XDg8vof76WXXso7Gw4BsLt0Uxs8oobGxMP1yW4G2Q9zsOpV0qvG8603lY+2v8DGwqW4fU5O6TKY350zlcsGXVYvto2tOJqJGzcZiRkM7z+8wfMF4OFDD7PfvR+fCcGmtraFoA8fC3a/xrVZd5GamsoXe94OuN2/tvw/MjrZWVmy8sj4hwYlNfkUuXczatSoRs/L9izcn0XSNpSnyNL5jx3KVXRSXmJHNOSqaoP/B9vPdv2TGm8hJiYl1SV4TE+z17sGBgm2BOJscW0+M2S8NZ4Hf/IgEwsnsnDnQnaX7ibeGs/KgyvJr8xnY8HGkMbX/tmZP+PBSx5scb3jzc3/FP4Pw58bHvJ2zUlNTW30fT4W1fZUDEbIBbTrr7+eqqoqhg8fjsPhICGh4Tg0RUXh6W50LIfDwciRI8nJyeHqq492VczJyeHKK69scpu4uDji4uIaLbfb7VH1xh2ueHom9eRAxYEW17NiJTU+NWDXMLvFTqI9ke/1/h53jr2Tf2/5d5ODfgfLYXGQYE+gX2o/rhh8BZ/t/IwV+1fgMT0YGFgMC906deOczHN4N/fdNp9dcVvJNv67479MGDwBm9WG1WLF5rPgNl10ssWHrVjYo1MPTu95OgBDMoawv3y///Fi8Q/xZPrfgNPi08ivzA/L4z5ccxi73c6NZ97ImxvfpLimhPr9HKs91VR7qrEZNopqivj9wt9js9iYcvaURvt667u3guorb2BQ461p8DxuafIBE5PbPr6NwRmDG/T19/oaF89qHag4wN0L7sZmsQU1+2NLHBYHLl/g1otTR0+lylPFiv0rAhbRDAzibHHEWeNxe/2D4NsMBxgmlnpTTBv4X/MWy9GWff5WtP7HXHsO3859DI/Zdq0+x8TDXWlwQaK/gXyeB04ySkk+cC+vHI7DU5bLg0luBtlNtnkO8vKCDdisL5Ozcx3vbHqccvfhVh3X5x/Ej8zUzEbve2kJaf6CmBn866D+c6XC5f+ylLj3MVZn1tDT5n9cfy+B54/5XNxTtoHdpd56OfXv6VDFIZ5e+TRXnXpV6A8uxkXbZ6M0TXmKLJ3/2KFcRSflJXZEOlfZ/W8gu/8N/OTMPoB/Vvq5a+ey9uBa9pXvw+fzYVj811XJcclcPeRqkuOS6ZvalxfXvMi6Q+uavKZwWBxYsFDjC232yPo9vvql9cNut3N6z9PrrvXAP3nagh0LuH/R/ZQ7y4O6tjMwGNp9aEjnurW5Ob3n6STaE4/ruh78Mcfb4vH4PO3i9RzKYwi5gDZ79uxQNwmbO++8k8mTJzNq1CjGjBnDc889x549e/jVr5puPdPR3Hfuffz6418HXMdm2BjffzyzL57ND177QV2RwzzyH4DDcHDOSecwps8Yrj/9erIyskhxpFBYVdiqFm42bDjvb1gI+EnBT5i9bDaLdi2ixlPDkPQh3HH2HZzc5WS2Fm0NOMVvuNzw/g28cvUreE0vLq8L55GB1cM5mUD9Is/Us6eyfN9yyl3+N1PDNLAZNlLiUujfuX/YBnWscfs/DLIyso680TedM6/pw4JBpbuSvy79a6MC2vzN8/nmwDdB5dxqWBsNCh9vi29xu/0V+3lt3Ws8csEjdcs6x3emsLqw2W1qvDXNtk4yMOiZ1JMrBl/BM6ueCXjs3sm9eeayZ7jhXzc0+ytVRmIGEwZP4OQuJzN72WxeXPNiwPHgbIYNt+/oIPhe3FgNe4MWaMH6eMdLIW8TrDHx8Hg6DHaA48g04T1tsNFl0sl1kB9ayujZ1UeaFcq9cH6CyYi4QmYtvJX3Dx/G6Q2+S+uxDMPAYXU0+bzqndybOFscVa381dDER9e8v3FW8ZNYHODxwSAHzEqHScngNmGrG14rh69rXDQ1toYXL+sOrWvV8UVERESkbUwYPKFuUrHaYtqu0l11M1TWn3Csf1p/bpl/C0XVRbi9brx4MTDol9qP3479LUCL183gvxYod5bj8XnqxvCNt8Vzx9l3NLl+7YD96/PX8891/wxq1ksLFnaX7g7mFITFZQMv453cd1rdcy3eGk9aXBpevJzarWNNIACtKKD99Kc/bYs4gvLjH/+Yw4cP89BDD5GXl8fQoUP56KOP6Nu3b8RiiiZTzp7Cb3J+Q7Wnusn77RY7N51xE9NGTyMrI4uLB17Ma+tew2t667pB2Qwbk0+fzDOXNyw+DO8xnMKqQkpdoc8f3K1Tt0bLsjKyePbyZ5tcf96P5vHgogf5fPfnVHuq6Z3cm6lnT+WJ5U80GFD/eBU7i7n949tJi0/D5a0d1N0EX/jGkyusOloImjB4An++4M88/OXDFFcXY7PaSE9IZ2SvkXRJ6MKyfcvC0gU3zna01WVeeV6z65n1OpDuLd1LbkFug5Zg9y26L+h4mhqHMDMlM6gWkZ/t+KxBAa1vWl+2Fm8N6riN4sCgX1o/5kyYAxCwiPbMZc8wYfAEvvrZV5z70rkcrmnYoirRlsgvR/wSOPp87ZrYlUeXPNrk/kxM7FY7le5KLIaN2om3faYXZzOvyWO9+O3v+dUn/6bcVeEf/62NXJ8MaVbwmFADOE1IskBvGxxylTMqzkelCVuPNM476PUXov7H3MMbLdQCbdjwHfmvKV7Ty8AuA5tsQTii5wje/i5w10sr1oBddwcX/wMrXoqOrGL3QmcrjI6H9U4Ynwgj4uDOQh9fN/PDY0utEkVEREQkcuoX05q7/1meDVhk+82nv6Ha2/x39G6J3XjxihfZW7qXZ1c9S15FHj2TenLLyFua7LlT3/TR09ldsptPd3za4mNJsCfQL61fi+uFy8xxM9lfvp8VB1bg9oXW7cpqWMlMyaTSU0mqI5Wfnh652lCkhFxAA9i+fTsvv/wy27dv54knnqBbt2588sknZGZmctppp4U7xgZ+/etf8+tft1wt7qgmDJrQZBfIeGs8j1/0eIMXe+0Le0PBBpweJ3G2OIZmDGXq6KmN9nvTGTfxXcF3lB8Orilq/eNePvjykB5DVkYWb018q9Hy/+74L7uKd+H0ha9bW35lPgVVBXiOvHlYsAQ1IUOCLYFkRzJen5eimqJmC0013oZX6FPOnsL5/c9nwY4F7C7dTd/Uvlw44EJeWPMC8bb4ZoufoTi9x9FmxMGM2wX+VjfTP5nOJ5M/Afy/6nx76NsWtzOwYjEMfKYPm8VGbkEuDyx6gM93fU5RdXDduY9teXe8EwN4jszeOGfCHF5d9yqV7satpRJtiXUfoFkZWcy9ai73L7qffeX7sBk2UuNTGdZtGNedfl2D7SafPpm/LPlLs68BwzCwGlY8Ph8c+ZUKw6DK03K/+rs+G8+BytYVDus/rseyH2vxF7VBdn/Lsnigq81fQPMcKaLVmLUzUsIwB3SyQKUPqk0YGETr5t6pvYmzxLGleEuT95uY5Bbm8r3e32t0X/aAbO703NnEVg23948f2DgHBgYpZinuek+h+CM9ZS34C4G1xcDrkmm2gBatsw6LiIiISHBaKrKd0fOMZhswnNH9DOb9aF5d44KWCmbHysrIYvbFs3lw0YO8ndv8j8MGBsO7D+eC/heEtP/jkZWRxQtXvMCCHQuYt24e3+Z/W3cN6rA66NGpBx6fh0OV/nGPLYYF0zSxWWwMSR+C1WLl9NTTGxUkO4qQC2iLFy/mkksu4ZxzzuGLL77gkUceoVu3bqxbt44XXniBd955py3ilCDVVpS/PfQtTo8Ti2Ghd3Jv/n7J3xs9wWtf2McWc+q3QqpVu+1dn97F5qLgWoE5LA7+p+//NFmQaw3/oOzhvbCt8lTVtb4D/4yeBkaLrVyGdRvGN7/4BoDkR5OpcDXd7bOTvVOjZbVNe+vrm9qXOGscNZ6a43qMFizcftbtdbcdVgc1nuD693+641PmLJ9DZmomP/vgZ0Ecy9/KygCsFhv7y/ZzzkvnhDxop9tztMiXW5DLmoNrQtq+Ph8+khxJdbfvHH0nj3z5SINiiwULvxnzmwbb1XbTbOm1cLRbbNM6OTpR4arwT4Lg87dAs5qW5nrR1nl29b1BF88MDPok9+FQ5aG6WYi9ppcEWwLTR09nytlT+N1nv6PcVd7sPra6/S2x9nkg1eovktnwF81KvJDng9EJ4MFfWOtq89+/MYiGWRcPvJguCV3485I/N/tcLq0pbfK+rIws7DY7Xk/zr71ABXwTkzy3hZMd1HXzrW0LWFPvcOVeOCVAMbDaVd2oRaaIiIiItB+///7v67p5ek0vpmkSZ4vjumHX1fXYOh61jULmLJ/Dg4sfpKCqoMH9CbYEJgyawMxxM0/4d87a69Hbv3f0urF2/Lbaa6GCygI+2PxBSC3vOoKQC2j33HMPDz/8MHfeeSfJycl1y8eNG8cTTzwR1uAkdPUryi0VxWrXD/YFW1tkOP2Z0+ta+QTisDqYffHssL0hJMclh1RcMjCwW+24vIGv+uvv08TEY3qwG3YcOKg2G7cIS7QlNijS9EruxZbDTbe2GddvXFCxZg/I5qU1L/Fd/nchzdhyrGtOvaZBofS8k87jvzv+G9S2JiYPf/kwo/uMbvQG3xSH1YHP9GExLHhNN3vL9h73JAgPLnow4OQWwRiTOabu74fGPwTAi2tepLimmM7xnbn5zJvrltcX7GvBMIwmC2IGBp3jO7O/bD9e06R2fC0fUOYK/JgW7n6zxePW+uXIX/LMhGcCjv1w8ckX817ue80WgV8r93djTLfBQQ/0sPnrTQur4LES+G1a7WM6+i8YvZN6M/V7/oL5i6tfJL8qv8n1nB5ns5NAZKZksrWo9S3xZpd4+Vu6v9umxwfWI8HvrPeySrbC8gANWT2mp9HYfCIiIiLSfgTTzTMcppw9JSYKT01dCzV1zdTRhVxAW79+PfPmzWu0PCMjg8OHWzcrm4RXKEWx1uw7IzGDvIrmx9aq5cMX1jhG9BzBP9f9s8X1LFgY3Wc0SY4kDlUeYkfRDsrdzbfGaYppmpzb5Vy2eLewp3QP4C+cxFnjSEtIa1CkmXb2NO7KuavRIJEDUgcw4/wZQR0vKyOLh8c9zF05d7G9aHtIRTSrYcVqWBnVa1Sj4826eBbDnh4WsDVdfQcqDrB079Igj2kD04vP9ITcf745H2376Li2NzC4bljDbpcPjX8orG/+vVN6NznQZ6+kXjisjiMt1Bqe74LqPeTsfIXs/jc02m71wQUhzbZZW6AK1Cx95riZHCg/wIb8DUcnrcAgIzGDW0bewk+G/YQNG59j5/Z/0M1XwsJqk9fKYdmRxorJFtjphgQLJBlQ7INqH6RYmjxcnWcmPFP3mr/v3Pu4479ND7DqNt3NjvVwzanXNDvOXDBqZ9u8PRV62eCgCwwD4gzoYfUXz0q8/iJic6yGlWX7lrU6BhERERGJfi118xQ5VguXQ42lpaWRl9e4eLJmzRp69+4dlqAkuk04ZQIJtgTsFjuWZp5CBkaT3RePR/aA7IAzINayGlbO73c+sy+ezc1n3kznhM6tOt7l3S5n1kWzGNZ9GF0Tu5KRmEFmaiZj+4xtUKSZcvYUHst+jMFdBpNkTyI9IZ1rs65l/nXzQyogThg8gfd//D53n3N30NskO5IZkDaAG8+4kReueKHJLofdkhpP4hBIS7OBdonvQpeELri8NTh91UEXz5rr+li7fW5BbpPjlYXi4pMvbvMm0L8b+zsSbYkYGHVj5iXaEvnDuX+gk6NTs8XPdzbNanL5i9/+Puhj2w17UI8vKyOL5694nj+O/yPTx0zn7xf/ne9+/R2HfnuIh8Y/RFZGFteeN4uC02ZwSZ6N2wqOFs/A38XTYsAGp3/5Bqf/9pYAqY6zxjX4AvKrkYFnR25urIfJp0/GYoT80dTA82Vw+l5I3wkD98D1h+CzKijx+f8/vbDh463PipV4W7zGQRMRERERkQZCboE2adIkfve73/H2229jGAY+n4+vvvqKu+66ixtuaNy6QtqfYycfKHOW4fa56woKGP5iybi+wXVfDFZWRhY2i63lgo0BTq+zriXeq+teZU/ZnpCOZRgGmfGZXDroUgZnDG6xS2y4muZmZWTxyAWP8H9L/y/g4zQwOKP7GfzzR/9ssaDSNaEr+RX5QbdCC8Ru2Lll1C28vv51iqqKQpopsrmCRHF1MfM3z2fpvpZbvgXy41N/zBvXvnFc+whGbZ6bmo1nb/lePt/1eZPblbsL2V++lb6pp9Qte/Hb31PsbLk1Z63Tugc/SUswLVGzB2QfmX22odounoMc/vHCgmm11VR35U5GJyrNxkXRVEdqwG7l4a5dfV0Dy2qMoIpiCfYEkuOSGdtnbHiDEBERERGRmBZyAe2RRx7hxhtvpHfv3pimyamnnorX62XSpEncd999bRGjRJljJx+Is8bx0daP2FGyA5fHhcPmYGjGUGaMmxH2Y2ckZnCg4gAWrPiaKQh5fJ4G3cM6OUJvCWe3HR1hvC27xDank6MTJTUlAA0mOQBIT0hnXL9xQQ842SO5B9uKtuH1Hn8B7Z7v38NPhv2Ep5Y/FZaCHIAHD/ctug+H1RHytgYGNmz8ZuxveDS79d3+QtVcwXTy6ZMDdj/8aPuLTBnxl7rbS/a+G9Jx/3j+H0NavyVZGVnEWeMadT/+ugbuLPTPVHmK3T9eWP0unsc6s/uZPP6DxxstvyzjMt7Nf7fBc8WKlTu+13TXTvC3RAxmJtxQdU3oSmF1YcB1Otk70Tuld5MzsIqIiIiISMcWcgHNbrfzz3/+kz/+8Y+sXr0an8/HmWeeyaBBg9oiPolSxxaVrj/9+qAnLjgeN595M3/+6s94fYGLN/W7h43pM4bFuxaH1CUrIzGj1TGGQ3b/bN7b9B4+01dXTLAYFn445Ie8NfGtkPbVO7k3XRK6cKDiwHHFlNU1q24sMbc3PGOe1dpUuIlunULragr+Vm2J1kR+MvQnYY2ntbIyskiwJdRNBX2s3MJ6rewMcPqaXq8p3RK7tckYDcO7D+fr/V83Wv51jf9fS5LsSc22hJzUaxIDBw1k7rdzW5zEoVbOjhxS4lNCns01kBE9RtAlsQsLdixodh0Dg2tPvZYRPUe02fuXiIiIiIjErpALaLUGDBjAgAED8Hq9rF+/nuLiYjp3bt1YUxL7TlQrrfqzKtYvCNVvpdUrqVeDWCafPpn/t/z/UeYqC/o4w7sND1PErTNz3Ez2l+9nQ/4GXF4XDquDod2GMnPczJD3NaLnCHK25xx3TPVnXg33+FBOr5NyV9P9A2sLiM0d02E4yEqPnmLHhEETeDv37Sbvq/YcfYy7ijcTbF/FRFsiM86bEYboGvv9ub/nyjeubPUMqtNHTw/42p9x3gweuTD42Sx3l+5mZM+RLN27jGpPNRYDfKav1c85A4PXfvga24u2s+rAqmYLc7eMvIU5E+a06hgiIiIiItL+hTxS87Rp03jxxRcB8Hq9nHfeeYwYMYLMzEw+//zzcMcn0shD4x9i/2/28/QlT9cN5l77X+1g7vVlZWTxv0P/N6RuYeP7jw932CHJysjihSte4OHxD3Pr2bfy8PiHm5wkIBjZA7Jb7LoWjBrv0eZIKXEpx72/Y9V2WT2W1fAP6t6c6hBacZ0IM8fNJM4a12i5gUGiI7Xu9ifb38LA2uQ+rFjpn9qfbondGN5tOI9lP9Zm019PGDyBLgldWrVtvC0+7NNb903tS0pcClcMnsDg9EFkJGbQM7lnq7t1OiwOsjKymDB4Aq9c9QrDuw3HWu+8p8alcv+596t4JiIiIiIiAYXcAu2dd97h+uuvB+DDDz9kx44dbNq0iVdeeYU//OEPfPXVV2EPUqQpgQZzP9a00dP416Z/kV+V3+J+7Yadcf3GsTN/Z9hjDkW4WvVlZWTh8TY9M2So+6l1erfT+WzXZ8e9z2AYhkGSI6nZbpHBzgJ6omRlZPH9zO/zxe4vcJtuatvQ2Sxx9EoaWLfeV/s+bXYShicvebLNCmZNOaPnGQG7NzYnwZoQ9liyB2SzIX8DRdVFjO0zllJnKV0SujBv/bxWzdJqtRwtlmmqchERERERaa2QW6AVFhbSo0cPAD766CMmTpzIKaecws0338z69evDHqBIIFPOnsLaKWs59NtDrJ2yttmiQ1ZGFmMzx/pnCW3BBQMuiKougdHAwOD2s26vu33FkCtatR+bYWvQ+icYCbYEqtxVzd5vs7S6J3qbObvP2XRO6IzDkoAFCxbDigULqY70unXyKvbSVBfOFEfKCS2eAUw9eyp2i73lFY8RZ2vc0u54ZWVkMX30dM7rex6dEzpzXt/zmD56Ov3T+rdqfyelnRTmCEVEREREpCMKuYDWvXt3Nm7ciNfr5ZNPPuHCCy8EoKqqCqs1tAtjkRNpXP9xLY7zFG+Nb3I2wViX5Eg6ru0nnjqxQcud7AHZ2IzQClcWLAztNjTkY/dL7YfL62r2/vR6RaloYrPYsFosWAwbYOD2ucg9vIx95VvJLcilylPR5HbhnqAhGBMGT+Cec+4Jubh5eo/T2ySerIwsbv/e7Tx20WPc/r3bycrI4vLBl5ORmIHdODpbqxUrWelZ2I2mi38Oi4M7zmp+xk8REREREZFghVxAu+mmm5g4cSJDhw7FMAyys7MB+OabbxgyZEjYAxQJl+wB2S2uk5mS2S5n3/vByT/AajQujozoMSLgdrXjQ71x7RsNlmdlZJEWn9bsdmMzxzK2z1hS4lKIt8aTEpfC6D6j+eO4P+Il8Ayqx7p8yOX4zOYLn2elnBXS/k4Ep9dJkiMJt8eJx3TiMz2Y+Cis2s+Xe97j1XWv0twEAq0d6+t4PTT+IZ685El6JfUiwZpAsiOZ3km9ibc2Pf5ct8RuDVoltrXJp0/mvL7ncWq3LIZmDGV49+FcnXU17058lycufoJeSb3q1jUw6J3cm9k/mH3CW/OJiIiIiEj7FHLfpxkzZjB06FD27t3LtddeS1ycvwuP1WrlnnvuCXuAIuGSlZGFFWvAAk5mauYJjOjEmTluJgfKD7AhfwM13hrirfEM7TaU5694nmFPD2twTmpnNLVb7JTcU9LsPs/oeQaLdy4+Ms7XUfHWeO49515O7nIyC3YsYHfpbvqm9uXCARf6c2BY8ZrBFdEcFgfXDbuOP335p2bXOa/LeUHt60Tqm9qXvPI8PPjHnvPPIGniNmtYlZfD6vzmJz5IdCSeoCgbm3L2FM7vf36DvPVP68+HWz5k/pb5FFcXY7PaGNZtGPd+/94TOp5YVkYWD417qMnnVFZGlgplIiIiIiLSplo1eNA111zTaNlPf/rT4w5GpK2N7jOar/Y1P9GFw+po9r5YlpWRxfNXPN9k8aFPah92l+4GjhbPAPok9wm4z6lnT2Xb4W3kV+bj8rrwmT7ibfH8Zsxv6gorTbXm65LQhYKqghZjtmDh3JPOJSsjiyR7EuXu8kbrJNoSyYyPvqJn9oBsfvPJb5q8b0/FpoDbjugVuFVgW2tq8opoGXg/XBNriIiIiIiIhKpVBbTPPvuMWbNmkZubi2EYDBkyhGnTptWNhyYSrZ6/4nlOffrUZu/fWRzZmTfbUnPFh9+N/R135dxFtae6rvtggi2B3479bcD91RZV5q6dy67SXfRL7ceNZ9zYYrHlVyN/xaNLHsVjBp4ZtEdSD67KugqAHwz8Ae/lvtdgDDsLFi4ZeEnAfURKVkYWhmE010szoBPZLVJERERERESCE3IB7amnnmL69Olcc801TJ06FYBly5Zx6aWX8vjjj3PbbbeFPUiRcMnKyCLeGk+Nt6bJ+4trik9wRJFX2/Xt2VXPkleRR8+kntwy8pagusRNGDwh5NZJD41/CIA/fvnHgOtVuCq4oP8F/m3GPeTvglqwAZfHhcPmYGjGUB74nwfYuTw6i57x9njcrtAmBMhIzIia1l4iIiIiIiJyVMgFtEcffZRZs2Y1KJTdcccdnHPOOTzyyCMqoEnUOyntJLYc3tLkfb1SejW5vL2bcvaUEzqG1EPjH2Lut3PZW7a32XWqPdV1LeayMrJ44YoXGnVBHZg2kJ1EZwFtaLehfL3v65C2+WHWD9soGhERERERETkeIc/CWVZWxsUXX9xo+UUXXURZWVlYghJpS9POnobD0niss3hrPL8885cRiKhj6pHUI+D9Xl/DiQayMrK4/Xu389hFj3H7926P+rGwfv/934c0o6aBwdTvTW3DiERERERERKS1Qi6gXXHFFbz//vuNlv/73//m8ssvD0tQIm1pytlTmP2D2fRK6oUVK1bDSu/k3jx+0eOaye8EunBA4DET7Rb7CYqkbUwYPIGJp04Mev2Jp06M+qKgiIiIiIhIRxVUF86///3vdX9nZWXxyCOP8PnnnzNmzBjAPwbaV199xW9+0/SscyLR5kR3WZTGJp8+mY+3fszaQ2ubvL89FJPeuPYNeBve3PhmwPWS7En+dUVERERERCQqBVVAmzVrVoPbnTt3ZuPGjWzcuLFuWVpaGi+99BL33XdfeCMUkXYpKyOLeT+axy8++AVf7fuqbrmBQXpiOn8cF3iSgVjxxrVvUPZaGR9v/7jJ+61Yef1Hr5/gqERERERERCQUQRXQdu6MzkG6RSS2ZWVkseTmJczfPJ+5a+eyq3QX/VL7ceMZN7ar2Sg/uv4jpsyfwnOrnsOHr25598TuvHDFC+3qsYqIiIiIiLRHIc/CWauwsBDDMOjatWs44xGRDmjC4Antvog0Z8Ic5kyYE+kwREREREREpBVCmkSgpKSEW2+9lfT0dLp37063bt1IT0/ntttuo6SkpI1CFBERERERERERiZygW6AVFRUxZswY9u/fz3XXXUdWVhamaZKbm8vcuXP57LPPWLp0KZ07d27LeEVERERERERERE6ooAtoDz30EA6Hg+3bt9O9e/dG91100UU89NBDjSYcEBERERERERERiWVBd+H817/+xWOPPdaoeAbQo0cP/vrXv/L++++HNbj6HnnkEcaOHUtiYiJpaWltdhwREREREREREZH6gi6g5eXlcdpppzV7/9ChQzl48GBYgmqKy+Xi2muvZcqUKW12DBERERERERERkWMF3YUzPT2dXbt20adPnybv37lzZ5vOyDlz5kwA5s6d22bHEBEREREREREROVbQBbSLL76YP/zhD+Tk5OBwOBrc53Q6uf/++7n44ovDHuDxcDqdOJ3OuttlZWUAuN1u3G53pMKqUxtDNMQiDSk3sUF5il7KTexQrmKD8hRZOv+xQ7mKTspL7Ii2XEVLHNEg2nLTXoRyPg3TNM1gVty3bx+jRo0iLi6OW2+9lSFDhgCwceNGnn76aZxOJytXriQzM7N1UQdp7ty5TJs2jZKSkhbXnTFjRl3LtfrmzZtHYmJiG0QnIiIiIiIiIq1VddLIur8T96yKYCTSEVRVVTFp0iRKS0tJSUkJuG7QBTTwd9P89a9/zaeffkrtZoZhkJ2dzVNPPcXAgQNDCrS5Ald9K1asYNSoUXW3QymgNdUCLTMzk8LCwhZPzIngdrvJyckhOzsbu90e6XCkHuUmNihP0Uu5iR3KVWxQniJL5z92KFfRSXmJHdGQq3c2HKr7+5qhjScx7KiiITftUVlZGenp6UEV0ILuwgnQv39/Pv74Y4qLi9m6dSsAAwcOpEuXLq0K9LbbbuN///d/A67Tr1+/Vu0bIC4ujri4uEbL7XZ7VD3hoi0eOUq5iQ3KU/RSbmKHchUblKfI0vmPHcpVdFJeYke05CoaYog20ZKb9iKUcxlSAa1W586dOfvss1uzaQPp6emkp6cf935ERERERERERETaSqsKaJGwZ88eioqK2LNnD16vl7Vr1wL+FnBJSUmRDU5ERERERERERNqtmCmgPfDAA/zjH/+ou33mmWcCsGjRIs4///wIRSUiIiIiIiIiIu2dJdIBBGvu3LmYptnon4pnIiIiIiIiIiLSlmKmgCYiIiIiIiIiIhIJKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEEBMFtF27dnHzzTfTv39/EhISOPnkk3nwwQdxuVyRDk1ERERERERERNo5W6QDCMamTZvw+Xw8++yzDBw4kA0bNvCLX/yCyspKHnvssUiHJyIiIiIiIiIi7VhMFNAuvvhiLr744rrbAwYMYPPmzcyZM0cFNBERERERERERaVMx0YWzKaWlpXTp0iXSYYiIiIiIiIiISDsXEy3QjrV9+3aefPJJ/va3vwVcz+l04nQ6626XlZUB4Ha7cbvdbRpjMGpjiIZYpCHlJjYoT9FLuYkdylVsUJ4iS+c/dihX0Ul5iR3RlqtoiSMaRFtu2otQzqdhmqbZhrEENGPGDGbOnBlwnRUrVjBq1Ki62wcOHOC8887jvPPO44UXXmjV/ufNm0diYmLrghYRERERERGRNlF10si6vxP3rIpgJNIRVFVVMWnSJEpLS0lJSQm4bkQLaIWFhRQWFgZcp1+/fsTHxwP+4tm4ceP43ve+x9y5c7FYAvdAbaoFWmZmJoWFhS2emBPB7XaTk5NDdnY2drs90uFIPcpNbFCeopdyEzuUq9igPEWWzn/sUK6ik/ISO6IhV+9sOFT39zVDu0ckhmgUDblpj8rKykhPTw+qgBbRLpzp6emkp6cHte7+/fsZN24cI0eO5OWXX26xeAYQFxdHXFxco+V2uz2qnnDRFo8cpdzEBuUpeik3sUO5ig3KU2Tp/McO5So6KS+xI1pyFQ0xRJtoyU17Ecq5jIkx0A4cOMD555/PSSedxGOPPUZBQUHdfT169IhgZCIiIiIiIiIi0t7FRAHt008/Zdu2bWzbto0+ffo0uC+CPVBFRERERERERKQDaLkfZBS48cYbMU2zyX8iIiIiIiIiIiJtKSYKaCIiIiIiIiIiIpGiApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEoAKaiIiIiIiIiIhIACqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgApqIiIiIiIiIiEgAKqCJiIiIiIiIiIgEYIt0ACIiIiIiIiIiAIbXS8aa5SQUHoLSoXDuuWC1RjosERXQRERERERERCQKvPcel0+5jU75eUeX9ekDTzwBP/xh5OISQV04RURERERERCTS3nsPrrmGxPrFM4D9++Gaa/z3i0SQCmgiIiIiIiIiEjleL0ydCqaJcex9pun//7Rp/vVEIkQFNBERERERERGJnC+/hH37mr/fNGHvXv96IhGiApqIiIiIiIiIRE5eXsvrhLKeSBuImQLaFVdcwUknnUR8fDw9e/Zk8uTJHDhwINJhiYiIiIiIiMjx6NkzvOuJtIGYKaCNGzeOt956i82bN/Puu++yfft2rrnmmkiHJSIiIiIiIiLH49xz/bNtGo1GQPMzDMjM9K8nEiG2SAcQrOnTp9f93bdvX+655x6uuuoq3G43drs9gpGJiIiIiIiISKtZrfDEE/7ZNg3j6MQBcLSoNnu2fz2RCImZAlp9RUVF/POf/2Ts2LEBi2dOpxOn01l3u6ysDAC3243b7W7zOFtSG0M0xCINKTexQXmKXspN7FCuYoPyFFk6/7FDuYpOykvsiGiuLr8c4403sN55J8b+/XWLzd698f7tb5iXXw4d+Dmk11HbCOV8GqZZv7Qb3X73u9/x1FNPUVVVxejRo5k/fz5du3Ztdv0ZM2Ywc+bMRsvnzZtHYmJiW4YqIiIiIiIiIqHyeum6cSPxxcXUdO7M4VNPVcszaTNVVVVMmjSJ0tJSUlJSAq4b0QJacwWu+lasWMGoUaMAKCwspKioiN27dzNz5kxSU1OZP38+RjP9pJtqgZaZmUlhYWGLJ+ZEcLvd5OTkkJ2drW6oUUa5iQ3KU/RSbmKHchUblKfI0vmPHcpVdFJeYodyFb2Um7ZRVlZGenp6UAW0iHbhvO222/jf//3fgOv069ev7u/09HTS09M55ZRTyMrKIjMzk2XLljFmzJgmt42LiyMuLq7RcrvdHlVPuGiLR45SbmKD8hS9lJvYoVzFBuUpsnT+Y4dyFZ2Ul9ihXEUv5Sa8QjmXES2g1RbEWqO24Vz9FmYiIiIiIiIiIiLhFhOTCCxfvpzly5fz/e9/n86dO7Njxw4eeOABTj755GZbn4mIiIiIiIiIiISDJdIBBCMhIYH33nuPCy64gMGDB/Ozn/2MoUOHsnjx4ia7aIqIiIiIiIiIiIRLTLRAGzZsGAsXLox0GCIiIiIiIiIi0gHFRAEtXGrHTSsrK4twJH5ut5uqqirKyso0CGCUUW5ig/IUvZSb2KFcxQblKbJ0/mOHchWdlJfYoVxFL+WmbdTWh2rrRYF0qAJaeXk5AJmZmRGOREREREREREREokF5eTmpqakB1zHMYMps7YTP5+PAgQMkJydjGEakw6GsrIzMzEz27t1LSkpKpMORepSb2KA8RS/lJnYoV7FBeYosnf/YoVxFJ+UldihX0Uu5aRumaVJeXk6vXr2wWAJPE9ChWqBZLBb69OkT6TAaSUlJ0QsgSik3sUF5il7KTexQrmKD8hRZOv+xQ7mKTspL7FCuopdyE34ttTyrFROzcIqIiIiIiIiIiESKCmgiIiIiIiIiIiIBqIAWQXFxcTz44IPExcVFOhQ5hnITG5Sn6KXcxA7lKjYoT5Gl8x87lKvopLzEDuUqeik3kdehJhEQEREREREREREJlVqgiYiIiIiIiIiIBKACmoiIiIiIiIiISAAqoImIiIiIiIiIiASgAtoxHn30Uc466yySk5Pp1q0bV111FZs3b26wjmmazJgxg169epGQkMD555/Pd99912Cd5557jvPPP5+UlBQMw6CkpKTRsbZs2cKVV15Jeno6KSkpnHPOOSxatKjFGNevX895551HQkICvXv35qGHHuLYoez+3//7f2RlZZGQkMDgwYN55ZVXQj8ZUSbac1NTU8ONN97IsGHDsNlsXHXVVU2ut3jxYkaOHEl8fDwDBgzgmWeeCek8RLv2kKe8vDwmTZrE4MGDsVgsTJs2LdTTEJXaQ27ee+89srOzycjIICUlhTFjxvDf//435HMR7U5krlavXk12djZpaWl07dqVX/7yl1RUVLQYY0ufRe31dVRfe8hTLL+m2sP5X7JkCeeccw5du3YlISGBIUOGMGvWrNadkCjVHvJU31dffYXNZuOMM84I+hxEq/aQm88//xzDMBr927RpU+tOSpRqD7kCcDqd/OEPf6Bv377ExcVx8skn89JLL4V+QqJIe8jNjTfe2OTr6LTTTmvdSWnHVEA7xuLFi7n11ltZtmwZOTk5eDweLrroIiorK+vW+etf/8rjjz/OU089xYoVK+jRowfZ2dmUl5fXrVNVVcXFF1/M73//+2aPddlll+HxeFi4cCGrVq3ijDPOYMKECRw8eLDZbcrKysjOzqZXr16sWLGCJ598kscee4zHH3+8bp05c+Zw7733MmPGDL777jtmzpzJrbfeyocffnicZyeyoj03Xq+XhIQE7rjjDi688MIm19m5cyeXXnop5557LmvWrOH3v/89d9xxB++++24rzkh0ag95cjqdZGRk8Ic//IHhw4e34ixEp/aQmy+++ILs7Gw++ugjVq1axbhx47j88stZs2ZNK85I9DpRuTpw4AAXXnghAwcO5JtvvuGTTz7hu+++48YbbwwYXzCfRe31dVRfe8hTLL+m2sP579SpE7fddhtffPEFubm53Hfffdx3330899xzx3dyokh7yFOt0tJSbrjhBi644ILWnYwo055ys3nzZvLy8ur+DRo0qHUnJUq1l1xNnDiRzz77jBdffJHNmzfz+uuvM2TIkNafmCjQHnLzxBNPNHj97N27ly5dunDttdce38lpj0wJKD8/3wTMxYsXm6Zpmj6fz+zRo4f55z//uW6dmpoaMzU11XzmmWcabb9o0SITMIuLixssLygoMAHziy++qFtWVlZmAuaCBQuajefpp582U1NTzZqamrpljz76qNmrVy/T5/OZpmmaY8aMMe+6664G202dOtU855xzgn/gMSDaclPfT3/6U/PKK69stPzuu+82hwwZ0mDZLbfcYo4ePTqo/caiWMxTfeedd545derUoPYXa2I9N7VOPfVUc+bMmUGtG6vaKlfPPvus2a1bN9Pr9dYtW7NmjQmYW7dubTaeYD6L6mvPr6P6Yj1PtWL1NdVezv/VV19tXn/99S0+3lgVy3n68Y9/bN53333mgw8+aA4fPjyUhx0TYjE3zR2zvYvFXH388cdmamqqefjw4VY95lgRi7k51vvvv28ahmHu2rUrqMfckagFWgtKS0sB6NKlC+BvQXTw4EEuuuiiunXi4uI477zzWLp0adD77dq1K1lZWbzyyitUVlbi8Xh49tln6d69OyNHjmx2u6+//przzjuPuLi4umU/+MEPOHDgALt27QL8v/rHx8c32C4hIYHly5fjdruDjjHaRVtugvH11183iA/8+Vu5cmW7yk19sZinjqI95Mbn81FeXl73GNqrtsqV0+nE4XBgsRz9OpCQkAD4u5Y1J5jPoo6oPeQpll9T7eH8r1mzhqVLl3LeeecFHV+sidU8vfzyy2zfvp0HH3ww6JhiTazmBuDMM8+kZ8+eXHDBBUENiRPrYjFXH3zwAaNGjeKvf/0rvXv35pRTTuGuu+6iuro66PhiQSzm5lgvvvgiF154IX379g06vo5CBbQATNPkzjvv5Pvf/z5Dhw4FqOt+1L179wbrdu/ePWDXpGMZhkFOTg5r1qwhOTmZ+Ph4Zs2axSeffEJaWlqz2x08eLDJY9eP7Qc/+AEvvPACq1atwjRNVq5cyUsvvYTb7aawsDDoGKNZNOYmGM3lz+PxtJvc1BereeoI2ktu/va3v1FZWcnEiRPDut9o0pa5Gj9+PAcPHuT//u//cLlcFBcX13UdyMvLa3a7YD6LOpr2kqdYfU3F+vnv06cPcXFxjBo1iltvvZWf//znQccXS2I1T1u3buWee+7hn//8JzabLeiYYkms5qZnz54899xzvPvuu7z33nsMHjyYCy64gC+++CLo+GJNrOZqx44dLFmyhA0bNvD+++8ze/Zs3nnnHW699dag44t2sZqb+vLy8vj444/b7efQ8VIBLYDbbruNdevW8frrrze6zzCMBrdN02y0LBDTNPn1r39Nt27d+PLLL1m+fDlXXnklEyZMqHsBnHbaaSQlJZGUlMQll1wS8Nj1l99///1ccskljB49GrvdzpVXXlnXN9pqtQYdYzSL1twEo6X8tSexnKf2rj3k5vXXX2fGjBm8+eabdOvWrVX7iAVtmavTTjuNf/zjH/ztb38jMTGRHj16MGDAALp37173edHaz6KOpj3kKZZfU7F+/r/88ktWrlzJM888w+zZs5t8HO1BLObJ6/UyadIkZs6cySmnnBJ0PLEmFnMDMHjwYH7xi18wYsQIxowZw9NPP81ll13GY489FnR8sSZWc+Xz+TAMg3/+85+cffbZXHrppTz++OPMnTu33bRCi9Xc1Dd37lzS0tKanRCvo2ufP6GEwe23384HH3zAF198QZ8+feqW9+jRA/BXa3v27Fm3PD8/v1FlN5CFCxcyf/58iouLSUlJAeDpp58mJyeHf/zjH9xzzz189NFHdd36aptn9ujRo1GlOD8/HzhaSU5ISOCll17i2Wef5dChQ3W/zCQnJ5Oenh7qqYg60ZqbYDSXP5vNRteuXYPeTyyI5Ty1d+0hN2+++SY333wzb7/9drMTDrQHbZ0rgEmTJjFp0iQOHTpEp06dMAyDxx9/nP79+wO0+rOoI2kPeYrl11R7OP+1+xk2bBiHDh1ixowZ/OQnPwkpxmgXq3kqLy9n5cqVrFmzhttuuw3wFwJM08Rms/Hpp58yfvz4kOKMNrGam+aMHj2a1157LaT4YkUs56pnz5707t2b1NTUunWysrIwTZN9+/bF/MQPsZybWqZp8tJLLzF58mQcDkdIsXUUaoF2DNM0ue2223jvvfdYuHBh3ZOxVv/+/enRowc5OTl1y1wuF4sXL2bs2LFBH6eqqgqgQR/m2ts+nw+Avn37MnDgQAYOHEjv3r0BGDNmDF988QUul6tum08//ZRevXrRr1+/Bvuy2+306dMHq9XKG2+8wYQJExodL5ZEe26CMWbMmAbxgT9/o0aNwm63B72faNYe8tRetZfcvP7669x4443MmzePyy67LKRtY8WJylV93bt3JykpiTfffJP4+Hiys7OB4/8sas/aS55i9TXVXs5/U4/L6XS2Kr5oFOt5SklJYf369axdu7bu369+9SsGDx7M2rVr+d73vteqGKNBrOemOWvWrGlQqGgP2kOuzjnnHA4cOEBFRUXdOlu2bMFisTQoOMWa9pCbWosXL2bbtm3cfPPNrYrr/7d3L6FNPFocx0+qSU1oE5OoiRCsIKWUqrR2oQufIOJCiRSh1AeV4qKuRFHwATZuREEUa1Tw0YKiWNAKgi4ljbooUlKsqSaoFV8V3QSF+EBz7ubeXKv9j3KbmzTT7wcGmplheuYchsAvycyEkOOHEhS9bdu2qcvl0kgkosPDw9klnU5n9zl8+LC6XC7t7u7WgYEBbWpq0pkzZ+rHjx+z+wwPD2ssFtNz585ln0YXi8WyTx358OGDer1ebWho0P7+fk0kErpr1y61Wq3a39//j/WlUin1+Xza1NSkAwMD2t3drU6nU48ePZrdJ5FI6KVLlzSZTGpvb682Njaqx+PRoaGh3Dcsj8b7bFRV4/G4xmIxXbt2rS5fvlxjsZjGYrHs9ufPn6vD4dAdO3bo4OCgXrhwQa1Wq167di23zSogM8xJVbPr6uvrdcOGDRqLxTQej+euUQVghtlcuXJFJ0+erKdOnRpxDqlUKrfNKrB8zUpV9eTJk9rX16eJRELD4bDa7XY9ceKEYX1/816kas7r6GdmmFMxX1Nm6H84HNabN29qMpnUZDKpHR0d6nQ6df/+/TnsVGGZYU6/MstTOM0wm+PHj+uNGzc0mUzqo0ePdM+ePSoiev369Rx2qvDMMKtPnz5pIBDQ9evXazwe156eHq2srNStW7fmsFP5Z4bZ/MemTZt04cKFOeiKeRGg/UJERl06Ozuz+2QyGW1ra1O/36+lpaW6dOlSHRgYGHGctra2Px7nwYMHumrVKvV4PFpeXq6LFi3S27dv/7HGhw8f6pIlS7S0tFT9fr+GQqERj6AdHBzU2tpatdvt6nQ6NRgM6pMnT8bcm0IrhtlUVFSMeuyfRSIRraurU5vNprNnz9YzZ86MqS/jjVnmNNr2ioqKsbSm4Mwwm2XLlo26vbm5eaztGVfyOavNmzerx+NRm82m8+fP14sXL/5VjX96L/qn8yj26+hnZphTMV9TZuh/e3u71tTUqMPhUKfTqXV1dXr69Gn98ePHmHoznphhTr8yS4BmhtkcOXJE58yZo1OmTFG3262LFy/WW7dujakv45EZZqWq+vjxY125cqXa7XYNBAK6c+fOEUFTMTLLbFKplNrtdj179uz/3IuJwKL67zvIAQAAAAAAAPhN8d4QCwAAAAAAAMgDAjQAAAAAAADAAAEaAAAAAAAAYIAADQAAAAAAADBAgAYAAAAAAAAYIEADAAAAAAAADBCgAQAAAAAAAAYI0AAAAAAAAAADBGgAAAAmFAqFpLa2ttBlAAAAmIJFVbXQRQAAAODvWSwWw+3Nzc0SDofl69ev4vV681QVAACAeRGgAQAAFJl3795l/+7q6pIDBw5IIpHIrrPb7eJyuQpRGgAAgCnxE04AAIAi4/f7s4vL5RKLxfLbul9/wrllyxZZt26dHDp0SHw+n0ydOlUOHjwo379/l927d4vH45FAICAdHR0j/tebN2+ksbFR3G63eL1eCQaD8uLFi/yeMAAAQIERoAEAAEwQd+7ckbdv30o0GpVjx45JKBSSNWvWiNvtlt7eXmltbZXW1lZ59eqViIik02lZsWKFlJWVSTQalXv37klZWZmsXr1avn37VuCzAQAAyB8CNAAAgAnC4/FIe3u7VFVVSUtLi1RVVUk6nZZ9+/ZJZWWl7N27V2w2m9y/f19ERK5evSolJSVy/vx5mTdvnlRXV0tnZ6e8fPlSIpFIYU8GAAAgjyYXugAAAADkR01NjZSU/PfzU5/PJ3Pnzs2+njRpkni9Xnn//r2IiPT19cnTp0+lvLx8xHG+fPkiz549y0/RAAAA4wABGgAAwARhtVpHvLZYLKOuy2QyIiKSyWSkvr5eLl++/Nuxpk+f/v8rFAAAYJwhQAMAAMCoFixYIF1dXTJjxgxxOp2FLgcAAKBguAcaAAAARrVx40aZNm2aBINBuXv3rgwNDUlPT49s375dXr9+XejyAAAA8oYADQAAAKNyOBwSjUZl1qxZ0tDQINXV1dLS0iKfP3/mG2kAAGBCsaiqFroIAAAAAAAAYLziG2gAAAAAAACAAQI0AAAAAAAAwAABGgAAAAAAAGCAAA0AAAAAAAAwQIAGAAAAAAAAGCBAAwAAAAAAAAwQoAEAAAAAAAAGCNAAAAAAAAAAAwRoAAAAAAAAgAECNAAAAAAAAMAAARoAAAAAAABggAANAAAAAAAAMPAv5ypU7X+GeBIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -348,7 +354,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNAAAAFgCAYAAAB6wIQ3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJF0lEQVR4nOzdd3zTdf4H8Nc3s0knpaVAW8q0hD0UGXLIKIdY153iTxTHeXfKOQDXOVDGies8AfVEnJx6uMFTRKRsUJkWWaGM0kIX3TNNmvH5/VEaWtqkSZs0Sft63sPfj3zzzff7zuedNPm+8xmSEEKAiIiIiIiIiIiImiTzdQBERERERERERET+jAU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJxS+DqAt2Ww25OTkIDQ0FJIk+TocIiIiIiIiIiLyESEEKioq0L17d8hkzvuYdagCWk5ODuLj430dBhERERERERER+Ylz584hLi7O6T4dqoAWGhoKoLZhwsLCfBwNYDabsXHjRkydOhVKpdLX4VA9zE1gYJ78F3MTOJirwMA8+RbbP3AwV/6JeQkczJX/Ym68o7y8HPHx8fZ6kTMdqoBWN2wzLCzMbwpoWq0WYWFhfAP4GeYmMDBP/ou5CRzMVWBgnnyL7R84mCv/xLwEDubKfzE33uXKNF9cRICIiIiIiIiIiMgJFtCIiIiIiIiIiIicYAGNiIiIiIiIiIjICRbQiIiIiIiIiIiInGABjYiIiIiIiIiIyAkW0IiIiIiIiIiIiJxQ+DoAIiLyIasV2LkTyM0FunUDxo8H5HJfR0VERERERORXWEAjIuqg9r/xNHouXIao4uqLG+PigOXLgT/8wXeBEREREVGHpS/QIyU9BZllmUgIT0BS7yToonW+DouIQziJiDqi/W88jZEPv4jO9YtnAERWFnDzzcCaNT6KjIiIiIg6Kn2BHkt3L8X2jO0orS7F9oztWLp7KfQFel+HRsQeaEREHY7Vil7PvQIAkC65q/a2gPmhB/B217PIqDzHX/6IiIiIqE2kpKcgr7IAwfLeCFMFIS4sDkcLjmJT+iZ+FyWfYw80IqKOZudOdC61Niqe2QlAmZOH/A1rUFhVwl/+iIiIiKhNZJZlwmjWoMYqcLa0GpIkIVwdjsyyTF+HRsQCGhFRh5Ob69Ju0aUhqDRGoG+kDsXVxdiUvsnLgRERERFRR5YQnoDKmjIIIQAAQgiUmcrQM6KnbwMjQgAX0F588UVIkoS5c+f6OhQiosDSrZtLuxWGBwMAKkxW/vJHRERERF6X1DsJoapOyK5MQ1F1Do4WHEWkJhKTe032dWhEgVlA27dvH9555x0MGTLE16EQEQWe8eNRGaWFcHC3AFDYWYNjid1rb/OXPyIiIiJqA7poHW647K/o33kMgpXhmJAwAfNGz+P8Z+QXAm4RgcrKStx+++1499138fzzz/s6HCKiwCOXI2TlxxB//CMELllIQKr9P1/+ZRzOGU5CowhDhbkaPTvF8Jc/IiIiIvK6+LDL0EndGwBw2/A4H0dDdFHAFdAeeOABXHvttZgyZUqzBTSTyQSTyWS/XV5eDgAwm80wm81ejdMVdTH4QyzUEHMTGJinVrjuOuS99xEin/47gvMvzokmYuNg/de/MG58f+z++X8oNGRhSMxw3Db4GvSN6OtyWzM3gYO5CgzMk2+x/QMHc+WfmJfA4Re5EhfHSfA1c5Ff5KYdcqc9JSGEo1E8fuezzz7DkiVLsG/fPgQFBeHqq6/GsGHDsGzZsib3X7hwIRYtWtRo++rVq6HVar0cLRGRfzOHRMMSHovo1L3Q5OfCJspRNGAAIJcDAAw9RgIAlKXZUJbn+TJUIiIiIuogToWqcahkLwoNWehuFBgaNhTxQfG+DovaKYPBgJkzZ6KsrAxhYWFO9w2YAtq5c+dw+eWXY+PGjRg6dCgANFtAa6oHWnx8PAoLC5ttmLZgNpuRkpKCpKQkKJVKX4dD9TA3gYF5ap2TRQb8llsBAFDIJNw4oEuD+786ch4AMCgmBP2jg906NnMTOJirwMA8+RbbP3AwV/6JeQkcvs6VvlCPxze+ghJjMbTKMHTSmtBZ0xkPj3oYuqiOPQ+ar3PTXpWXlyMqKsqlAlrADOE8cOAA8vPzMXLkSPs2q9WKHTt24M0334TJZIL8Qq+JOmq1Gmq1utGxlEqlX73g/C0euoi5CQzMU8vIZQ3XkXHUhjKZrMXty9wEDuYqMDBPvsX2DxzMlX9iXgKHr3K17ew2VJhLEBeaCEmSMCgmFEcLjmL72e0Y0o2LCAJ8H3maO20ZMAW0yZMn4/Dhww223XPPPejfvz/+/ve/NyqeEREREREREVHg2HpmK04V/wZ94X5olWFQK69AuDocmWWZvg6NKHAKaKGhoRg0aFCDbcHBwejcuXOj7UREREREREQUONalrcPP535GqakUSkkDoyUXP57+Ef2j+uO2wbf5OjyiwCmgEREREREREVH79OHBDyEgoFWEwSqsUEgaGMyVyKnIweRek30dHlFgF9C2bdvm6xCIiIiIiIiIqJUyyjIQoY6ARalFlbkUZqsJoapQaJVa6KI79gIC5B9kze9CRETtkXDwbyIiIiKittYzvCeqzFVQydSIDOqGLtoeUCqUGNBlgK9DIwLAAhoRERERERER+dg9w+5BqDoU+YZMlBrPI9+QiVBVKO4acpevQyMCEOBDOImIiIiIiIgo8CUnJgMAFm9fgULDOcSH6/DchNn27US+xgIaEREREREREflccmIyKgzD6t2O810wRJfgEE4iIuIkaERERERERE6wgEZEREREREREROQEC2hEREREREREREROsIBGRERERERERETkBAtoRERERERERERETrCARkRE4CoCREREREREjrGARkRERERERERE5AQLaERERERERERERE6wgEZEREREREREROQEC2hERB2UqDftGWdAIyIiIiIicowFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIiciJgCmgrVqzAkCFDEBYWhrCwMIwZMwY//PCDr8MiIgpYov6/hcPdiIiIiIiIOryAKaDFxcXhpZdewv79+7F//35MmjQJN9xwA44ePerr0IiIiIiIiIiIqB1T+DoAV1133XUNbi9ZsgQrVqzA7t27MXDgQB9FRURERERERERE7V3AFNDqs1qt+PLLL1FVVYUxY8b4OhwiIiIiIiIiImrHAqqAdvjwYYwZMwZGoxEhISFYu3YtBgwY4HB/k8kEk8lkv11eXg4AMJvNMJvNXo+3OXUx+EMs1BBzExiYp9axWq0NbjtqR5vN5nYbMzeBg7kKDMyTb7H9Awdz5Z+Yl8Dhb7nylzj8gb/lpr1wpz0lIQJn6uiamhqcPXsWpaWl+Prrr/Hee+9h+/btDotoCxcuxKJFixptX716NbRarbfDJSLya+bQGJg7xdXeEALac782uN/QYyQAQFmaDWV5XluHR0REREQdUN13UADQnj3gw0ioIzAYDJg5cybKysoQFhbmdN+AKqBdasqUKejTpw9WrlzZ5P1N9UCLj49HYWFhsw3TFsxmM1JSUpCUlASlUunrcKge5iYwME+tc7ygCkfOVwIAJAB/HBTT4P6vjpwHAAzsEgJdl2C3js3cBA7mKjAwT77F9g8czJV/Yl4Chz/kqu47KADcfMn3047MH3LTHpWXlyMqKsqlAlpADeG8lBCiQYHsUmq1Gmq1utF2pVLpVy84f4uHLmJuAgPz1DJyecOFmB21oVwua3H7MjeBg7kKDMyTb7H9Awdz5Z+Yl8DhL7nyhxj8jb/kpr1wpy0DpoD29NNP45prrkF8fDwqKirw2WefYdu2bdiwYYOvQyMiIiIiIiIionYsYApo58+fx6xZs5Cbm4vw8HAMGTIEGzZsQFJSkq9DIyIKTAE7gJ+IiIiIiKhtBUwB7f333/d1CERERERERERE1AHJmt+FiIiIiIiIiIio42IBjYiIiIiIiIiIyAkW0IiIOijh4N9ERERERETUEAtoRERERERERERETrCARkRERERERERE5AQLaERERERERERERE6wgEZEREREREREROSEwtcBEBERERERERHpC/TYkP4lCg1ZiNLGYVjcLdBF63wdFhEA9kAjIiIiIiIiIh/TF+ixdPdS6At3o8pcDn3h7trbBXpfh0YEgAU0IiIiIiIiIvKxlPQUFBmKEBeaiM6a7ogLTURxdTE2pW/ydWhEAFhAIyIiIiIiIiIfyyzLRERQBCRJAgBIkoRwdTgyyzJ9HBlRLRbQiIiIiIiIiMinEsITUGoshRACACCEQJmpDD0jevo2MKILWEAjIiIiIiIiIp9K6p2EztrOyK5MQ1F1DrIr0xCpicTkXpN9HRoRABbQiIiIiIiIiMjHdNE6zBs9D/07j0GwMhz9O4/BvNHzuAon+Q2FrwMgIiIiIiIiItJF6zCt9z31bsf5MBqihtgDjYiogxKX3haXbiEiIiIiIiKABTQiIiIiIiIiIiKnOISTiIiIiIiIiHxOX6DHhvQvUWjIQpQ2DsPibuEcaOQ32AONiIiIiIiIiHxKX6DH0t1LoS/cjSpzOfSFu2tvF+h9HRoRgBYW0CwWCzZt2oSVK1eioqICAJCTk4PKykqPBkdERERERERE7V9KegqKDEWIC01EZ013xIUmori6GJvSN/k6NCIALRjCmZmZiWnTpuHs2bMwmUxISkpCaGgoXnnlFRiNRrz99tveiJOIiIiIiIiI2qnMskxEBEWg1CABACRJQrg6HJllmT6OjKiW2z3Q5syZg8svvxwlJSXQaDT27TfddBM2b97s0eCIiIiIiIiIqP1LCE9AqbHUvjK8EAJlpjL0jOjp28CILnC7B9quXbvw008/QaVSNdiekJCA7OxsjwVGRERERERERB1DUu8kHMk/gt9y06BRhKHaUo6h3eIwuddkX4dGBKAFPdBsNhusVmuj7VlZWQgNDfVIUERE1PaErwMgIiIiog5LF63DvNHz0L/zGAQrw9G/8xjMGz2Pq3CS33C7B1pSUhKWLVuGd955B0DtuOTKykosWLAA06dP93iARETkJayYEREREZEf0UXrMK33PfVux/kwGqKG3C6gLV26FBMnTsSAAQNgNBoxc+ZMnDx5ElFRUfj000+9ESMREREREREREZHPuF1A6969Ow4ePIhPP/0Uv/76K2w2G+69917cfvvtDRYVICIiIiIiIiIiag/cLqABgEajwZ/+9Cf86U9/8nQ8Dr344otYs2YNjh8/Do1Gg7Fjx+Lll19GYmJim8VAREREREREREQdj9sFtI8++sjp/XfeeWeLg3Fm+/bteOCBB3DFFVfAYrHgmWeewdSpU3Hs2DEEBwd75ZxERO0Zp0AjIiIiIiJyjdsFtDlz5jS4bTabYTAYoFKpoNVqvVZA27BhQ4PbH374Ibp06YIDBw7gd7/7nVfOSURERERERERE5HYBraSkpNG2kydPYvbs2Xj88cc9EpQrysrKAACRkZEO9zGZTDCZTPbb5eXlAGqLfmaz2bsBuqAuBn+IhRpibgID89Q6Npu1wW2z2QyZJDXaz2q1ud3GzE3gYK4CA/PkW2z/wMFc+SfmJXD4W678JQ5/4G+5aS/caU9JCOGRUTz79+/HHXfcgePHj3vicE4JIXDDDTegpKQEO3fudLjfwoULsWjRokbbV69eDa1W680QiYj8njmsG8wR3e23NWcPoH75zNBjJABAWZoNZXleG0dHRERERB1R3XdQANCePeDDSKgjMBgMmDlzJsrKyhAWFuZ0X48V0FJTUzFhwgR7Ly9veuCBB/D9999j165diIuLc7hfUz3Q4uPjUVhY2GzDtAWz2YyUlBQkJSVBqVT6Ohyqh7kJDMxT6xw9Xwl9QZX99h8GdmnQA+2rI+cBAINiQtA/2r25JpmbwMFcBQbmybfY/oGDufJPzEvg8Idc1X0HBYCbB8X4JAZ/5A+5aY/Ky8sRFRXlUgHN7SGc3377bYPbQgjk5ubizTffxLhx49w9nNseeughfPvtt9ixY4fT4hkAqNVqqNXqRtuVSqVfveD8LR66iLkJDMxTy8jlsga3lUplk0M4ZTJZi9uXuQkczFVgYJ58i+0fOJgr/8S8BA5f5UpfoMeG9C9RaMhClDYOw+JugS5a1+Zx+DO+jzzLnbZ0u4B24403NrgtSRKio6MxadIk/Otf/3L3cC4TQuChhx7C2rVrsW3bNvTq1ctr5yIiIiIiIiKitqMv0GPp7qXQF2ZBqwxDQeFuLN2dhXmj57GIRn7B7QKazWbzRhzNeuCBB7B69Wr873//Q2hoKPLyaufjCQ8Ph0aj8UlMRERERERERNR6KekpKDIUIS40EZIkITKoG4qrz2FT+iYW0MgvyJrfxT+sWLECZWVluPrqq9GtWzf7f59//rmvQyMiahc8MyMmEREREZH7MssyEREUAenClCKSJCFcHY7MskwfR0ZUy6UeaI888ojLB3zttddaHIwzHlrrgIiIiIiIiIj8TEJ4AjJKMiBEGCRJghACZaYyDO823NehEQFwsYCWmprq0sGkJiafJiIiIiIiIiJyJql3Eo7kH8FvuWnQKMJQbSnH0G5xmNxrsq9DIwLgYgFt69at3o6DiIiIiIiIiDooXbQO80bPw0s7vkKhIQsJ4QMxb/TNnP+M/IbbiwgQEREREREREXmaLlqHab3vqXc7zofREDXUogLavn378OWXX+Ls2bOoqalpcN+aNWs8EhgREXkXZ5YkIiIiIiJyjdurcH722WcYN24cjh07hrVr18JsNuPYsWPYsmULwsPDvREjERERERERERGRz7hdQHvhhRewdOlSrFu3DiqVCsuXL4der8eMGTPQo0cPb8RIRERERERERETkM24X0E6fPo1rr70WAKBWq1FVVQVJkjBv3jy88847Hg+QiIiIiIiIiIjIl9wuoEVGRqKiogIAEBsbiyNHjgAASktLYTAYPBsdERF5DydBIyIiIiIiconbiwiMHz8eKSkpGDx4MGbMmIE5c+Zgy5YtSElJweTJk70RIxERERERERERkc+4XEA7ePAghg0bhjfffBNGoxEA8NRTT0GpVGLXrl34wx/+gGeffdZrgRIREREREREREfmCywW0ESNGYPjw4fjzn/+MmTNnAgBkMhmeeOIJPPHEE14LkIiIiIiIiIiIyJdcngPtp59+wogRI/Dkk0+iW7duuOOOO7B161ZvxkZERG2IU6IRERERERE1zeUC2pgxY/Duu+8iLy8PK1asQFZWFqZMmYI+ffpgyZIlyMrK8macREREREREREREPuH2KpwajQZ33XUXtm3bhhMnTuC2227DypUr0atXL0yfPt0bMRIREREREREREfmM2wW0+vr06YMnn3wSzzzzDMLCwvDjjz96Ki4iIiIiIiIiIiK/4PIiApfavn07PvjgA3z99deQy+WYMWMG7r33Xk/GRhSw9AV6pKSnILMsEwnhCUjqnQRdtM7XYRE1QwCQfB0EERERERGR33GrgHbu3DmsWrUKq1atwpkzZzB27Fi88cYbmDFjBoKDg70VIzWDxRr/oi/QY+nupThTcgYVpgp8W/0tPjvyGZ6+6mkkJyb7OjwiOy4aQERERERE5BqXC2hJSUnYunUroqOjceedd+JPf/oTEhMTvRkbuUBfoMdrv7yGnIpCRGk7IaMkA0fyj2De6HksovlISnoKjuQfwZmSTFTWGKBValBuKscLu15An8g+zAsRERERERFRgHG5gKbRaPD1118jOTkZcrncmzGRG1LSU5BdUYAgqRcqjRIGdY3H0YKj2JS+iYUaH/k191ecKj6FCpMBKpkGBrMRMkkgpyKHeSEiIiIiIiIKQC4X0L799ltvxkEtlFmWCZUsFNKFeYskSUK4OhyZZZk+jqzjqjBVwGA2QCXXQClTAxAwmMsAgHkhIiIiIiIiCkCtWoWTfC8hPAEVpjIIUTubkRACZaYy9Izo6dvAOrBQdSg0Si1qrNUwW00wWashlykBgHkh/8ZJ0YiIiIiIiJrU4lU4yT8k9U7CtvQDyK5Ig0YRhqMFFkRqIjG512Rfh9ZhqeVqWGwW1FhNMNtqECQPhlKuQGxoLPNC7V7doiZnis+gMr8SvQp7YUi3Ib4Oi4iIiIjIb3FhwMDAAlqA00XrcPvgv+HbtI0oNGRhQsIgTOk9hW82H1mXtg4bT2+EyWKEXKaAzWaB0VqJzppeeOqqp5gXatfqVqAtMhQhTBWG41XH8fre1/Ho2Ef9/7VfXQ3cdx/w8ce+jqTNyQFc5+sgqFnMk2+x/QMHc+WfmJfA4Q+5mgFAwoXBEXv2AKNG+TYgL6v/HToiKIILA/oxFtDagV4RiZjWOxYAcNvwOB9H07F9ePBDGMxGxGj7wmAph9lqgtFShS7BsUhOTPZ1eERelZKegiJDEbpo+0Ehk9BDbUBxdbH/L55x443A//7n6yh8hnM5BAbmybfY/oGDufJPzEvg8IdcNViy8Mora/+/aHqukfbQc6vuO3SPsETkV9Wgb6duOF163P+/Q3dALSqgnThxAtu2bUN+fj5sNluD+5577jmPBEYUiDLKMiCDBkGKYAQpggEApcbzKK8p8XFkRM1r7RRomWWZ0CrDkF9ZAwBQBsKiJjfeCHGheCb5OBQiIiIickCSGhXR6vfcCg8KD9ieW5llmYgIisDZUiMAIKvM6P/foTsotwto7777LmbPno2oqCh07doVknTxkkOSJBbQqEPrGd4TZ4qzIYQNkiSDEDaYrAZ0Cxnk69CIGvH0mgEJ4QlIK0iHSoqAJEn2RU1Gxo708Jk8pLqaxTMiIiKiQLF3b4PhnHU9t4JkPWEwAgOi46AvPBZwPbcSwhOQUZIBIcIgSRKsNhvKTGUY3m24r0OjS7jdQ/P555/HkiVLkJeXh4MHDyI1NdX+36+//uqNGO127NiB6667Dt27d4ckSfjmm2+8er5AwYXz/Mc9w+5BkCIY+YZMlBrPI9+QiSBFMKb1+T9fh0bkdUm9k9BJE4nsyjQUVefgnOmcfy9q8vjjkMDiGREREVFAqBvOeUFdzy2jRcBsE6ixioDsuZXUOwmdtZ3t36HPVpzw7+/QHZjbBbSSkhLccsst3oilWVVVVRg6dCjefPNNn5yfqDnJicm4feCz6Bs5EhplCPpGjsTtA5/FuLipvg6NqAF9gR6fHnkbnxxZjA3pHyC74mSrj6mL1uG+kQ+jf+cxCFaGY2DIQDw86mH//QXwZOufMxERERH5RkJ4AkqNpRAXhnbWjX7oGdHTt4G5SRetw7zR8+zfoQdFjwm4YagdhdtDOG+55RZs3LgR999/vzficeqaa67BNddc0+bnJXLHiK5TMKLrFF+HEdDaw2Sg/qxuvojTxXmwWrUoKNyNc+XHMTWxC4bEDGzVsS/r3B/TencGAGjPHoAuyo/z1q8fsHGjr6MgIiIiohZI6p2EI/lH8FtuGjSKMJiLatA1JCoge27ponWY1vseAECwSg5ddDcfR3QRr80ucruA1rdvXzz77LPYvXs3Bg8eDKVS2eD+hx9+2GPBEVHHU1fcOV9ZyGWcveTjQx9jT9ZeVJlkCFaFo4s2HuU1hdiSvrnVBTR/4PKH/D//CfHvfwPgME4iIiIiv7dnT4Obumgd5l45Fy/v/BqFhiyMi+uP6/tP4zWDB128NiuAUhba4a/N3C6gvfPOOwgJCcH27duxffv2BvdJkuRXBTSTyQSTyWS/XV5eDgAwm80wm82+CsuuLobWxlJ/JVR/eF7tgadyU8cmBHPjog0nNyC/sgBy0ROVRgm66O44VngMP578EX0j+jbY19N56gj0hXp8l/YdigxlUMnDUGjIQrmpENHaeJwpSW+yLW02m8ttbLFY7P8+ZzyH5buXI7syGz3Ce2Byr8le75GmL9Rj0Y5F2J21G0WGIliEBUGKIIyNG4uB0QMbxqFQQHbddZB99x0EWEQjIiIi8jd1833bANiGDwcu+U7aN6KvvefW5D6R6KRRBvy1gXBw7eiLa58NJzegoKr22kzYJHQJ7obzVSebvDYLVO60pySECMg56CVJwtq1a3HjjTc63GfhwoVYtGhRo+2rV6+GVqv1YnRtqyYiDpawGAC1Q6bItww9Gq84KDeUQF2Y7oNoAs8H2R+gUpgQETkAAKAsy0FhTSFCFCG4J/YeH0cX+Nblr0NK8SaY5QqEqjpDkoAyUyGUMhWmho9HctR0+751r2VlaTaU5XkuHd+qDoEpJhHZFSex8bcXUWGtQLAsGFW2KoTKQ3F9l+sRHxTvlecGAB/nfIwfC39Epa2y0X0hshDYYEOIPAQ3dbkJ10TXTglwxQsvoNvevSygEREREfkZgdri2ToHCwgKANUXvrMG5R6DzFzdVqF5XN13b8ligibniI+jqfVB9geoslQhPHoIAEBmrkZJ6cl2dW1mMBgwc+ZMlJWVISwszOm+bvdAq6+u9iZJ/nnZ8dRTT+GRRx6x3y4vL0d8fDymTp3abMO0BbPZjJSUFCQlJTUaCuuOg7kVOFVkAABMnz69mb3JFa3JzVdHzjfaFtO1K8aO6u+p8Nq19H3p2HxmO4QQkCQJffv2RU1hDSYkTMD0yxu+vj31HupItm3ahl7KQcgoyUCFuQhKSQ2z1Qi5TInZv/8bBscMsO9b91q+7LJE6LqMcOn4BVU12H6mBIcLdqLCWoEr+v4ORisQHayEvvAYLPEWTL/Ce3+nln6yFEZhBCBBBjkEbBCo7aVbaauERq5BkaUIn5z/BAMHDcT9I+8Hpk/HdwfPIfH5J9D3269ZSCMiIiLyobqRAQKAbdcuYNQoOPr2KITA10fzAQDjrroKnTSBe01Q991bo9E0eV3vi2uf9H3p2HF2B4St9tosODgYVlVYk9dmgapupKIrWlRA++ijj/DPf/4TJy+sYHbZZZfh8ccfx6xZs1pyOK9Rq9VQq9WNtiuVSr+62G5tPDLZxcVU/el5tQeeeq3IJIm5cdG0ftNw8PwRHC+onQxUX2RGVHAUpvad6rAN/e097c96RfbCofOn0afTCBQYzqLUeB4WYYFaHoTt57Yhp+oc0kvTkVmWicKKcAyOHo8h3Ua63L4KRW2xqtCQhWBZMLIrartEBynl6KTphKzKLK/mSiaTwSZqY5BJMliFrcH9ViGgkClgtBrx2u7XMKXPFGw7sw0v//QGSkYXIG7qYDx4xWzMHjXbazH6G7PZjPXr12P69Ol8H/kx5sm32P6Bg7nyT8xL4PCHXH2ammX/923D45zua6s3oE6hULSL15fUzLVjW177TOs3DfoivX2hhiJjFS6L6ub02izQuPM83C6gvfbaa3j22Wfx4IMPYty4cRBC4KeffsL999+PwsJCzJs3z91DuqyyshKnTp2y3z5z5gwOHjyIyMhI9OjRw2vnJaK2o4vWYfYVD2PFnm9RaMjChJ4DO9RKL95e5SapdxK2pR9AdkUBVHINDJYKAEBVTTkWbVsIo7UawcpgRGoiUWNR4njRXlwWvQADu17h1nmitHE4UXQYYRd6EtZYrCgzlWF4t+Eeey5NGR03Gjszd8ImLLAKCwTqz1IgQQYFACuUMiVKjaVYsHUBNqZvhMFcDbmkwumSE3hqy1MA0KGKaEREREREl9JF6zBv9Dy8tOMrFBqy0C9yGO4bdUOHuTa7lNsFtDfeeAMrVqzAnXfead92ww03YODAgVi4cKFXC2j79+/HxIkT7bfrhmfeddddWLVqldfOS0RtK7GzDtN6dwYA3DosFjI/HSbuCXUr22w9sxUVNRWQy+RICEuALlrnlVVudNE63D74b/g2bSP25f4ApaSCJJOhxJSHGqsRAjaYrCZUm00IVkYivfQ3rDv5Oa7XuVdAGxw9Hrk5u5BdWftrVXlNNXpFxnh9WfFZQ2ZhXdp6HC44ZB+6WUcGGSyiBjabDTKp9te9lPQUmCwmhCo7Q5JkCFJIKKouxMoDK1lAIyIiIvJzgTmje2DRRevsCzXEhQdBFx3l44h8x+0CWm5uLsaOHdto+9ixY5Gbm+uRoBy5+uqrEaBrHhCRO9rB29yVnmT6Aj3mbpiLn8/9DKuwwmK1wAYbKoyVUMljMCp2INJLj2NT+iaP/srTp1MipvWORaHhHNKsRuRVnYHVZmlQcKq2GqCSa6GUq/Bb3j63zxEb2g/Xdbke+xUlKDRkYXDMCNw1/Dqv/1qli9bhnev/gznr50Nf+DNqbEaEqYNRXF0Kq7BCiNpVQmWSAhIkVJgroJKpIEm1Q+HlMhmUciVyK737eUZERERERIHF7QJa37598cUXX+Dpp59usP3zzz9Hv379PBYYEVGgqutVVmQoQkRQhMOeZCnpKTiSfwQ2ABp5JxhRDoutBtUWI04WH0GMtjfCg8KRWZbp4Qhre/RFaeNwIC8FFmuNfd6wiwTKa4oQoY4GpJZVNOOD4hHV40YAwMCYUOiiw1sRs3P1C5bRmjjc0v8RxIauAFA7d8af1ryAL/SvwGitglIWBK0yFAnhXXGy+CSqLdUIktsgSbLaZcOtZvSJ7OO1WImIiIiIAlE76OfQKm4X0BYtWoRbb70VO3bswLhx4yBJEnbt2oXNmzfjiy++8EaMRNSBibpleAJISnoKigxFiA25DJIkIS4sDkcLjjbqSZZZlgmT1QQZFBdWM5YBEiBsAgZzOSw2m1fmDasbETs4ejx+zvofCgxZsMHSaD8BG4xWA4Z2GeXR83vapQXLE4XpqDLtw/Q+f0FsaO0PO0m97sTp0oPIrjgFCRK0yjCMiR+AIEUQ9ufuR0VNERQyFarMFqgVavx1+F99/KyIiIiIqDkdvaBDbUvW/C4N/fGPf8SePXsQFRWFb775BmvWrEFUVBT27t2Lm266yRsxEhEFlMyyTISpw5FdbkJWmRE2AYSrG/ckSwhPgFquhsVmhhACSlkQIGoLVwqZElkVaYjURHp83rC6emRsaD/ceNlDUMk1DvdVSEokX3ZrK8/kXXUFy4SwRMgQhf6dB6DKXIrDBbsa7NczfBAig7picPTv0LfTcERpo9A9rDuu6Xs9uoX0hUoehMTOiXhx0ouc/4yIiIgoILCERm3H7R5oADBy5Eh88sknno6FiCjgrEtbhw8PfoiMsgz0DO+Je4bdg4TwBKQXn4EkwiFJEqwOepIl9U7C9ye+x/bMXag0FwOSDDJJBo1Ci4TwQRgQNQbzRt/s1XnDRnSdgoFRY/Hr+ZR6c6BJkCBBJsnRRdsDfToltv5EXqylZZZlIiIoApmlRgC1y5lrFGEoNGQ12G9w9HicKz9uX9jgaIEFkZpI3DXkAZwt7owQtQLXDejqvUCJiIiIyCl9gR4b0r9EoSELUdo4DIu7xfl3YdbP2lYHb2+XCmjl5eUICwuz/9uZuv2IiDzBn/9Gr0tbh/vW3YdiQzFskg3Hzh/D7qzdmD9+PjppInH0fG2hRl9oRnRw50Y9yXTROiybtgxzvl+CwwW1E96P7D4IQ6NmYkTXKZBJgC46zuNxX7qo6cDoscgsP4pSYwEkCMhkSghhhVKmxqDo8Z45qRcTmRCegIySDAgRBkmSUGOxodpSjp7hAxvsFxvaD9P7/AWHC3ah0JCFCQmDMKX3FERpeuNscUGgjRQmIiIialfqpuXQF2ZBqwxDQeFuLN2d5XRFen++VvCGc8ZzeHPfm8iqzGq0UJkri5i1Vkdr70u5VEDr1KkTcnNz0aVLF0RERFyYq6chIURtTwur1eNBElEH0+BPjP9OgvbCrhdwvuo8JCHBBgHAgtzKXKz8dSVW3fAJlv68FoWGLIzvMQDX9Jva4AOs/gdcfHgipva+F7Gh/XDb8Dh8mprl+KQe0bA9B0ePx/GiPThRfABmqxFWYYFCpkbviKG4Kr4VQ/NdSJsnPuiTeifhSP4R/JZbW7AsMFQiWBmBQdFXNdo3NrSffV6024bXFifzK01unY+IiIiIPK9uWo640ERIkoTIoG4orj7n8RXp/Z2jr9D6Qj2+zf8WwSIYkZrIBguVAcCfv/0zjuQfgclqglquxudHPsd717/XodrO21wqoG3ZsgWRkZEAgK1bt3o1IHJd3YXn3qwTkKMLBkePB+D53ipEPuXHP3McKzgGm7BBXBLk0fyjAIBpve8BANw4qBs0Srn9/ksnvT9aqMeZUj2m9/kL2uI9fOlvILGh/XBL/8ew89xanCo5AADoFzkCV8X9wV5s8oTntjyH91PfR4mxBJ2COuH6xOuRXpKOI/lHYLQaESQPwvcnvseyacvc+qDXReswb/Q8vLTjKxQastCz0xD0Chvj0diJiIiIyLvqpuUoNdR+WZUkqcl5hDuqzWc246zxLCznbSgxlqGzJgLRwVHYlL4JOzN3YnfWbtguTMlisprwc9bPuOnzm7D21rUeK6L58aVZm3CpgDZhwgT7v3v16oX4+PhGvdCEEDh37pxnoyOH6l+AW2xa5Jan41z5cVyr68oKM7Ur/vxH2iqsjYpnAGARFnx6+L8YFv0AAGD9ye+x+vB/7POkRWmjUFBVhHBVb4SpVOgRGo7M8uMXJr2f2MbPolZsaD/834AnPHzUi58Tz+98FF8d/8DeXtWV1Xj7wNuNHpFXmYcFWxfgixnureqsi9bZC5bRwSoUVNW4/mB/fpERERERdRCXTsshhGh2RfqO9DVuW8Y2nK0+C2GSQS4pkVWejfNVedhyZgs2n9lsL57Vl1aUhj9/+2fP9UQTHanFG3N7Fc5evXqhoKCg0fbi4mL06tXLI0FR81LSU3Ak/wgOnT+KHRkbkVVxAlnlJ7ApfZOvQyPqMKKCohzetyVjMwDg17xNeGrz49h19heUGyuwO2s3vjz2JXIrilFhsuJsaTUkSWpy0ntvaesBsdkVJ/HNiU+aLDZeygYbvkn7BvoCfctP2MIn6J8DhYmIiIg6hqTeSeis7YzsyjQUVecgu9KFFenrfb1s79/lzpSdgVmYYbVaYbCUw2itRnlNOQ7mHYShxuDwcXuz9mLZ7mUeiaFjl89aUECrm+vsUpWVlQgKCvJIUNS8LWe24ND5QzhdcgqlNfnIrTqNk6UH8P6B930dGlGH0TXE8YqNGaUZAIDt575AcXU5OqnjoZA6o0dYL1iFFadLjkNc+AVHCIFqSzmitW0zBLulXy70BXq8vud1PLrxUby+53WXi1yHC3bCbHN9njGzzYxPDrXdSs/2wl57/9ZFRERE5MfqpuXo33kMgpXh6N95jNMFBDoaQ40BFlhghhECNogLPc6yyrOa7H1WxwILvkv7rq3CbNdcGsIJAI888giA2nHIzz77LLRarf0+q9WKPXv2YNiwYR4PkJqmL9SjylzVaPtvBb9hxd4VmD1qtg+iIvI8f/6Vw2Bx/EtPmbEUAFBoyIJS0kCSan+vKDdZ0UndCaXGCmRX1k56b7JWOJz03iua+BGkOZfO21Z/0tLmvtRklB1x+3zr0tZhyeQlbj+OiIiIiAJX/Wk5am87/4HZn68VPM1iszS53dG0MvUVGAqgL9CzGNlKLvdAS01NRWpqKoQQOHz4sP12amoqjh8/jqFDh2LVqlVeDJXqKzIUObxv+Z7lbRgJkZf58aei2WZ2eJ9FWJBdcRJR2jiYrAYIUfurkM1mg1mYkdh5qP3XtYFRYzC9z1/abNL7lnS0qlsVqV+kDjJEoV/kABRXF7s0bLzaUun2+U6WnGxBlC1T9xJjBzQiIiKiQOPHFwseVmNteo5fV6ZJsQgL5m6Y27ppUsj1Hmh1q2/ec889WL58OcLCwrwWFDXParM6vO9cORdz8BcpZz7CpoxPUFFTgB7h3XH/yPvZOzAArNi7Am8feBt5lXnoGtLVYd5iw2KhL2z6Q0gOOQ4X7MKE+BnIKk9DviETarkWJls1ugSH4xbdXxAbMh4AoFbIYLI47nbtaS3ogGZfFSmjuBpmm0BljdWFVZFqTySEDRIklz7c61RbqvkrGRERERHRBXKZvFWP//ncz1i2exlWXreyxcfoOOXKprk9B9qHH37I4pkf0Cg0Du+ziba7EKemZVecxJyN4/Dh4WdwrkKPUlMhDucfxhObnsCKvSt8HR458dyW5zBnwxwcyj+EfEM+DuUfwt9++BtiX4ttkDt9gR4yyCA5+DOqVgYho/QwRnSdgtsHPou+kSOhUYbgsk4j8GrSqxgX//u2ekoekRCegFJjKWqsF5bGNltRZipDz4iezT7WaDFADvc/8NtsHjT7NwH2QSMiIiIKJB1pUcjY0NhWPb7KXIUvjn7h1lzGjXSg9m6Kyz3Q6tu3bx++/PJLnD17FjU1DbsRrlmzxiOBkXNx4XHIrcpt8j4B0aqeG/oCPVLSU5BZlomE8AQk9U5iLxA3ZFecxNI9f0WB8WyD7QICleZKLN+znL3QmiHVK2S05d9ofYEer/z8Csyi8dDMnIocPLHpCQDA7FGzkZKeghBVCEZ3n4RfcjY3iFQlqaCSK2G01s5TOKLrFIzoOgUAoJBJSE6MxS8Zxd5/Qg60pEyU1DsJR/KP4Lfc2nnbqi3lGNotzvmqSBdUm8shlysBqwQLHA97vdTm9M0tmwfNzRcNh3ASERERBb72XNvRF+hRWl3aqmMICJSZyvDyrpfx/YnvsWzaMl7nu8ntAtpnn32GO++8E1OnTkVKSgqmTp2KkydPIi8vDzfddJM3YqQmTOk9Bal5qU1OJKiWq7EpfVOL3gz6Aj2e2/oc9ufsR5GhCGabGS9rX8b8q+az6OOiwwU7kWM47fD+thhi276KoG33Ubhs9zKYrI5Xi6y2VGP53toCaN2Qxgh1X5wsOY6i6lwI2CCDDAqFAlabFTbheKi1LzW1knJz6lZFemnHVyg0ZCEhfCDmjb7Z+euq7jSSBAgBmaQAmihONkUhKVBsbGGRsaWVMFbQiIiIiAJKoBbNmrpeA0IBAOtP/Qfzd3xqn05GF6XDlowtKDAUtPq8AgI5lTkori5u0XDOQG1vT3G7gPbCCy9g6dKleOCBBxAaGorly5ejV69euO+++9CtWzdvxEhNmDVkFtbo1yCtKK3Bdrkkh0KmwK+5v7bouMt2L8MPp35AldmAurdHbkUuntryFOLD45GcmNza0Nu92hUHHf9pkUluj5xuVt0KiVvPbEVFTQWMZiPMNjNswgaVXIXPj3yO965/L4CLaG3jsyOfOb1fCIHsimwAtUMaD58/jNLqM6g2V0AGCTZIkElyaOQa2GCDTGrdPAX+xt1VkepoFKGAJEElDwKsAjU2o9P95ZIcAgIaueOh6s6wDkZERERE/kpfoMfcDXNxJP8ITFYT1HI1vj/xPZISnsSxwl/w6bElMNtMkEkyFBoKcSj/kMdjMFqN+C7tu1bNh9YRuV1AO336NK699loAgFqtRlVVFSRJwrx58zBp0iQsWrTI40FSY7poHV5NehW3r70d5aZyABJkkEEtVwMAKmuaXvVuXdo6fHjwQ2SUZaBneE/cM+wee1FMX6DHdye+Q5W5qsFj6rp6vrDrhQ5TQNMX6rEufx22bdqGXpG93OrB1dyKg521nT0Rol3dH+AdmTtgspoaTdRutBrxS9YvmLdhHjbM2uDRc7eFtprXQF+gR3lNudN9bBd6mAFA74jeOFt2FoVVZTDbamCFBYAEuUwBk7X2A89ve6C18fkig2IQogxHpbnCpTkaJUiQSTJ0De3aovO5+5Lp6L+kEREREbUHgfKdbunupdh5difMVgssF0Zn5FTmYGfmL5AkGYxWAwAJVi9fS3iiR1tH43YBLTIyEhUVFQCA2NhYHDlyBIMHD0ZpaSkMBoPHAyTHkhOTcUW3K7Dr3C5YbDbIJTkgARabpcmhnSv2rsDC7QtRaa6EVqlFVlkWjhYctR8rJT0FZaYyh+c7mHuwQ6yKpy/Q49GUR3Eg/wCkYglBiiC3xohr5MFQQAULml5muMhQhBV7V3hsSGxKegr2ZO2B0eq4V4+AwOYzmwMmf+6s1ugpKekpLu0nSRL0BXqkl6YjPiweocpY6AsPwGYzwwobLDYztMpQAMJ/e6C1WQWt9kSdgrpCAFDJgiCTBwGwoKzG8d8aG2xQypTQKrVtE+aFKi17rhERERH5j+yKk3h9zxqn09IIhze8qzVT5mw4tQHVlupG26utFfVuef/JWISlBdeHgVKm9A63C2jjx49HSkoKBg8ejBkzZmDOnDnYsmULUlJSMHly85NJk2eFB4UjWBmMGosNZlEDtSwIkgQoZA1Tqy/Q4/ldz6PQUAgBCSZLDdRyFSw2C1YdXIXkxGT8mvsrTGYn8z9ZqzH07aHQRelw/8j72+2caAu2LsCOzB2w2mxQCCWMFqNbS/72jBiMnMozOFWaCqBxb5tKc2WDyehb69fcX50WI+pYhAWfHPqkZZOytzXR5D89pqkPvMyyTCgkBSyicfG5PovNgk3pm5BZloke4T0Qo+2E7PJMFFgNgBCwCSsqayqhkivZA+0C+yT9kgRAQK1QQ2lRwmxzMB+aAEwWE/Kr8tsqRCIiIiLyI9kVJ/HCT7ejpObiwnmxIbFIuTOlYcHnwhfNX/M2YeXBT3C6JA1BiiBM6jUJc0fP9XjnAX2BHh8f+hjfnfgOcsjRJ7IPMkoycCT/COaNnufS+YqqizwaU1PUMjVMNsfX9gAgg8ztudM7dvmsBQW0N998E0ZjbU+Xp556CkqlErt27cIf/vAHPPvssx4PkJyzCitMVhNM1hrYhECJ1QAJEn469xPWpa2zD7n8+NDHOF95HrYLBR2rAKotVlhsFugLa5ewrTBVwArnF/xmmxmH8w97tADkT/QFemw4vQE1NjNkkMNsrYFNkkGSJGzN2Nrk/h8f+hi7s3ZDQGBM3Bh00V6GSE1XqMuDYLI13Suz0lyJJzc/ied3Po+i6iKo5WoMiBqA24bc5vTXixV7V+D5nc8jrzIPkiQhJiQGoapQl5/f7qzdLu8biJwNUa6/z/yt85FdkQ2FpEB4UDh2Zu5EpCYSWqW22WGcVeYq/H3T3xEfHg+tQgtJRKDUdB7WC4U3GWS1hTibBaYmfllqr9alrcPyPcvx2/lDMJrNiAiKwRXawRgTPhulpvO1CwjAgrr1C6K10TDbzDBZTReGoV9U93dqX86+Bn/HXNbCT3b2QCMiIiLyveyKk1i8awYqzIUNt1dm44+f/xHHHjxm/0H8VNEZ7Mk6icP5O2CyVgFS7XQgqw6uwpH8I43mgW5Nz7G6qXN2Z+1GlbkKNiFwtOAYQtUhCFIEochQhOcnPd/s8Wy25qc0aa248DhklWU5LaLJZXL3507v4BW0Fg3hrCOTyfDEE0/giSee8GhQ5LqqmipYbVYIIWBD7QW8gEBeZR7uW3cfVmIlkhOT8dWxrxqNoRYQqLHVILMsE3/97q84kHvApXMKCBjMBizfs9ztAlpbrA7Z0nPoC/SYv2U+Kmpqu87WtadNWAFRW2C8dP+5G+Zif85+mG1mKCQFfs35FdXmGpiFCc39dSmvKbcXa0xWE3bn7MbenL3oEd4Db1zzRqOiwYq9KzD3x7mosV0YGiqAnIocV5rErqAqMMa5t+Tv8rq0dbj323tRXF0MG2w4lHcIu87uwvvXv99gnr/HUh7DiaKTEBeKNHlVeThRdAIJ4QmI1ERCCDkqzKVOo6i2VONU0SlIkgSNIhRm28W55yRJBiFqP5AMFufFOF9pySqczqzYuwLzt85HibHE3g4V5hLkVZzGSet5CAhYbWZ0C+4NrUqBEJUcp0tPY3jX4Ui+LBnPbX0OpabSRsc128x4POVx9Ins49Whx/ZMs4JGRERE5FP6Aj0+OrywUfHMfn+RHuvS1uGNvW/gcP4RVNVUXbimuvCN7sL/swor9mbvxbLdy3DdZddh+Z7l2Je9DxU1FRAQkEtyhKnDGkzVU9c5YnP6ZhRX164GL5PV/jjePbQ7ssqzcKr4VIMRKxZhQ4mxBACw9vhapJekY/UfVzv97hqkCHI6/U5rqeVqDOs6DAVVBTDVOC6gSZBcvp7MrjiJwwU7YTDn4liJzivX8YHA7QLaxIkTcccdd+Dmm29GeHi4N2IiN5SZyiCTZBcmML+obnna+Vvn49sT3+Jk8UmHx6gyV+HdX99167ySJNlXI2xKXW+U44XHEaQIQqgqFBllGSg1ll4sNKB2frH+nfujylKF0upSdA3p2qrhoY5WNGlu/rK6x23L2OZwH5PVhEc3PmovytX1PKuqMVzoudf6crwNNmSUZeDeb+/Ftru3NYh52d5lF4tnLXSy+GTAzINWp7lW3Ve2D6u+XoXvT3wPs7g4JNAGG/IN+Xg85XEkJyZjXdo6PLrxUZwoPtHEOQQyyjIwtMtQRGl6I7siA3lVZ5zOxWaDDRBAjcUEW72VDiyiBlZhBmxAlQtDaz3JlR54nlY3PLzYWNzoPjPMOFFyAJ3UXWCxWZBVmQatUotQlQYhyhB0D+2Oh658CB8f+hj7cvY1efxTxaewbPcyFBoKXX5eHfyHMSIiIqKAtWz3Mhwu3OV0nz9+8UdYbBaIC/9zxCIseOfXd7D68GpUm6sbjLayCAuKjcXYemYrlu1ehrmj52LuhrnYk7UHFZcsfCVBgr5Q3+w8zQICB88fxE2f34S1t651eM0VERTR5I/HnqKL0uHuoXdje+Z2OJiWG0HyIChkCpQam49DX6DHl8f/hfSS31BlLsW6Uxa8rH0Z86+a3+5GpDXH7QLa4MGDMX/+fDz44IOYPn06Zs2ahenTp0OlUnkjPmpGsCrY6Rv5t/O/4dB5zy97Wzd0tKnhVevS1uGhHx5CdkU2rDarfTjWpQQEqi3VSD2fat+Wb8jHwxsextaMregf1R//S/sf8irzXC6sLdi6AFvSt8ACC6QL/yuuLm52/rK6lVCcFajKjGX4T+p/oFbUFuVyK3Ptv2B4Wr4hHwu2LsAXM76wb0svTm/1cY1Wo8tzufkNJ837/cnv8W7Wuyi1lTYontV3vOg4ntvyHL449gVOF592eqq0ojT07zwaJdUFLufVLExQyTQw1Vu4o+6xBYZz+DVvE0Z0neLSsVpjXdo6PJbyWG0PPCGQVpiGXWd3YeGEhV79YPv40McoqHTcs9FkNaDUVACVTA2lTAOTxQiVXIaYkBiM7D4SADCl9xSHBTSLsOA/v/0HCpkCGqWm0eInnsQOaERERES+9Z/f/oOm5pGuz91OBZXmSof3mYUZ36V9h87aztiXU9tD7dLrV3ev99KK0nDDZzfg5gE3Y9aQWY2GkHp7wbR/TPwHkhOTERsaiyJDURPnkxCsDIZMJkOwKrjRj/BTek2BWZiRWZaJClMFvj/5fYOeahIk5FXkYf7W+YgPj/f6D/b+xO0C2uuvv45ly5Zh06ZNWL16Ne666y7I5XLcfPPNuP322zFhwgRvxEkOjIkbg+0Z253u4603qNlmxs1f3Iy48DgMjRlq7xXy4cEPkVeZ53iC8GZYhAVf6r8EUPvmlEtyFFcXNzvvmr5Aj3Un1sFSbyirgIDRasR3ad85LRo5WgmlPhtsKDWVQjJK2Fq1tdlfPFrrm7Rv7L3F9AX6Zie3d9WPp39s0ePaYvht0xy38Rv73kCRuajZufuW7l4KAM3uZ7QacbxoL4wO5q5rOjobzLamu2BbYcEX+lfbpID24cEPUVBVAENNNWpsNZBJEqot1Xh+5/O4utfVTU626gm/ZP3S4Be6xgRswga5TIkaWzWClVqYrbV/Gyb3ql14ZtaQWXhx14sOj2CymmC2WmGymKC6ZPETT7jYHCyhEREREfmKvkAPk9X5xPfekFeVh3Un1sFoMTrs/OGuk8Un8eKuF/Hvff/GS5Nesl/DpqSnIEgRBAWUsKBl18sqSYUa4biIWPcdWSVXQS0Pgk0AZpux3rWrQHlNOSRIMFvMeOiHh1BoKESNpQapualYc3wNgmRBsMHWZLGy7jq4zFjm0e/kgUDWogfJZJg6dSpWrVqF8+fPY+XKldi7dy8mTZrk6fioGbOGzPLp+U02E06XpGPdiXWY8dUMxL4Wi/+l/c9jY7oFBCzCAouwoNJciYc2PIShK4Zixd4VjfZNSU9BtbXpIljdGHZHzleddykeq7DCAgvMwuyxgpYjZpsZy3YvA1D73CQPXdwXG5y3RVOe2/Icrnj3CszZMAev/fIa5myYg5HvjMSML2ZAX6D3SFz1CQf/vtSBnAPNFsWA2l+dnP3yVF9LPrSdFVJzKhoPGfUkfYEer+95HZvPbEaxsRhGWzVssMIiLBBCIL8qH58c+sTleN2VU5bTbA5swgKFTFXbU89a++EdExxjL+rponUIU4U5PwZq/w4YLAZUmCrsi594BMd8EhEREflcSnqKT84rIHA0/2izHSpaotxUjgd/eBD3fXcf9AV6bD2zFWfLzra4eAYA3cO6QyE13RcqMujinPUhqhBEajohWhsDjULb4HrSbDOjxlaDXVm7kFmWiSpzFWpEjf06wWgzNtvTzworDuYdbPHzCEQtKqDVycvLw9tvv42XX34Zhw4dwuWXX+6puBx666230KtXLwQFBWHkyJHYuXOn18/pz3TROihkbnck9LDaxQiqLdXIqchptFiBJ1mFFYfzD+OxlMcaFdGcrSBispnwx8//iHVp6xrdpy/Qo8baurnFvKWut9ivub9CLsk9ckyF3L3Xy4q9K7Bk5xJUmasabK+2VONL/Ze4/evbPV9Ec6GgoS/Q2xd88Oyp3X39SlDK1A7vtXroV6ymrEtbhykfTcHcDXNRZmo831rdB+DurN3QF+jx9OanMek/k3DH2un4/NjLyK5wPDeiq+fPLM9sdj/rhYU4ACBcHQ4JUqO/W3OunOPyec3C7PTXQcGCGBEREVHAySxr/nult3iq55mjY7/767uY+fVMbMnY0qpCXSdFJ9w68Fb8ecSfG10fyiU5HrjiAfvt0XGjoZKrEKoOglqhcvgjemtGVtUtoNBRuF15KS8vx9dff43Vq1dj27Zt6N27N2bOnInPPvsMffv29UaMdp9//jnmzp2Lt956C+PGjcPKlStxzTXX4NixY+jRo4dXz+3POms6I68qz9dhtBkBAYPFgHk/zmsw5vrSVTIvtfb4WuzO2m1fmbROXe8ub49Fb4kyY21RpMJUgSBFkMu9qByRQYa4sDi3HvPyzy87/UBJPZ/aaL62S3lj+GdKeopXP+hcJ1Bjc/whqJCUrT5D3aIch88fhlVY0S20G0bHjcY3x79BgcH5yqpWYUVlTSWe2/ocfj73MwzmaphtZhwRh5Beegh3Dl6I2NB+LYpr+d7lLvXYE7CixFT7N6rKDCjlSlhsDXtwLp60GJ8f/bzJRR6aYrV5rlBf98738OKkREREROSGhPAEX4fgNXULDDiilqsxotsIZJZmosxUZu+8IIcckACFTIHkfsm4Glfjvqvvg1KpRLQ2Gu+nvo8SYwk6BXXCvcPvxeJJi+3HnDVkFk4WncTJ4pMwWbwzNNZgdn3qm/bA7QJaTEwMOnXqhBkzZuCFF17AFVdc4Y24mvTaa6/h3nvvxZ///GcAwLJly/Djjz9ixYoVePFFx/PntHfXJV6HD1I/8GrPL39ksplw37r77AUxq7A6LYQJCORV5uGFXS80KKDV9e7y1pBMCRKGxgytHdNvc+8Pl1apxet7Xsdveb/BbDNDDkWjFVfdiUMhU2Bs3Fi3Hpdd7ni11To/nv7R4eqe+gI9/vztnxusjPr5kc/x3vXvOSyiuVLM/DX3V78tfNankgchu+Jki4tUK/auwBObnmhQPC2sLsTR/KMuFRAFBHIqcpBflY9CQxGEEJDLlLAJE9JLf8POc2vxfwOecDuu7IqT2HXW+QpJDeIQAnKZAnJJgtVmbfLDdlCXQcg3FMBsEbCIGpisLf1A9u/XBBERERE1ltQ7CV20XZBvyPd1KG3OYrPg/evfx6b0TfbJ+8+UnkFxdTF6hvfE3cPuxu97/x7r16+3P2bxpMUNCmaX0kXrsHjiYmxK34QXdr4Ag8XzxS5PTTMUKNwqoAkhsHz5ctxxxx3QarXeiqlJNTU1OHDgAJ588skG26dOnYqff/65TWPxN/NGz8OOzB04UXTC74sJnpZXmYf5W+bjw4MfYlvGtmYLKjbY8Fvebw22eap3lyPh6nCs/uNqPLT+IWzJ2OJWjspN5Xhr31vIr8qHxVo7j5SwARKEw3mnZJBhSu8pCFeHY93JdbBYrRCo7V2jkCncfo24sn+1pRqb0jc1WRD7y7d/wc9ZF9+jNdYa7M3e67TX2sbT67Fs37soNGThs+N98ZcRf2o0OWWFqQIyyFyaA81XZFBAIVPhcMGuFhXQsitOYsnP85t8bbrT+y6rIgtySW4vstdN4m+xWbAr6ytEBEVhcPR4t2I8XLATRovrcx3aYIEcckgyCRBSk0tmW4UVZmsNTNYaNDehv0aucXhf/Vfsl/pX8diWL1FoKIZWGY6JPf4Pt+gec/IIIiIiIvIFXbQO2+7ehgFvDfB1KG1OISmgi9Y5HaVjNrs/b1rdMdccX+OVUWsRmgiPH9OfuV1Ae/DBBzFx4kT069ey3hQtVVhYCKvVipiYmAbbY2JikJfX9AvBZDLBZLrY46e8vBxA7QuvJS8+T6uLobWx9I3oi5cmvYSbvrzJE2E14s+9fGyw4XD+YeiLXJ/HrNpSjUO5h6CLqv3jZLFaIJNkrerd5Yharka/yH7oG9EXVTVVbrdjpbkSaUVp9tvWC0MFHVX6JUiICY7BP6f8Ew9veBgRQRGwWCVU1lRALpMgk4DU3FS3XnNKSdls70absGF/9v5Gx33whwfxU9ZPDbbVLQyxNWNrk3F8f/J7PLl5HvIrC2ATVmRVHMfOs9uwaMIi3D/yfvt+FqsFkiR5vfbh7utfDjlkkgIKmQJWYYNNWJFReth+v0Dte77BypX1Ju2q3yY7zq1BsdH9RR+a0jCHteezwYJSYwG2Zn6G40V7cEv/x5osolmttka5yig74tb5xYXVOGGTQZIkCCEaHbPSVAmLzQKZpIDN5vy9WF5Tju7/6o7S6lJEaCJwz9B7MKhz7epG4kJ7Pr1tOjLKL7Z9jcmItSeXI7fqDB6+/N/281ssVvvj/OGzoa156rOIvIt58i22f+BgrvwT8xI4fJ2rvhF9UTtVuz9M1eJYZFAkSo2lHptSpn9U/2bbvDW5GdVtFLZnbPfodb0MMlzb99qAf1+7E79bBTSZTIZ+/fqhqKiozQtodaRLJqkRQjTaVufFF1/EokWLGm3fuHFjm/egcyYlpfWrjXir66QCCkSrolFcUwwT2n5JYVfYYHNrEQABgcXfLMas7rUrmOafz4fNYoNGEQKTzQjJJlDjqedqAxKsCVi/fj1O5Z/yzDHhvFdYuAjHmb1nUFRUhGpTNYQkrx06JyRUWypxKv8UVq5Zifig+GbPc854DjLR/FojNmHDybMnG3Qp/qHgB7yT/Y7Dx5RVlzXYv87CkwuRW5UNa23JBRACJcYSPLnxSZw/cR5XhNcOG8/MzbQXSrxJK9OiylbV/I4X2CCguDAkWAYFbLDAaL34eKvFgvXr18PUuScQ3BkAYKqpAeS1c6WtX78e6DESAHCkwPuLpNhgQU7lKZQZ8x0O5zxxIg1n9l/4oeJCbMXV7v+CZRFmqGwKWGBBTUVNo/xnns+EsAoISTS7MlFGWYb939WV1Xjpp5dwQ78q3KJ7DGWlZXj/+JIGxbP6dud8i6vybkLRiUp8e/5bHDYcRY0k0F3TEzdETLK/xjoaT3wWkfcxT77F9g8czJV/Yl4Chy9zdc/gf+DDw8/47PyumN1tNr4+/zXOVp+FSZhaNSpGAQWSg5ObvDZqSktyE2+MR8+gnjhjPOP2Yx3RyDQYahzqctz+ymBwfWir23OgvfLKK3j88cexYsUKDBo0yN2Ht1hUVBTkcnmj3mb5+fmNeqXVeeqpp/DII4/Yb5eXlyM+Ph5Tp05FWFiYV+N1hdlsRkpKCpKSkqBUtn6icemgZ3uKySU5tEotrh1wLVYfXY1WrLTrd36r+Q2fTv8UAPDBlx9AZpShxmqGShYESW5BjdkzBbQwTRievfFZ6KJ0CDodBKmiLkcSZJDB5uHhhwICCq0C06dPx89bf8a7qe/CaDbAagOsogYSAKNkxOLMxbW91UJj8Jfhf2nQs6u+N/e9iYhzETBUOf+jIiAQ3SUa06dPt2979r1nnT7GAgtEP4Fr+13bYPt9y++D9UL5rD6DMODDgg8Rc1kMtmRswfHq420yfHNMjzHYnrkdZtH8G0AGGeSSAhZhhlySQ8AGm622F1oduaI2P3vPleFsWe0QSJVKhRpr7fOdPn06vjpyHgCQWXbcC8+oMaswo9xchB3nPsf4+NqerOtPv4djhT/DbDPhsshE/H3cHFzb79p6sR1rwZkEzDAjWhuNob2GNni9AMDz559HtjkbNgG4mtq6HoI22LAp8xPconsM4eHh2HH2S6eP++bEvxEdrMT+0v0X5j+UUGrMR7E5E5dffnmj12V75unPIvIO5sm32P6Bg7nyT8xL4PCHXBmO1P5guznjvzBaCyEgUFpdCouwOLzelSBBo9BArVB7fWXIIHkQFty2ADMKZ2DLmS3ILMtEkDwI+/P2I78qH8cKjrk1v/afhv8JC65Z0Ox+rc3N7wp/h6HvDHX7cY7ERsTivj/c57Hj+UrdSEVXuF1Au+OOO2AwGDB06FCoVCpoNA3noSku9sxwo0upVCqMHDkSKSkpuOmmi0MVU1JScMMNNzT5GLVaDbVa3Wi7Uqn0qz/cnoqnW0g35FTmNLufHHKEB4U7HRqmlCmhVWpxZeyVeGTsI/jfif+1aoUNlUwFjVKDnuE9cX3i9dh8ZjP2Ze+DRVggQYJMkqFLcBeMix+Hr/Vfe311xVOlp/Bj+o9ITkyGQq6AXCaHwiaDWdQgWBHksWJh1+CuGNJtCACgf3R/ZFdk1z5fyGqneBK1f4AjgiKQX5XvkeddZCyCUqnE3cPvxufHPkeJsRT1xzlWW6pRbamGQlKg2FiMp7c8DYVMgdmjZjc61hdHv3BprLwECUarscHruLnFBwQEHvzhQSRGJzYY62+1NS6e1cmpzMETm56AQqZwafXH5qhkKtTYnPdenDN6DgwWA/Zl73NaRJMgQa1QQy0PgtlaOwm+QlIBkoCs3hLTEmrf8zLZxZ59tb1oa59zXRt+qX8VFtG2vT4raorx5fFXUVKdjzNlh2C58Hz35OThr98fxQfXf4CUM4fw1fHXUGEuatE5bLWT+CE+PL7R370ITURtQUy4/j6o/1qprKn9srTu9CqYhfP52c6WH0FmmbVeTmuPdL7yPN7a/xZuHHCjyzG0F/722UhNY558i+0fOJgr/8S8BA5f5yqp151I6nUnbhseB6B2VfpVB1fhYN5BZFVkwWazQZLVXleFqkNxU/+bEKoORUJ4At5PfR+Hzh9q8ppCJVNBBhmMNtfn8gUajvjqGdETSqUSQ7oNsV/rAbWLp21K34Rntz6LClOFS9d2EiQMihnkVlu3NDdDug2BVqlt9cqZEiQEKYKgkCnaxfvZnefgdgFt2bJl7j7EYx555BHMmjULl19+OcaMGYN33nkHZ8+exf33N917pqOZP34+/vbD35zuo5AUmNRrEpZNW4bff/J7e5FDXPgfAKgkFcb1GIcxcWNwx5A7oIvWIUwVhkJDYYt6uCmggOnZhoWA2wpuw7Ldy7A1YyuMFiP6R/XHw6MeRp/IPjhZfNLpEr+ecufaO/HRTR/BKqyosdbAdGFidU8uJlC/yDNn1BzszdqLipraP6aSkKCQFAhTh6FXp14em9TRaK79MNBF6y78oW86Z1ZhgwwSqsxVeOXnVxoV0NalrcOenD0u5VwuyRtNCh+kCGr2cdmV2fjk0CdYMnmJfVunoE4orC50+Bij1eiwd5IECd1CuuH6xOvx9oG3nZ47NjQWb1/7Nu785k6Hv1JFa6ORnJiMPpF9sGz3Mryf+r7T+eAUkgJm28VJ8K0wQy4pG/RAc9UP6R+4/ZjWsgorzpUfR15VJkS9RhYACg2FeOiHh5BbWQCT1fUhrZeSJAkquarJ11VsaCzUCjUMLfzVUMCGlDMf4XP9S83uW1s4bfylxgorDp0/1KLzExEREZF3JCcm2xcVqyumZZRl2FeorL/gWK+IXrhv3X0ori6G2WqGFVZIkNAzvCceH/s4ADR73QzUXgtUmCpgsVnsc/gGKYLw8KiHm9y/bsL+w/mH8d9D/3Vp1UsZZMgsy3SlCTzi2r7X4iv9Vy0euRYkD0KEOgJWWDGgSwdc7MHdB9x1113eiMMlt956K4qKirB48WLk5uZi0KBBWL9+PRISEnwWkz+ZPWo2Hk15FNWW6ibvV8qUuGfYPZg7ei500TpM6zsNnxz6BFZhtQ+DUkgKzBoyC29f17D4MLTrUBQaClFWU+Z2XF2CuzTapovWYeV1K5vcf/UfV2PB1gXYlrkN1ZZqxIbGYs6oOVi+d3mDCfVbq8RUgod+eAgRQRGosdZN6i4Am+fmkys0XCwEJScm46XJL+H5nc+jpLoECrkCUZoojOw+EpGaSOzO2u2RIbhqxcVel7kVuQ73E/UGkJ4rOwd9gb5BT7D5W+e7HE9T8xDGh8W71CNyc/rmBgW0hIgEnCw56dJ5G8UBCT0jemJF8goAcFpEe/vat5GcmIyf/vQTxn8wHkXGhj2qtAot/jrirwAuvl47azvjxV0vNnk8AQGlXIkqcxVkkgK4MFTXJqwwOXhPXur9357G/Rv+h4qaytr539qYBKDAkNWgeFZHQDSYd8wRBRSwXfhfU6zCir6RfZvsQTii2wh8edT50Es55E6H7m5I/wDVFlcKfI7bt7leiURERETkO/WLaY7uX4mVTotsj258FNVWx9/Ru2i74P3r38e5snNYeWAlcitz0S2kG+4beV+TI3fqmzd6HjJLM7ExfWOzz0Wj1KBnRM9m9/OURRMXIbsiG/ty9sFsc2/YlVySIz4sHlWWKoSrwnHXEN/VhnzF7QIaAJw+fRoffvghTp8+jeXLl6NLly7YsGED4uPjMXDgQE/H2MDf/vY3/O1vzVeLO6rkfslNDoEMkgfhtamvNXiz172xjxQcgcliglqhxqDoQZgzek6j494z7B4cLTiKiiLXuqLWP+91ide59Rx00Tp8MeOLRtt/TP8RGSUZMNk8N6wtvyofBYYCWC788ZBB5tKCDBqFBqGqUFhtVhQbix0WmozWhl2DZ4+ajat7XY1N6ZuQWZaJhPAETOk9Be+lvocgRZDD4qc7hnS92I3YlXm7gNpeN/M2zMOGWRsA1P6q89v535p9nAQ5ZJIEm7BBIVNAX6DHc1ufw7aMbSiudm0496U971q7MIDlwuqNK5JX4ONDH6PK3LiYolVo7R+gumgdVt24Cs9ufRZZFVlQSAqEB4VjcJfBuH3I7Q0eN2vILLy862WH7wFJkiCX5LDYbMCFX6kgSTBYmh9X/9jmScipalnhsP7zejXpVZd+UWuKBBksonXFo9jwWKhlapwoOdHk/QIC+kI9roy9stF9Sb2T8IjlkSYe1fDxtfMHNs6BBAlF1TmtLj7666rDREREROSa5opsw7oNc9iBYVjMMKz+42p754LmCmaX0kXrsGzaMizYugBf6h3/OCxBwtCYoZjca7Jbx28NXbQO713/Hjalb8LqQ6vxW/5v9mtQlVyFrsFdYbFZcL6qdt5jmSSDEAIKmQL9o/pDLpNjSPiQRgXJjsLtAtr27dtxzTXXYNy4cdixYweWLFmCLl264NChQ3jvvffw1VdfeSNOclFdRfm387/BZDFBJskQGxqL1695vdELvO6NfWkxp34vpDp1j31s42NIK3atF5hKpsLvEn7XZEGuJWonZffsha3BYrD3vgNqV/SUIDXby2Vwl8HY85c9AIDQF0NRWdP0sM9gZXCjbXVde+tLCE+AWq6G0WJs1XOUQYaHrnjIflslV8FocW18/8b0jVixdwXiw+Pxp2//5MK5antZSQDkMgWyy7Mx7oNxbk/aabZcLPLpC/RIzUt16/H12WBDiCrEfvuR0Y9gyc4lDYotMsjw6JhHGzyubphmc++Fi8NimxasCkZlTWXtIgi22h5ociFzNIrWbuWvT7lcPJMgIS40DuerzttXIbYKKzQKDeaNnofZo2bj75v/joqaCpeOV58n3l/T+k5DpCYSL+16yeHxyoxlTd6ni9ZBqVDCanH83nNWwBcQsNlav7BEdU11ox6ZRERERNR+PH3V0/ZhnlZhhRACaoUatw++3T5iqzXqOoWs2LsCC7YvQIGhoMH9GoUGyf2SsWjiojb/zll3PfrQlRevG+vmb6u7FiqoKsC3ad+61fOuI3C7gPbkk0/i+eefxyOPPILQ0FD79okTJ2L58uUeDY7cV7+i3FxRrG5/V9+wdUWGIW8PsffycUYlV2HZtGUe+4MQqg516wJfggSlXIkaq/MeNfWPKSBgERYoJSVUUKFaNO4RplVoGxRpuod2x4mipnvbTOw50aVYk3on4YPUD3A0/6hbK7Zc6uYBNzcolE7oMQE/pv/o0mMFBJ7f+TxGx41u9Ae+KSq5CjZhg0ySwSrMOFd+rtWLICzYusDp4hauGBM/xv7vxZMWAwDeT30fJcYSdArqhHuH32vfXp+r7wVJkposiEmQ0CmoE7LLs2EVAnVDBG0AymucP6ctmZ83e946fx35V7yd/LbTuR+m9ZmGNfo1bq9S2tqeW7EhsZhzZW3B/P1f30e+Ib/J/UwWk8NFIOLD4nGyuOU98Sxo/fBLi7A0mpuPiIiIiNoPV4Z5esLsUbMDovDU1LVQU9dMHZ3bBbTDhw9j9erVjbZHR0ejqKhlq7KRZ7lTFGvJsaO10citdDy3Vh0bbB6NY0S3Efjvof82u58MMoyOG40QVQjOV51HenE6Kszu9cYRQmB85HicsJ7A2bKzAGoLJ2q5GhGaiAZFmrmj5uKxlMcaTRLZO7w3Fl690KXz6aJ1eH7i83gs5TGcLj7tVhFNLskhl+S4vPvljc63dNpSDH5rsMuFlJzKHPx87mcXz6kAhBU2YXF7/Lwj60+tb9XjJUi4fXDDYZeLJy326B//2LDYJif67B7SHSq56kIPtYbtXVB9FilnPkJSrzsbPe7XvE1urbZZV6By1i190cRFyKnIwZH8IxcXrYCEaG007ht5H24bfBs+OfQJPkj9wGOrvwLA28lv29/z88fPx8M/Nj3BqlmYHc71cPOAmx3OM9dW5JIcu7N2+zQGIiIiIvKu5oZ5El1K5u4DIiIikJvbuHiSmpqK2NhYjwRF/i35smRoFBooZUrIHLyEJEhNDl9sjaTeSU5XQKwjl+S4uufVWDZtGe4dfi86aTq16HzXdbkOS6cuxeCYweis7YxobTTiw+MxNm5sgyLN7FGz8WrSq0iMTESIMgRRmijcorsF625f51YBMTkxGWtvXYsnxj3h8mNCVaHoHdEbdw+7G+9d/16TQw67hDRexMGZ5lYDjQyKRKQmEjVWI0y2apeLZ46GPtY9Xl+gb3K+MndM6zPN612g/z7279AqtJAg2efM0yq0eGb8MwhWBTssfn51fGmT29//7WmXz62UlC49P120Du9e/y7+MekfmDdmHl6f9jqO/u0ozj9+HosnLYYuWoclk5fgqfFPQS6Tu3x+Z9RydYMvIPePdL46sqO5HmYNmQWZ5PZHk8fIIUeQIojzoBERERERUQNu90CbOXMm/v73v+PLL7+EJEmw2Wz46aef8Nhjj+HOOxv3rqD259LFB8pN5TDbzPaCAqTaYsnEBNeGL7pKF62DQqZovmAjASaryd4T7+NDH+Ns+Vm3ziVJEuKD4jG933QkRic2OyTWU11z6wob//z5n06fpwQJw2KG4b9//G+zBZXOms7Ir8x3ezhfU5SSEvddfh8+Pfwpig3Fbg35c1SQKKkuwbq0dfg5q/meb87cOuBWfHbLZ606hivq8tzUajznKs5hW8a2Jh9XYS5EdsVJJIRfZt/2/m9Po8TUfG/OOgNjXF+kxZWeqEm9ky6sPtt6TQ1XDpaCUSUaF0XDVeFOh5V7o3ZVf65DZzRKDULVoRgbN9bzQRARERERUcByu4C2ZMkS3H333YiNjYUQAgMGDIDVasXMmTMxf/58b8RIfubSxQfUcjXWn1yP9NJ01FhqoFKoMCh6EBZOXOjxc0dro5FTmQMZ5LA5KAhZbJYGw8OCVe73hFMqlPZ/e3NIrCPBqmCUGksBNL7wj9JEYWLPiS5PONk1tCtOFZ+C1dr6AtqTVz2J2wbfhjf3vumRghwAWGDB/K3zoZKr3H6sBAkKKPDo2EfxYlLbDftzVDCdNWSW0+GH60+/j9kjXrbf3nXua7fO+4+r/+HW/s3RReuglqsbDT921/CY4Xjt96812n5t9LX4Ov/rBq8VOeR4+Mqmh3YCtT0RXVkJ112dNZ1RWF3odJ9gZTBiw2KbXIGViIiIiIg6NrcLaEqlEv/973/xj3/8A7/++itsNhuGDx+Ofv36eSM+8lOXFpXuGHKHywsXtMa9w+/FSz+9BGszK+3VHx42Jm4Mtmdsd2tIVrQ2usUxekJSrySsOb4GNmGzFxNkkgx/6P8HfDHjC7eOFRsai0hNJHIqc1oVk66zzj6XmNnqmTnP6hwvPI4uwe4NNQVqe7Vp5VrcNug2j8bTUrpoHTQKjX0p6EvpC+v1spMAk63p/ZrSRdvFK3M0DI0Zil+yf2nx40OUIQ57Qs7sPhN9+/XFqt9WNbuIQ52U9BSEBYW5vZqrMyO6jkCkNhKb0jc53EeChFsG3IIR3UZ47e8XEREREREFLrcLaHV69+6N3r17w2q14vDhwygpKUGnTi2ba4oCX1v10qq/qmL9glD9XlrdQ7o3iGXWkFn4995/o7ym3OXzDO0y1EMRt8yiiYuQXZGNI/lHUGOtgUquwqAug7Bo4iK3jzWi2wiknE5pdUz1V1719PxQJqsJFTVNL/RQV0B0dE6VpIIuyn+KHcn9kvGl/ssm76u2XHyOGSVpcHWsolahxcIJCz0QXWNPj38aN3x2Q4sXEpg3ep7T9/7CCQuxZIrrq1lmlmViZLeR+PncblRbqiGTAJuwtfg1J0HCJ3/4BKeLT+NAzgGHhbn7Rt6HFckrWnQOIiIiIiJq/9yeqXnu3Ll4//33AQBWqxUTJkzAiBEjEB8fj23btnk6PqJGFk9ajOxHs/HWNW/ZJ3Ov+1/dZO716aJ1+L9B/+fWsLBJvSZ5Omy36KJ1eO/69/D8pOfxwKgH8Pyk55tcJMAVSb2Tmh265gqj1Wj/d5g6rNXHu1TdkNVLyaXaSd0dqXajF1dbWDRxEdRydaPtEiRoVeH22xtOfwEJTU/gL4ccvcJ7oYu2C4Z2GYpXk1712vLXyYnJiNREtuixQYogjy9vnRCegDB1GK5PTEZiVD9Ea6PRLbRbi4d1qmQq6KJ1SE5Mxkc3foShXYZCXq/dw9XheHb8syyeERERERGRU273QPvqq69wxx13AAC+++47pKen4/jx4/joo4/wzDPP4KeffvJ4kERNcTaZ+6Xmjp6Lb45/g3xDfrPHVUpKTOw5EWfyz3g8Znd4qlefLloHi7XplSHdPU6dIV2GYHPG5lYf0xWSJCFEFeJwWKSrq4C2FV20DlfFX4UdmTtgFmbU9aFTyNToHtLXvt9PWRsdLsLwxjVveK1g1pRh3YY5Hd7oiEau8XgsSb2TcCT/CIqrizE2bizKTGWI1ERi9eHVLVqltf4qo1yqnIiIiIiIWsrtHmiFhYXo2rUrAGD9+vWYMWMGLrvsMtx77704fPiwxwMkcmb2qNk4OPsgzj9+HgdnH3RYdNBF6zA2fmztKqHNmNx7sl8NCfQHEiQ8dMVD9tvX97++RcdRSIoGvX9coVFoYDA7nuReIWvxSHSvGRU3Cp00naCSaSCDDDJJDhlkCFdF2ffJrTyHpoZwhqnC2rR4BgBzRs2BUqZsfsdLqBWNe9q1li5ah3mj52FCwgR00nTChIQJmDd6HnpF9GrR8XpE9PBwhERERERE1BG5XUCLiYnBsWPHYLVasWHDBkyZMgUAYDAYIJe7d2FM1JYm9prY7DxPQfKgJlcTDHQhqpBWPX7GgBkNeu4k9U6CQnKvcCWDDIO6DHL73D3De6LGWuPw/qh6RSl/opApIJfJIJMUACSYbTXQF+1GVsVJ6Av0MFgqm3ycpxdocEVyYjKeHPek28XNIV2HeCUeXbQOD135EF6d+ioeuvIh6KJ1uC7xOkRro6GULq7WKoccuigdlFLTxT+VTIWHr3C84icREREREZGr3C6g3XPPPZgxYwYGDRoESZKQlJQEANizZw/69+/v8QCJPCWpd1Kz+8SHxbfL1fd+3+f3kEuNiyMjuo5w+ri6+aE+u+WzBtt10TpEBEU4fNzY+LEYGzcWYeowBMmDEKYOw+i40fjHxH/ACucrqF7quv7XwSYcFz6vCLvCreO1BZPVhBBVCMwWEyzCBJuwQMCGQkM2dp5dg48PfQxHCwi0dK6v1lo8aTHeuOYNdA/pDo1cg1BVKGJDYhEkb3r+uS7aLg16JXrbrCGzMCFhAgZ00WFQ9CAMjRmKm3Q34esZX2P5tOXoHtLdvq8ECbGhsVj2+2Vt3puPiIiIiIjaJ7fHPi1cuBCDBg3CuXPncMstt0Ctrh3CI5fL8eSTT3o8QCJP0UXrIIfcaQEnPjy+DSNqO4smLkJORQ6O5B+B0WpEkDwIg7oMwrvXv4vBbw1u0CZ1K5oqZUqUPlnq8JjDug3D9jPbL8zzdVGQPAhPjXsKfSL7YFP6JmSWZSIhPAFTek+pzYEkh1W4VkRTyVS4ffDteGHnCw73mRA5waVjtaWE8ATkVuTCgtq552pXkBQwCyMO5Kbg13zHCx9oVdo2irKx2aNm4+peVzfIW6+IXvjuxHdYd2IdSqpLoJArMLjLYDx11VNtOp+YLlqHxRMXN/ma0kXrWCgjIiIiIiKvatHkQTfffHOjbXfddVergyHyttFxo/FTluOFLlRylcP7ApkuWod3r3+3yeJDXHgcMssyAVwsngFAXGic02POGTUHp4pOIb8qHzXWGtiEDUGKIDw65lF7YaWp3nyRmkgUGAqajVkGGcb3GA9dtA4hyhBUmCsa7aNVaBEf5H9Fz6TeSXh0w6NN3ne28rjTx47o7rxXoLc1tXiFv0y876mFNYiIiIiIiNzVogLa5s2bsXTpUuj1ekiShP79+2Pu3Ln2+dCI/NW717+LAW8NcHj/mRLfrrzpTY6KD38f+3c8lvIYqi3V9uGDGoUGj4993Onx6ooqqw6uQkZZBnqG98Tdw+5utthy/8j78eKuF2ERzlcG7RrSFTfqbgQA/L7v77FGv6bBHHYyyHBN32ucHsNXdNE6SJLkaJSmU205LJKIiIiIiIhc43YB7c0338S8efNw8803Y86cOQCA3bt3Y/r06Xjttdfw4IMPejxIIk/RResQJA+C0Wps8v4SY0kbR+R7dUPfVh5YidzKXHQL6Yb7Rt7n0pC45MRkt3snLZ60GADwj53/cLpfZU0lJveaXPuYiYtrh6AWHEGNpQYqhQqDogfhud89hzN7/bPoGaQMgrnGvQUBorXRftPbi4iIiIiIiC5yu4D24osvYunSpQ0KZQ8//DDGjRuHJUuWsIBGfq9HRA+cKDrR5H3dw7o3ub29mz1qdpvOIbV40mKs+m0VzpWfc7hPtaXa3mNOF63De9e/12gIat+IvjgD/yygDeoyCL9k/eLWY/6g+4OXoiEiIiIiIqLWcHsVzvLyckybNq3R9qlTp6K8vNwjQRF509xRc6GSNZ7rLEgehL8O/6sPIuqYuoZ0dXq/1dZwoQFdtA4PXfkQXp36Kh668iG/nwvr6auedmtFTQkS5lw5x4sRERERERERUUu5XUC7/vrrsXbt2kbb//e//+G6667zSFBE3jR71Gws+/0ydA/pDjnkkEtyxIbG4rWpr3ElvzY0pbfzOROVMmUbReIdyYnJmDFghsv7zxgww++LgkRERERERB2VS0M4X3/9dfu/dTodlixZgm3btmHMmDEAaudA++mnn/Doo02vOkfkb9p6yCI1NmvILPxw8gccPH+wyfvbQzHps1s+A74EPj/2udP9QpQhtfsSERERERGRX3KpgLZ06dIGtzt16oRjx47h2LFj9m0RERH44IMPMH/+fM9GSETtki5ah9V/XI2/fPsX/JT1k327BAlR2ij8Y6LzRQYCxWe3fIbyT8rxw+kfmrxfDjk+/eOnbRwVERERERERucOlAtqZM/45STcRBTZdtA677t2FdWnrsOrgKmSUZaBneE/cPezudrUa5fo71mP2utl458A7sMFm3x6jjcF717/Xrp4rERERERFRe+T2Kpx1CgsLIUkSOnfu7Ml4iKgDSk5MbvdFpBXJK7AieYWvwyAiIiIiIqIWcGsRgdLSUjzwwAOIiopCTEwMunTpgqioKDz44IMoLS31UohERERERERERES+43IPtOLiYowZMwbZ2dm4/fbbodPpIISAXq/HqlWrsHnzZvz888/o1KmTN+MlIiIiIiIiIiJqUy4X0BYvXgyVSoXTp08jJiam0X1Tp07F4sWLGy04QEREREREREREFMhcHsL5zTff4NVXX21UPAOArl274pVXXsHatWs9Glx9S5YswdixY6HVahEREeG18xAREREREREREdXncgEtNzcXAwcOdHj/oEGDkJeX55GgmlJTU4NbbrkFs2fP9to5iIiIiIiIiIiILuXyEM6oqChkZGQgLi6uyfvPnDnj1RU5Fy1aBABYtWqV185BRERERERERER0KZcLaNOmTcMzzzyDlJQUqFSqBveZTCY8++yzmDZtmscDbA2TyQSTyWS/XV5eDgAwm80wm82+CsuuLgZ/iIUaYm4CA/Pkv5ibwMFcBQbmybfY/oGDufJPzEvg8Ldc+Usc/sDfctNeuNOekhBCuLJjVlYWLr/8cqjVajzwwAPo378/AODYsWN46623YDKZsH//fsTHx7csahetWrUKc+fORWlpabP7Lly40N5zrb7Vq1dDq9V6IToiIiIiIiIiailDj5H2f2vPHvBhJNQRGAwGzJw5E2VlZQgLC3O6r8sFNKB2mObf/vY3bNy4EXUPkyQJSUlJePPNN9G3b1+3AnVU4Kpv3759uPzyy+233SmgNdUDLT4+HoWFhc02TFswm81ISUlBUlISlEqlr8OhepibwMA8+S/mJnAwV4GBefIttn/gYK78E/MSOPwhV18dOW//982DGi9i2FH5Q27ao/LyckRFRblUQHN5CCcA9OrVCz/88ANKSkpw8uRJAEDfvn0RGRnZokAffPBB/N///Z/TfXr27NmiYwOAWq2GWq1utF2pVPrVC87f4qGLmJvAwDz5L+YmcDBXgYF58i22f+BgrvwT8xI4/CVX/hCDv/GX3LQX7rSlWwW0Op06dcKoUaNa8tAGoqKiEBUV1erjEBEREREREREReUuLCmi+cPbsWRQXF+Ps2bOwWq04ePAggNoecCEhIb4NjoiIiIiIiIiI2q2AKaA999xz+M9//mO/PXz4cADA1q1bcfXVV/soKiIiIiIiIiIiau9kvg7AVatWrYIQotF/LJ4REREREREREZE3BUwBjYiIiIiIiIiIyBdYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInIiIApoGRkZuPfee9GrVy9oNBr06dMHCxYsQE1Nja9DIyIiIiIiIiKidk7h6wBccfz4cdhsNqxcuRJ9+/bFkSNH8Je//AVVVVV49dVXfR0eERERERERERG1YwFRQJs2bRqmTZtmv927d2+kpaVhxYoVLKAREREREREREZFXBcQQzqaUlZUhMjLS12EQEREREREREVE7FxA90C51+vRpvPHGG/jXv/7ldD+TyQSTyWS/XV5eDgAwm80wm81ejdEVdTH4QyzUEHMTGJgn/8XcBA7mKjAwT77F9g8czJV/Yl4Ch7/lyl/i8Af+lpv2wp32lIQQwouxOLVw4UIsWrTI6T779u3D5Zdfbr+dk5ODCRMmYMKECXjvvfdadPzVq1dDq9W2LGgiIiIiIiIi8gpDj5H2f2vPHvBhJNQRGAwGzJw5E2VlZQgLC3O6r08LaIWFhSgsLHS6T8+ePREUFASgtng2ceJEXHnllVi1ahVkMucjUJvqgRYfH4/CwsJmG6YtmM1mpKSkICkpCUql0tfhUD3MTWBgnvwXcxM4mKvAwDz5Fts/cDBX/ol5CRz+kKuvjpy3//vmQTE+icEf+UNu2qPy8nJERUW5VEDz6RDOqKgoREVFubRvdnY2Jk6ciJEjR+LDDz9stngGAGq1Gmq1utF2pVLpVy84f4uHLmJuAgPz5L+Ym8DBXAUG5sm32P6Bg7nyT8xL4PCXXPlDDP7GX3LTXrjTlgExB1pOTg6uvvpq9OjRA6+++ioKCgrs93Xt2tWHkRERERERERERUXsXEAW0jRs34tSpUzh16hTi4uIa3OfDEahERERERERERNQBND8O0g/cfffdEEI0+R8REREREREREZE3BUQBjYiIiIiIiIiIyFdYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJxS+DoCIiIiIiIiICACyK07icMFOFBqyUFAzCEm9k6CL1vk6LCL2QCMiIiIiIiIi39MX6LH+9LvQF+5Glbkc2zO2Y+nupdAX6H0dGhELaERERERERETkeynpKTDbyhEXmoiY4FgM6jIIxdXF2JS+ydehEXEIJxERERERERH5XmZZJnpHdoFGrkakVgVJkhCuDkdmWaavQyMKnB5o119/PXr06IGgoCB069YNs2bNQk5Ojq/DIiIiIiIiIiIPSAhPQGVNGWJC1VApZBBCoMxUhp4RPX0dGlHgFNAmTpyIL774Amlpafj6669x+vRp3Hzzzb4Oi4iIiIiIiIg8IKl3EjprO+NowVGcKzuHowVHEamJxORek30dGlHgDOGcN2+e/d8JCQl48sknceONN8JsNkOpVPowMiIiIiIiIiJqLV20DvNGz8Om9E3ILMvEsK7DMKX3FK7CSX4hYApo9RUXF+O///0vxo4d67R4ZjKZYDKZ7LfLy8sBAGazGWaz2etxNqcuBn+IhRpibgID8+S/mJvAwVwFBubJt9j+gYO58k/MS+Dwh1z1jeiLviP6NtjG145/5KY9cqc9JSGE8GIsHvX3v/8db775JgwGA0aPHo1169ahc+fODvdfuHAhFi1a1Gj76tWrodVqvRkqERERERERERH5MYPBgJkzZ6KsrAxhYWFO9/VpAc1Rgau+ffv24fLLLwcAFBYWori4GJmZmVi0aBHCw8Oxbt06SJLU5GOb6oEWHx+PwsLCZhumLZjNZqSkpCApKYnDUP0McxMYmCf/xdwEDuYqMDBPvsX2DxzMlX9iXgIHc+W/mBvvKC8vR1RUlEsFNJ8O4XzwwQfxf//3f0736dmzp/3fUVFRiIqKwmWXXQadTof4+Hjs3r0bY8aMafKxarUaarW60XalUulXLzh/i4cuYm4CA/Pkv5ibwMFcBQbmybfY/oGDufJPzEvgYK78F3PjWe60pU8LaHUFsZao6zhXv4cZERERERERERGRpwXEIgJ79+7F3r17cdVVV6FTp05IT0/Hc889hz59+jjsfUZEREREREREROQJMl8H4AqNRoM1a9Zg8uTJSExMxJ/+9CcMGjQI27dvb3KIJhERERERERERkacERA+0wYMHY8uWLb4Og4iIiIiIiIiIOqCAKKB5St28aeXl5T6OpJbZbIbBYEB5eTknAfQzzE1gYJ78F3MTOJirwMA8+RbbP3AwV/6JeQkczJX/Ym68o64+VFcvcqZDFdAqKioAAPHx8T6OhIiIiIiIiIiI/EFFRQXCw8Od7iMJV8ps7YTNZkNOTg5CQ0MhSZKvw0F5eTni4+Nx7tw5hIWF+Tocqoe5CQzMk/9ibgIHcxUYmCffYvsHDubKPzEvgYO58l/MjXcIIVBRUYHu3btDJnO+TECH6oEmk8kQFxfn6zAaCQsL4xvATzE3gYF58l/MTeBgrgID8+RbbP/AwVz5J+YlcDBX/ou58bzmep7VCYhVOImIiIiIiIiIiHyFBTQiIiIiIiIiIiInWEDzIbVajQULFkCtVvs6FLoEcxMYmCf/xdwEDuYqMDBPvsX2DxzMlX9iXgIHc+W/mBvf61CLCBAREREREREREbmLPdCIiIiIiIiIiIicYAGNiIiIiIiIiIjICRbQiIiIiIiIiIiInGAB7RIvvvgirrjiCoSGhqJLly648cYbkZaW1mAfIQQWLlyI7t27Q6PR4Oqrr8bRo0cb7PPOO+/g6quvRlhYGCRJQmlpaaNznThxAjfccAOioqIQFhaGcePGYevWrc3GePjwYUyYMAEajQaxsbFYvHgxLp3K7t///jd0Oh00Gg0SExPx0Ucfud8Yfsbfc2M0GnH33Xdj8ODBUCgUuPHGG5vcb/v27Rg5ciSCgoLQu3dvvP322261g79rD3nKzc3FzJkzkZiYCJlMhrlz57rbDH6pPeRmzZo1SEpKQnR0NMLCwjBmzBj8+OOPbreFv2vLXP36669ISkpCREQEOnfujL/+9a+orKxsNsbmPova6/uovvaQp0B+T7WH9t+1axfGjRuHzp07Q6PRoH///li6dGnLGsRPtYc81ffTTz9BoVBg2LBhLreBv2oPudm2bRskSWr03/Hjx1vWKH6qPeQKAEwmE5555hkkJCRArVajT58++OCDD9xvED/SHnJz9913N/k+GjhwYMsapR1jAe0S27dvxwMPPIDdu3cjJSUFFosFU6dORVVVlX2fV155Ba+99hrefPNN7Nu3D127dkVSUhIqKirs+xgMBkybNg1PP/20w3Nde+21sFgs2LJlCw4cOIBhw4YhOTkZeXl5Dh9TXl6OpKQkdO/eHfv27cMbb7yBV199Fa+99pp9nxUrVuCpp57CwoULcfToUSxatAgPPPAAvvvuu1a2jm/5e26sVis0Gg0efvhhTJkypcl9zpw5g+nTp2P8+PFITU3F008/jYcffhhff/11C1rEP7WHPJlMJkRHR+OZZ57B0KFDW9AK/qk95GbHjh1ISkrC+vXrceDAAUycOBHXXXcdUlNTW9Ai/qutcpWTk4MpU6agb9++2LNnDzZs2ICjR4/i7rvvdhqfK59F7fV9VF97yFMgv6faQ/sHBwfjwQcfxI4dO6DX6zF//nzMnz8f77zzTusax4+0hzzVKSsrw5133onJkye3rDH8THvKTVpaGnJzc+3/9evXr2WN4qfaS65mzJiBzZs34/3330daWho+/fRT9O/fv+UN4wfaQ26WL1/e4P1z7tw5REZG4pZbbmld47RHgpzKz88XAMT27duFEELYbDbRtWtX8dJLL9n3MRqNIjw8XLz99tuNHr9161YBQJSUlDTYXlBQIACIHTt22LeVl5cLAGLTpk0O43nrrbdEeHi4MBqN9m0vvvii6N69u7DZbEIIIcaMGSMee+yxBo+bM2eOGDdunOtPPAD4W27qu+uuu8QNN9zQaPsTTzwh+vfv32DbfffdJ0aPHu3ScQNRIOapvgkTJog5c+a4dLxAE+i5qTNgwACxaNEil/YNVN7K1cqVK0WXLl2E1Wq1b0tNTRUAxMmTJx3G48pnUX3t+X1UX6DnqU6gvqfaS/vfdNNN4o477mj2+QaqQM7TrbfeKubPny8WLFgghg4d6s7TDgiBmBtH52zvAjFXP/zwgwgPDxdFRUUtes6BIhBzc6m1a9cKSZJERkaGS8+5I2EPtGaUlZUBACIjIwHU9iDKy8vD1KlT7fuo1WpMmDABP//8s8vH7dy5M3Q6HT766CNUVVXBYrFg5cqViImJwciRIx0+7pdffsGECROgVqvt237/+98jJycHGRkZAGp/9Q8KCmrwOI1Gg71798JsNrsco7/zt9y44pdffmkQH1Cbv/3797er3NQXiHnqKNpDbmw2GyoqKuzPob3yVq5MJhNUKhVksotfBzQaDYDaoWWOuPJZ1BG1hzwF8nuqPbR/amoqfv75Z0yYMMHl+AJNoObpww8/xOnTp7FgwQKXYwo0gZobABg+fDi6deuGyZMnuzQlTqALxFx9++23uPzyy/HKK68gNjYWl112GR577DFUV1e7HF8gCMTcXOr999/HlClTkJCQ4HJ8HQULaE4IIfDII4/gqquuwqBBgwDAPvwoJiamwb4xMTFOhyZdSpIkpKSkIDU1FaGhoQgKCsLSpUuxYcMGREREOHxcXl5ek+euH9vvf/97vPfeezhw4ACEENi/fz8++OADmM1mFBYWuhyjP/PH3LjCUf4sFku7yU19gZqnjqC95OZf//oXqqqqMGPGDI8e1594M1eTJk1CXl4e/vnPf6KmpgYlJSX2oQO5ubkOH+fKZ1FH017yFKjvqUBv/7i4OKjValx++eV44IEH8Oc//9nl+AJJoObp5MmTePLJJ/Hf//4XCoXC5ZgCSaDmplu3bnjnnXfw9ddfY82aNUhMTMTkyZOxY8cOl+MLNIGaq/T0dOzatQtHjhzB2rVrsWzZMnz11Vd44IEHXI7P3wVqburLzc3FDz/80G4/h1qLBTQnHnzwQRw6dAiffvppo/skSWpwWwjRaJszQgj87W9/Q5cuXbBz507s3bsXN9xwA5KTk+1vgIEDByIkJAQhISG45pprnJ67/vZnn30W11xzDUaPHg2lUokbbrjBPjZaLpe7HKM/89fcuKK5/LUngZyn9q495ObTTz/FwoUL8fnnn6NLly4tOkYg8GauBg4ciP/85z/417/+Ba1Wi65du6J3796IiYmxf1609LOoo2kPeQrk91Sgt//OnTuxf/9+vP3221i2bFmTz6M9CMQ8Wa1WzJw5E4sWLcJll13mcjyBJhBzAwCJiYn4y1/+ghEjRmDMmDF46623cO211+LVV191Ob5AE6i5stlskCQJ//3vfzFq1ChMnz4dr732GlatWtVueqEFam7qW7VqFSIiIhwuiNfRtc+fUDzgoYcewrfffosdO3YgLi7Ovr1r164Aaqu13bp1s2/Pz89vVNl1ZsuWLVi3bh1KSkoQFhYGAHjrrbeQkpKC//znP3jyySexfv16+7C+uu6ZXbt2bVQpzs/PB3CxkqzRaPDBBx9g5cqVOH/+vP2XmdDQUERFRbnbFH7HX3PjCkf5UygU6Ny5s8vHCQSBnKf2rj3k5vPPP8e9996LL7/80uGCA+2Bt3MFADNnzsTMmTNx/vx5BAcHQ5IkvPbaa+jVqxcAtPizqCNpD3kK5PdUe2j/uuMMHjwY58+fx8KFC3Hbbbe5FaO/C9Q8VVRUYP/+/UhNTcWDDz4IoLYQIISAQqHAxo0bMWnSJLfi9DeBmhtHRo8ejU8++cSt+AJFIOeqW7duiI2NRXh4uH0fnU4HIQSysrICfuGHQM5NHSEEPvjgA8yaNQsqlcqt2DoK9kC7hBACDz74INasWYMtW7bYX4x1evXqha5duyIlJcW+raamBtu3b8fYsWNdPo/BYACABmOY627bbDYAQEJCAvr27Yu+ffsiNjYWADBmzBjs2LEDNTU19sds3LgR3bt3R8+ePRscS6lUIi4uDnK5HJ999hmSk5MbnS+Q+HtuXDFmzJgG8QG1+bv88suhVCpdPo4/aw95aq/aS24+/fRT3H333Vi9ejWuvfZatx4bKNoqV/XFxMQgJCQEn3/+OYKCgpCUlASg9Z9F7Vl7yVOgvqfaS/s39bxMJlOL4vNHgZ6nsLAwHD58GAcPHrT/d//99yMxMREHDx7ElVde2aIY/UGg58aR1NTUBoWK9qA95GrcuHHIyclBZWWlfZ8TJ05AJpM1KDgFmvaQmzrbt2/HqVOncO+997Yorg7Bw4sSBLzZs2eL8PBwsW3bNpGbm2v/z2Aw2Pd56aWXRHh4uFizZo04fPiwuO2220S3bt1EeXm5fZ/c3FyRmpoq3n33XftqdKmpqfZVRwoKCkTnzp3FH/7wB3Hw4EGRlpYmHnvsMaFUKsXBgwcdxldaWipiYmLEbbfdJg4fPizWrFkjwsLCxKuvvmrfJy0tTXz88cfixIkTYs+ePeLWW28VkZGR4syZM55vsDbk77kRQoijR4+K1NRUcd1114mrr75apKamitTUVPv96enpQqvVinnz5oljx46J999/XyiVSvHVV195trF8qD3kSQhh3zZy5Egxc+ZMkZqaKo4ePeq5hvKB9pCb1atXC4VCIf797383eA6lpaWebSwfa6tcCSHEG2+8IQ4cOCDS0tLEm2++KTQajVi+fLnT+Fz5LBKifb6P6msPeQrk91R7aP8333xTfPvtt+LEiRPixIkT4oMPPhBhYWHimWee8WBL+VZ7yNOl2ssqnO0hN0uXLhVr164VJ06cEEeOHBFPPvmkACC+/vprD7aU77WHXFVUVIi4uDhx8803i6NHj4rt27eLfv36iT//+c8ebKm21x5yU+eOO+4QV155pQdapf1iAe0SAJr878MPP7TvY7PZxIIFC0TXrl2FWq0Wv/vd78Thw4cbHGfBggXNHmffvn1i6tSpIjIyUoSGhorRo0eL9evXNxvjoUOHxPjx44VarRZdu3YVCxcubLAE7bFjx8SwYcOERqMRYWFh4oYbbhDHjx9vddv4WiDkJiEhoclj17dt2zYxfPhwoVKpRM+ePcWKFSta1S7+pr3kqan7ExISWtM0PtcecjNhwoQm77/rrrta2zx+pS1zNWvWLBEZGSlUKpUYMmSI+Oijj1yKsbnPIkfPI9DfR/W1hzwF8nuqPbT/66+/LgYOHCi0Wq0ICwsTw4cPF2+99ZawWq2taht/0h7ydKn2UkBrD7l5+eWXRZ8+fURQUJDo1KmTuOqqq8T333/fqnbxR+0hV0IIodfrxZQpU4RGoxFxcXHikUceaVBoCkTtJTelpaVCo9GId955p8Vt0RFIQlyYQY6IiIiIiIiIiIgaCdwJsYiIiIiIiIiIiNoAC2hEREREREREREROsIBGRERERERERETkBAtoRERERERERERETrCARkRERERERERE5AQLaERERERERERERE6wgEZE9P/t3L9KHGscx+Hv6lGIbGJ01bUI6YKICUhyBeksBMUmhYViZWeVwhRBG0sLsRRTBeJNBLPRIoUXEFAUEyV4Af4JwT2dh5zIcJqzm+jzwMLOOzD7e9vPzCwAAAAUENAAAAAAoICABgBwAy0sLGR4eLjZYwAA3Ailer1eb/YQAAD8d6VSqfD81NRUVldXc3FxkUql0qCpAABuLgENAOAP8+3bt6vvGxsbef36dT5//ny1dufOnXR2djZjNACAG8krnAAAf5j+/v6rT2dnZ0ql0i9r/36Fc3p6OuPj41laWkq1Ws39+/ezuLiYHz9+5OXLl+nu7s6DBw+yvr7+028dHR3lxYsX6erqSqVSydjYWA4ODhq7YQCAJhPQAABuiffv3+f4+Di1Wi3Ly8tZWFjI6Ohourq68unTp8zOzmZ2djZfvnxJkpyenub58+cpl8up1WrZ2tpKuVzOyMhIvn//3uTdAAA0joAGAHBLdHd3Z2VlJQMDA5mZmcnAwEBOT0/z6tWrPHr0KPPz82lvb8/29naS5N27d2lpacna2lqePHmSwcHBvHnzJoeHh9nc3GzuZgAAGuivZg8AAEBjDA0NpaXln/un1Wo1jx8/vjpubW1NpVLJyclJkmRnZye7u7u5e/fuT9c5Pz/P3t5eY4YGAPgNCGgAALdEW1vbT8elUunatcvLyyTJ5eVlnj17lrdv3/5yrd7e3v9vUACA34yABgDAtZ4+fZqNjY309fXl3r17zR4HAKBp/AcaAADXmpycTE9PT8bGxvLx48fs7+/nw4cPmZuby9evX5s9HgBAwwhoAABcq6OjI7VaLQ8fPszExEQGBwczMzOTs7MzT6QBALdKqV6v15s9BAAAAAD8rjyBBgAAAAAFBDQAAAAAKCCgAQAAAEABAQ0AAAAACghoAAAAAFBAQAMAAACAAgIaAAAAABQQ0AAAAACggIAGAAAAAAUENAAAAAAoIKABAAAAQAEBDQAAAAAK/A1HSDyGuo6o8wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNAAAAFgCAYAAAB6wIQ3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACJF0lEQVR4nOzdd3zTdf4H8Nc3s0knpaVAW8q0hD0UGXLIKIdY153iTxTHeXfKOQDXOVDGies8AfVEnJx6uMFTRKRsUJkWWaGM0kIX3TNNmvH5/VEaWtqkSZs0Sft63sPfj3zzzff7zuedNPm+8xmSEEKAiIiIiIiIiIiImiTzdQBERERERERERET+jAU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJxS+DqAt2Ww25OTkIDQ0FJIk+TocIiIiIiIiIiLyESEEKioq0L17d8hkzvuYdagCWk5ODuLj430dBhERERERERER+Ylz584hLi7O6T4dqoAWGhoKoLZhwsLCfBwNYDabsXHjRkydOhVKpdLX4VA9zE1gYJ78F3MTOJirwMA8+RbbP3AwV/6JeQkczJX/Ym68o7y8HPHx8fZ6kTMdqoBWN2wzLCzMbwpoWq0WYWFhfAP4GeYmMDBP/ou5CRzMVWBgnnyL7R84mCv/xLwEDubKfzE33uXKNF9cRICIiIiIiIiIiMgJFtCIiIiIiIiIiIicYAGNiIiIiIiIiIjICRbQiIiIiIiIiIiInGABjYiIiIiIiIiIyAkW0IiIiIiIiIiIiJxQ+DoAIiLyIasV2LkTyM0FunUDxo8H5HJfR0VERERERORXWEAjIuqg9r/xNHouXIao4uqLG+PigOXLgT/8wXeBEREREVGHpS/QIyU9BZllmUgIT0BS7yToonW+DouIQziJiDqi/W88jZEPv4jO9YtnAERWFnDzzcCaNT6KjIiIiIg6Kn2BHkt3L8X2jO0orS7F9oztWLp7KfQFel+HRsQeaEREHY7Vil7PvQIAkC65q/a2gPmhB/B217PIqDzHX/6IiIiIqE2kpKcgr7IAwfLeCFMFIS4sDkcLjmJT+iZ+FyWfYw80IqKOZudOdC61Niqe2QlAmZOH/A1rUFhVwl/+iIiIiKhNZJZlwmjWoMYqcLa0GpIkIVwdjsyyTF+HRsQCGhFRh5Ob69Ju0aUhqDRGoG+kDsXVxdiUvsnLgRERERFRR5YQnoDKmjIIIQAAQgiUmcrQM6KnbwMjQgAX0F588UVIkoS5c+f6OhQiosDSrZtLuxWGBwMAKkxW/vJHRERERF6X1DsJoapOyK5MQ1F1Do4WHEWkJhKTe032dWhEgVlA27dvH9555x0MGTLE16EQEQWe8eNRGaWFcHC3AFDYWYNjid1rb/OXPyIiIiJqA7poHW647K/o33kMgpXhmJAwAfNGz+P8Z+QXAm4RgcrKStx+++1499138fzzz/s6HCKiwCOXI2TlxxB//CMELllIQKr9P1/+ZRzOGU5CowhDhbkaPTvF8Jc/IiIiIvK6+LDL0EndGwBw2/A4H0dDdFHAFdAeeOABXHvttZgyZUqzBTSTyQSTyWS/XV5eDgAwm80wm81ejdMVdTH4QyzUEHMTGJinVrjuOuS99xEin/47gvMvzokmYuNg/de/MG58f+z++X8oNGRhSMxw3Db4GvSN6OtyWzM3gYO5CgzMk2+x/QMHc+WfmJfA4Re5EhfHSfA1c5Ff5KYdcqc9JSGEo1E8fuezzz7DkiVLsG/fPgQFBeHqq6/GsGHDsGzZsib3X7hwIRYtWtRo++rVq6HVar0cLRGRfzOHRMMSHovo1L3Q5OfCJspRNGAAIJcDAAw9RgIAlKXZUJbn+TJUIiIiIuogToWqcahkLwoNWehuFBgaNhTxQfG+DovaKYPBgJkzZ6KsrAxhYWFO9w2YAtq5c+dw+eWXY+PGjRg6dCgANFtAa6oHWnx8PAoLC5ttmLZgNpuRkpKCpKQkKJVKX4dD9TA3gYF5ap2TRQb8llsBAFDIJNw4oEuD+786ch4AMCgmBP2jg906NnMTOJirwMA8+RbbP3AwV/6JeQkcvs6VvlCPxze+ghJjMbTKMHTSmtBZ0xkPj3oYuqiOPQ+ar3PTXpWXlyMqKsqlAlrADOE8cOAA8vPzMXLkSPs2q9WKHTt24M0334TJZIL8Qq+JOmq1Gmq1utGxlEqlX73g/C0euoi5CQzMU8vIZQ3XkXHUhjKZrMXty9wEDuYqMDBPvsX2DxzMlX9iXgKHr3K17ew2VJhLEBeaCEmSMCgmFEcLjmL72e0Y0o2LCAJ8H3maO20ZMAW0yZMn4/Dhww223XPPPejfvz/+/ve/NyqeEREREREREVHg2HpmK04V/wZ94X5olWFQK69AuDocmWWZvg6NKHAKaKGhoRg0aFCDbcHBwejcuXOj7UREREREREQUONalrcPP535GqakUSkkDoyUXP57+Ef2j+uO2wbf5OjyiwCmgEREREREREVH79OHBDyEgoFWEwSqsUEgaGMyVyKnIweRek30dHlFgF9C2bdvm6xCIiIiIiIiIqJUyyjIQoY6ARalFlbkUZqsJoapQaJVa6KI79gIC5B9kze9CRETtkXDwbyIiIiKittYzvCeqzFVQydSIDOqGLtoeUCqUGNBlgK9DIwLAAhoRERERERER+dg9w+5BqDoU+YZMlBrPI9+QiVBVKO4acpevQyMCEOBDOImIiIiIiIgo8CUnJgMAFm9fgULDOcSH6/DchNn27US+xgIaEREREREREflccmIyKgzD6t2O810wRJfgEE4iIuIkaERERERERE6wgEZEREREREREROQEC2hEREREREREREROsIBGRERERERERETkBAtoRERERERERERETrCARkRE4CoCREREREREjrGARkRERERERERE5AQLaERERERERERERE6wgEZEREREREREROQEC2hERB2UqDftGWdAIyIiIiIicowFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIiciJgCmgrVqzAkCFDEBYWhrCwMIwZMwY//PCDr8MiIgpYov6/hcPdiIiIiIiIOryAKaDFxcXhpZdewv79+7F//35MmjQJN9xwA44ePerr0IiIiIiIiIiIqB1T+DoAV1133XUNbi9ZsgQrVqzA7t27MXDgQB9FRURERERERERE7V3AFNDqs1qt+PLLL1FVVYUxY8b4OhwiIiIiIiIiImrHAqqAdvjwYYwZMwZGoxEhISFYu3YtBgwY4HB/k8kEk8lkv11eXg4AMJvNMJvNXo+3OXUx+EMs1BBzExiYp9axWq0NbjtqR5vN5nYbMzeBg7kKDMyTb7H9Awdz5Z+Yl8Dhb7nylzj8gb/lpr1wpz0lIQJn6uiamhqcPXsWpaWl+Prrr/Hee+9h+/btDotoCxcuxKJFixptX716NbRarbfDJSLya+bQGJg7xdXeEALac782uN/QYyQAQFmaDWV5XluHR0REREQdUN13UADQnj3gw0ioIzAYDJg5cybKysoQFhbmdN+AKqBdasqUKejTpw9WrlzZ5P1N9UCLj49HYWFhsw3TFsxmM1JSUpCUlASlUunrcKge5iYwME+tc7ygCkfOVwIAJAB/HBTT4P6vjpwHAAzsEgJdl2C3js3cBA7mKjAwT77F9g8czJV/Yl4Chz/kqu47KADcfMn3047MH3LTHpWXlyMqKsqlAlpADeG8lBCiQYHsUmq1Gmq1utF2pVLpVy84f4uHLmJuAgPz1DJyecOFmB21oVwua3H7MjeBg7kKDMyTb7H9Awdz5Z+Yl8DhL7nyhxj8jb/kpr1wpy0DpoD29NNP45prrkF8fDwqKirw2WefYdu2bdiwYYOvQyMiIiIiIiIionYsYApo58+fx6xZs5Cbm4vw8HAMGTIEGzZsQFJSkq9DIyIKTAE7gJ+IiIiIiKhtBUwB7f333/d1CERERERERERE1AHJmt+FiIiIiIiIiIio42IBjYiIiIiIiIiIyAkW0IiIOijh4N9ERERERETUEAtoRERERERERERETrCARkRERERERERE5AQLaERERERERERERE6wgEZEREREREREROSEwtcBEBERERERERHpC/TYkP4lCg1ZiNLGYVjcLdBF63wdFhEA9kAjIiIiIiIiIh/TF+ixdPdS6At3o8pcDn3h7trbBXpfh0YEgAU0IiIiIiIiIvKxlPQUFBmKEBeaiM6a7ogLTURxdTE2pW/ydWhEAFhAIyIiIiIiIiIfyyzLRERQBCRJAgBIkoRwdTgyyzJ9HBlRLRbQiIiIiIiIiMinEsITUGoshRACACCEQJmpDD0jevo2MKILWEAjIiIiIiIiIp9K6p2EztrOyK5MQ1F1DrIr0xCpicTkXpN9HRoRABbQiIiIiIiIiMjHdNE6zBs9D/07j0GwMhz9O4/BvNHzuAon+Q2FrwMgIiIiIiIiItJF6zCt9z31bsf5MBqihtgDjYiogxKX3haXbiEiIiIiIiKABTQiIiIiIiIiIiKnOISTiIiIiIiIiHxOX6DHhvQvUWjIQpQ2DsPibuEcaOQ32AONiIiIiIiIiHxKX6DH0t1LoS/cjSpzOfSFu2tvF+h9HRoRgBYW0CwWCzZt2oSVK1eioqICAJCTk4PKykqPBkdERERERERE7V9KegqKDEWIC01EZ013xIUmori6GJvSN/k6NCIALRjCmZmZiWnTpuHs2bMwmUxISkpCaGgoXnnlFRiNRrz99tveiJOIiIiIiIiI2qnMskxEBEWg1CABACRJQrg6HJllmT6OjKiW2z3Q5syZg8svvxwlJSXQaDT27TfddBM2b97s0eCIiIiIiIiIqP1LCE9AqbHUvjK8EAJlpjL0jOjp28CILnC7B9quXbvw008/QaVSNdiekJCA7OxsjwVGRERERERERB1DUu8kHMk/gt9y06BRhKHaUo6h3eIwuddkX4dGBKAFPdBsNhusVmuj7VlZWQgNDfVIUERE1PaErwMgIiIiog5LF63DvNHz0L/zGAQrw9G/8xjMGz2Pq3CS33C7B1pSUhKWLVuGd955B0DtuOTKykosWLAA06dP93iARETkJayYEREREZEf0UXrMK33PfVux/kwGqKG3C6gLV26FBMnTsSAAQNgNBoxc+ZMnDx5ElFRUfj000+9ESMREREREREREZHPuF1A6969Ow4ePIhPP/0Uv/76K2w2G+69917cfvvtDRYVICIiIiIiIiIiag/cLqABgEajwZ/+9Cf86U9/8nQ8Dr344otYs2YNjh8/Do1Gg7Fjx+Lll19GYmJim8VAREREREREREQdj9sFtI8++sjp/XfeeWeLg3Fm+/bteOCBB3DFFVfAYrHgmWeewdSpU3Hs2DEEBwd75ZxERO0Zp0AjIiIiIiJyjdsFtDlz5jS4bTabYTAYoFKpoNVqvVZA27BhQ4PbH374Ibp06YIDBw7gd7/7nVfOSURERERERERE5HYBraSkpNG2kydPYvbs2Xj88cc9EpQrysrKAACRkZEO9zGZTDCZTPbb5eXlAGqLfmaz2bsBuqAuBn+IhRpibgID89Q6Npu1wW2z2QyZJDXaz2q1ud3GzE3gYK4CA/PkW2z/wMFc+SfmJXD4W678JQ5/4G+5aS/caU9JCOGRUTz79+/HHXfcgePHj3vicE4JIXDDDTegpKQEO3fudLjfwoULsWjRokbbV69eDa1W680QiYj8njmsG8wR3e23NWcPoH75zNBjJABAWZoNZXleG0dHRERERB1R3XdQANCePeDDSKgjMBgMmDlzJsrKyhAWFuZ0X48V0FJTUzFhwgR7Ly9veuCBB/D9999j165diIuLc7hfUz3Q4uPjUVhY2GzDtAWz2YyUlBQkJSVBqVT6Ohyqh7kJDMxT6xw9Xwl9QZX99h8GdmnQA+2rI+cBAINiQtA/2r25JpmbwMFcBQbmybfY/oGDufJPzEvg8Idc1X0HBYCbB8X4JAZ/5A+5aY/Ky8sRFRXlUgHN7SGc3377bYPbQgjk5ubizTffxLhx49w9nNseeughfPvtt9ixY4fT4hkAqNVqqNXqRtuVSqVfveD8LR66iLkJDMxTy8jlsga3lUplk0M4ZTJZi9uXuQkczFVgYJ58i+0fOJgr/8S8BA5f5UpfoMeG9C9RaMhClDYOw+JugS5a1+Zx+DO+jzzLnbZ0u4B24403NrgtSRKio6MxadIk/Otf/3L3cC4TQuChhx7C2rVrsW3bNvTq1ctr5yIiIiIiIiKitqMv0GPp7qXQF2ZBqwxDQeFuLN2dhXmj57GIRn7B7QKazWbzRhzNeuCBB7B69Wr873//Q2hoKPLyaufjCQ8Ph0aj8UlMRERERERERNR6KekpKDIUIS40EZIkITKoG4qrz2FT+iYW0MgvyJrfxT+sWLECZWVluPrqq9GtWzf7f59//rmvQyMiahc8MyMmEREREZH7MssyEREUAenClCKSJCFcHY7MskwfR0ZUy6UeaI888ojLB3zttddaHIwzHlrrgIiIiIiIiIj8TEJ4AjJKMiBEGCRJghACZaYyDO823NehEQFwsYCWmprq0sGkJiafJiIiIiIiIiJyJql3Eo7kH8FvuWnQKMJQbSnH0G5xmNxrsq9DIwLgYgFt69at3o6DiIiIiIiIiDooXbQO80bPw0s7vkKhIQsJ4QMxb/TNnP+M/IbbiwgQEREREREREXmaLlqHab3vqXc7zofREDXUogLavn378OWXX+Ls2bOoqalpcN+aNWs8EhgREXkXZ5YkIiIiIiJyjdurcH722WcYN24cjh07hrVr18JsNuPYsWPYsmULwsPDvREjERERERERERGRz7hdQHvhhRewdOlSrFu3DiqVCsuXL4der8eMGTPQo0cPb8RIRERERERERETkM24X0E6fPo1rr70WAKBWq1FVVQVJkjBv3jy88847Hg+QiIiIiIiIiIjIl9wuoEVGRqKiogIAEBsbiyNHjgAASktLYTAYPBsdERF5DydBIyIiIiIiconbiwiMHz8eKSkpGDx4MGbMmIE5c+Zgy5YtSElJweTJk70RIxERERERERERkc+4XEA7ePAghg0bhjfffBNGoxEA8NRTT0GpVGLXrl34wx/+gGeffdZrgRIREREREREREfmCywW0ESNGYPjw4fjzn/+MmTNnAgBkMhmeeOIJPPHEE14LkIiIiIiIiIiIyJdcngPtp59+wogRI/Dkk0+iW7duuOOOO7B161ZvxkZERG2IU6IRERERERE1zeUC2pgxY/Duu+8iLy8PK1asQFZWFqZMmYI+ffpgyZIlyMrK8macREREREREREREPuH2KpwajQZ33XUXtm3bhhMnTuC2227DypUr0atXL0yfPt0bMRIREREREREREfmM2wW0+vr06YMnn3wSzzzzDMLCwvDjjz96Ki4iIiIiIiIiIiK/4PIiApfavn07PvjgA3z99deQy+WYMWMG7r33Xk/GRhSw9AV6pKSnILMsEwnhCUjqnQRdtM7XYRE1QwCQfB0EERERERGR33GrgHbu3DmsWrUKq1atwpkzZzB27Fi88cYbmDFjBoKDg70VIzWDxRr/oi/QY+nupThTcgYVpgp8W/0tPjvyGZ6+6mkkJyb7OjwiOy4aQERERERE5BqXC2hJSUnYunUroqOjceedd+JPf/oTEhMTvRkbuUBfoMdrv7yGnIpCRGk7IaMkA0fyj2De6HksovlISnoKjuQfwZmSTFTWGKBValBuKscLu15An8g+zAsRERERERFRgHG5gKbRaPD1118jOTkZcrncmzGRG1LSU5BdUYAgqRcqjRIGdY3H0YKj2JS+iYUaH/k191ecKj6FCpMBKpkGBrMRMkkgpyKHeSEiIiIiIiIKQC4X0L799ltvxkEtlFmWCZUsFNKFeYskSUK4OhyZZZk+jqzjqjBVwGA2QCXXQClTAxAwmMsAgHkhIiIiIiIiCkCtWoWTfC8hPAEVpjIIUTubkRACZaYy9Izo6dvAOrBQdSg0Si1qrNUwW00wWashlykBgHkh/8ZJ0YiIiIiIiJrU4lU4yT8k9U7CtvQDyK5Ig0YRhqMFFkRqIjG512Rfh9ZhqeVqWGwW1FhNMNtqECQPhlKuQGxoLPNC7V7doiZnis+gMr8SvQp7YUi3Ib4Oi4iIiIjIb3FhwMDAAlqA00XrcPvgv+HbtI0oNGRhQsIgTOk9hW82H1mXtg4bT2+EyWKEXKaAzWaB0VqJzppeeOqqp5gXatfqVqAtMhQhTBWG41XH8fre1/Ho2Ef9/7VfXQ3cdx/w8ce+jqTNyQFc5+sgqFnMk2+x/QMHc+WfmJfA4Q+5mgFAwoXBEXv2AKNG+TYgL6v/HToiKIILA/oxFtDagV4RiZjWOxYAcNvwOB9H07F9ePBDGMxGxGj7wmAph9lqgtFShS7BsUhOTPZ1eERelZKegiJDEbpo+0Ehk9BDbUBxdbH/L55x443A//7n6yh8hnM5BAbmybfY/oGDufJPzEvg8IdcNViy8Mora/+/aHqukfbQc6vuO3SPsETkV9Wgb6duOF163P+/Q3dALSqgnThxAtu2bUN+fj5sNluD+5577jmPBEYUiDLKMiCDBkGKYAQpggEApcbzKK8p8XFkRM1r7RRomWWZ0CrDkF9ZAwBQBsKiJjfeCHGheCb5OBQiIiIickCSGhXR6vfcCg8KD9ieW5llmYgIisDZUiMAIKvM6P/foTsotwto7777LmbPno2oqCh07doVknTxkkOSJBbQqEPrGd4TZ4qzIYQNkiSDEDaYrAZ0Cxnk69CIGvH0mgEJ4QlIK0iHSoqAJEn2RU1Gxo708Jk8pLqaxTMiIiKiQLF3b4PhnHU9t4JkPWEwAgOi46AvPBZwPbcSwhOQUZIBIcIgSRKsNhvKTGUY3m24r0OjS7jdQ/P555/HkiVLkJeXh4MHDyI1NdX+36+//uqNGO127NiB6667Dt27d4ckSfjmm2+8er5AwYXz/Mc9w+5BkCIY+YZMlBrPI9+QiSBFMKb1+T9fh0bkdUm9k9BJE4nsyjQUVefgnOmcfy9q8vjjkMDiGREREVFAqBvOeUFdzy2jRcBsE6ixioDsuZXUOwmdtZ3t36HPVpzw7+/QHZjbBbSSkhLccsst3oilWVVVVRg6dCjefPNNn5yfqDnJicm4feCz6Bs5EhplCPpGjsTtA5/FuLipvg6NqAF9gR6fHnkbnxxZjA3pHyC74mSrj6mL1uG+kQ+jf+cxCFaGY2DIQDw86mH//QXwZOufMxERERH5RkJ4AkqNpRAXhnbWjX7oGdHTt4G5SRetw7zR8+zfoQdFjwm4YagdhdtDOG+55RZs3LgR999/vzficeqaa67BNddc0+bnJXLHiK5TMKLrFF+HEdDaw2Sg/qxuvojTxXmwWrUoKNyNc+XHMTWxC4bEDGzVsS/r3B/TencGAGjPHoAuyo/z1q8fsHGjr6MgIiIiohZI6p2EI/lH8FtuGjSKMJiLatA1JCoge27ponWY1vseAECwSg5ddDcfR3QRr80ucruA1rdvXzz77LPYvXs3Bg8eDKVS2eD+hx9+2GPBEVHHU1fcOV9ZyGWcveTjQx9jT9ZeVJlkCFaFo4s2HuU1hdiSvrnVBTR/4PKH/D//CfHvfwPgME4iIiIiv7dnT4Obumgd5l45Fy/v/BqFhiyMi+uP6/tP4zWDB128NiuAUhba4a/N3C6gvfPOOwgJCcH27duxffv2BvdJkuRXBTSTyQSTyWS/XV5eDgAwm80wm82+CsuuLobWxlJ/JVR/eF7tgadyU8cmBHPjog0nNyC/sgBy0ROVRgm66O44VngMP578EX0j+jbY19N56gj0hXp8l/YdigxlUMnDUGjIQrmpENHaeJwpSW+yLW02m8ttbLFY7P8+ZzyH5buXI7syGz3Ce2Byr8le75GmL9Rj0Y5F2J21G0WGIliEBUGKIIyNG4uB0QMbxqFQQHbddZB99x0EWEQjIiIi8jd1833bANiGDwcu+U7aN6KvvefW5D6R6KRRBvy1gXBw7eiLa58NJzegoKr22kzYJHQJ7obzVSebvDYLVO60pySECMg56CVJwtq1a3HjjTc63GfhwoVYtGhRo+2rV6+GVqv1YnRtqyYiDpawGAC1Q6bItww9Gq84KDeUQF2Y7oNoAs8H2R+gUpgQETkAAKAsy0FhTSFCFCG4J/YeH0cX+Nblr0NK8SaY5QqEqjpDkoAyUyGUMhWmho9HctR0+751r2VlaTaU5XkuHd+qDoEpJhHZFSex8bcXUWGtQLAsGFW2KoTKQ3F9l+sRHxTvlecGAB/nfIwfC39Epa2y0X0hshDYYEOIPAQ3dbkJ10TXTglwxQsvoNvevSygEREREfkZgdri2ToHCwgKANUXvrMG5R6DzFzdVqF5XN13b8ligibniI+jqfVB9geoslQhPHoIAEBmrkZJ6cl2dW1mMBgwc+ZMlJWVISwszOm+bvdAq6+u9iZJ/nnZ8dRTT+GRRx6x3y4vL0d8fDymTp3abMO0BbPZjJSUFCQlJTUaCuuOg7kVOFVkAABMnz69mb3JFa3JzVdHzjfaFtO1K8aO6u+p8Nq19H3p2HxmO4QQkCQJffv2RU1hDSYkTMD0yxu+vj31HupItm3ahl7KQcgoyUCFuQhKSQ2z1Qi5TInZv/8bBscMsO9b91q+7LJE6LqMcOn4BVU12H6mBIcLdqLCWoEr+v4ORisQHayEvvAYLPEWTL/Ce3+nln6yFEZhBCBBBjkEbBCo7aVbaauERq5BkaUIn5z/BAMHDcT9I+8Hpk/HdwfPIfH5J9D3269ZSCMiIiLyobqRAQKAbdcuYNQoOPr2KITA10fzAQDjrroKnTSBe01Q991bo9E0eV3vi2uf9H3p2HF2B4St9tosODgYVlVYk9dmgapupKIrWlRA++ijj/DPf/4TJy+sYHbZZZfh8ccfx6xZs1pyOK9Rq9VQq9WNtiuVSr+62G5tPDLZxcVU/el5tQeeeq3IJIm5cdG0ftNw8PwRHC+onQxUX2RGVHAUpvad6rAN/e097c96RfbCofOn0afTCBQYzqLUeB4WYYFaHoTt57Yhp+oc0kvTkVmWicKKcAyOHo8h3Ua63L4KRW2xqtCQhWBZMLIrartEBynl6KTphKzKLK/mSiaTwSZqY5BJMliFrcH9ViGgkClgtBrx2u7XMKXPFGw7sw0v//QGSkYXIG7qYDx4xWzMHjXbazH6G7PZjPXr12P69Ol8H/kx5sm32P6Bg7nyT8xL4PCHXH2ammX/923D45zua6s3oE6hULSL15fUzLVjW177TOs3DfoivX2hhiJjFS6L6ub02izQuPM83C6gvfbaa3j22Wfx4IMPYty4cRBC4KeffsL999+PwsJCzJs3z91DuqyyshKnTp2y3z5z5gwOHjyIyMhI9OjRw2vnJaK2o4vWYfYVD2PFnm9RaMjChJ4DO9RKL95e5SapdxK2pR9AdkUBVHINDJYKAEBVTTkWbVsIo7UawcpgRGoiUWNR4njRXlwWvQADu17h1nmitHE4UXQYYRd6EtZYrCgzlWF4t+Eeey5NGR03Gjszd8ImLLAKCwTqz1IgQQYFACuUMiVKjaVYsHUBNqZvhMFcDbmkwumSE3hqy1MA0KGKaEREREREl9JF6zBv9Dy8tOMrFBqy0C9yGO4bdUOHuTa7lNsFtDfeeAMrVqzAnXfead92ww03YODAgVi4cKFXC2j79+/HxIkT7bfrhmfeddddWLVqldfOS0RtK7GzDtN6dwYA3DosFjI/HSbuCXUr22w9sxUVNRWQy+RICEuALlrnlVVudNE63D74b/g2bSP25f4ApaSCJJOhxJSHGqsRAjaYrCZUm00IVkYivfQ3rDv5Oa7XuVdAGxw9Hrk5u5BdWftrVXlNNXpFxnh9WfFZQ2ZhXdp6HC44ZB+6WUcGGSyiBjabDTKp9te9lPQUmCwmhCo7Q5JkCFJIKKouxMoDK1lAIyIiIvJzgTmje2DRRevsCzXEhQdBFx3l44h8x+0CWm5uLsaOHdto+9ixY5Gbm+uRoBy5+uqrEaBrHhCRO9rB29yVnmT6Aj3mbpiLn8/9DKuwwmK1wAYbKoyVUMljMCp2INJLj2NT+iaP/srTp1MipvWORaHhHNKsRuRVnYHVZmlQcKq2GqCSa6GUq/Bb3j63zxEb2g/Xdbke+xUlKDRkYXDMCNw1/Dqv/1qli9bhnev/gznr50Nf+DNqbEaEqYNRXF0Kq7BCiNpVQmWSAhIkVJgroJKpIEm1Q+HlMhmUciVyK737eUZERERERIHF7QJa37598cUXX+Dpp59usP3zzz9Hv379PBYYEVGgqutVVmQoQkRQhMOeZCnpKTiSfwQ2ABp5JxhRDoutBtUWI04WH0GMtjfCg8KRWZbp4Qhre/RFaeNwIC8FFmuNfd6wiwTKa4oQoY4GpJZVNOOD4hHV40YAwMCYUOiiw1sRs3P1C5bRmjjc0v8RxIauAFA7d8af1ryAL/SvwGitglIWBK0yFAnhXXGy+CSqLdUIktsgSbLaZcOtZvSJ7OO1WImIiIiIAlE76OfQKm4X0BYtWoRbb70VO3bswLhx4yBJEnbt2oXNmzfjiy++8EaMRNSBibpleAJISnoKigxFiA25DJIkIS4sDkcLjjbqSZZZlgmT1QQZFBdWM5YBEiBsAgZzOSw2m1fmDasbETs4ejx+zvofCgxZsMHSaD8BG4xWA4Z2GeXR83vapQXLE4XpqDLtw/Q+f0FsaO0PO0m97sTp0oPIrjgFCRK0yjCMiR+AIEUQ9ufuR0VNERQyFarMFqgVavx1+F99/KyIiIiIqDkdvaBDbUvW/C4N/fGPf8SePXsQFRWFb775BmvWrEFUVBT27t2Lm266yRsxEhEFlMyyTISpw5FdbkJWmRE2AYSrG/ckSwhPgFquhsVmhhACSlkQIGoLVwqZElkVaYjURHp83rC6emRsaD/ceNlDUMk1DvdVSEokX3ZrK8/kXXUFy4SwRMgQhf6dB6DKXIrDBbsa7NczfBAig7picPTv0LfTcERpo9A9rDuu6Xs9uoX0hUoehMTOiXhx0ouc/4yIiIgoILCERm3H7R5oADBy5Eh88sknno6FiCjgrEtbhw8PfoiMsgz0DO+Je4bdg4TwBKQXn4EkwiFJEqwOepIl9U7C9ye+x/bMXag0FwOSDDJJBo1Ci4TwQRgQNQbzRt/s1XnDRnSdgoFRY/Hr+ZR6c6BJkCBBJsnRRdsDfToltv5EXqylZZZlIiIoApmlRgC1y5lrFGEoNGQ12G9w9HicKz9uX9jgaIEFkZpI3DXkAZwt7owQtQLXDejqvUCJiIiIyCl9gR4b0r9EoSELUdo4DIu7xfl3YdbP2lYHb2+XCmjl5eUICwuz/9uZuv2IiDzBn/9Gr0tbh/vW3YdiQzFskg3Hzh/D7qzdmD9+PjppInH0fG2hRl9oRnRw50Y9yXTROiybtgxzvl+CwwW1E96P7D4IQ6NmYkTXKZBJgC46zuNxX7qo6cDoscgsP4pSYwEkCMhkSghhhVKmxqDo8Z45qRcTmRCegIySDAgRBkmSUGOxodpSjp7hAxvsFxvaD9P7/AWHC3ah0JCFCQmDMKX3FERpeuNscUGgjRQmIiIialfqpuXQF2ZBqwxDQeFuLN2d5XRFen++VvCGc8ZzeHPfm8iqzGq0UJkri5i1Vkdr70u5VEDr1KkTcnNz0aVLF0RERFyYq6chIURtTwur1eNBElEH0+BPjP9OgvbCrhdwvuo8JCHBBgHAgtzKXKz8dSVW3fAJlv68FoWGLIzvMQDX9Jva4AOs/gdcfHgipva+F7Gh/XDb8Dh8mprl+KQe0bA9B0ePx/GiPThRfABmqxFWYYFCpkbviKG4Kr4VQ/NdSJsnPuiTeifhSP4R/JZbW7AsMFQiWBmBQdFXNdo3NrSffV6024bXFifzK01unY+IiIiIPK9uWo640ERIkoTIoG4orj7n8RXp/Z2jr9D6Qj2+zf8WwSIYkZrIBguVAcCfv/0zjuQfgclqglquxudHPsd717/XodrO21wqoG3ZsgWRkZEAgK1bt3o1IHJd3YXn3qwTkKMLBkePB+D53ipEPuXHP3McKzgGm7BBXBLk0fyjAIBpve8BANw4qBs0Srn9/ksnvT9aqMeZUj2m9/kL2uI9fOlvILGh/XBL/8ew89xanCo5AADoFzkCV8X9wV5s8oTntjyH91PfR4mxBJ2COuH6xOuRXpKOI/lHYLQaESQPwvcnvseyacvc+qDXReswb/Q8vLTjKxQastCz0xD0Chvj0diJiIiIyLvqpuUoNdR+WZUkqcl5hDuqzWc246zxLCznbSgxlqGzJgLRwVHYlL4JOzN3YnfWbtguTMlisprwc9bPuOnzm7D21rUeK6L58aVZm3CpgDZhwgT7v3v16oX4+PhGvdCEEDh37pxnoyOH6l+AW2xa5Jan41z5cVyr68oKM7Ur/vxH2iqsjYpnAGARFnx6+L8YFv0AAGD9ye+x+vB/7POkRWmjUFBVhHBVb4SpVOgRGo7M8uMXJr2f2MbPolZsaD/834AnPHzUi58Tz+98FF8d/8DeXtWV1Xj7wNuNHpFXmYcFWxfgixnureqsi9bZC5bRwSoUVNW4/mB/fpERERERdRCXTsshhGh2RfqO9DVuW8Y2nK0+C2GSQS4pkVWejfNVedhyZgs2n9lsL57Vl1aUhj9/+2fP9UQTHanFG3N7Fc5evXqhoKCg0fbi4mL06tXLI0FR81LSU3Ak/wgOnT+KHRkbkVVxAlnlJ7ApfZOvQyPqMKKCohzetyVjMwDg17xNeGrz49h19heUGyuwO2s3vjz2JXIrilFhsuJsaTUkSWpy0ntvaesBsdkVJ/HNiU+aLDZeygYbvkn7BvoCfctP2MIn6J8DhYmIiIg6hqTeSeis7YzsyjQUVecgu9KFFenrfb1s79/lzpSdgVmYYbVaYbCUw2itRnlNOQ7mHYShxuDwcXuz9mLZ7mUeiaFjl89aUECrm+vsUpWVlQgKCvJIUNS8LWe24ND5QzhdcgqlNfnIrTqNk6UH8P6B930dGlGH0TXE8YqNGaUZAIDt575AcXU5OqnjoZA6o0dYL1iFFadLjkNc+AVHCIFqSzmitW0zBLulXy70BXq8vud1PLrxUby+53WXi1yHC3bCbHN9njGzzYxPDrXdSs/2wl57/9ZFRERE5MfqpuXo33kMgpXh6N95jNMFBDoaQ40BFlhghhECNogLPc6yyrOa7H1WxwILvkv7rq3CbNdcGsIJAI888giA2nHIzz77LLRarf0+q9WKPXv2YNiwYR4PkJqmL9SjylzVaPtvBb9hxd4VmD1qtg+iIvI8f/6Vw2Bx/EtPmbEUAFBoyIJS0kCSan+vKDdZ0UndCaXGCmRX1k56b7JWOJz03iua+BGkOZfO21Z/0tLmvtRklB1x+3zr0tZhyeQlbj+OiIiIiAJX/Wk5am87/4HZn68VPM1iszS53dG0MvUVGAqgL9CzGNlKLvdAS01NRWpqKoQQOHz4sP12amoqjh8/jqFDh2LVqlVeDJXqKzIUObxv+Z7lbRgJkZf58aei2WZ2eJ9FWJBdcRJR2jiYrAYIUfurkM1mg1mYkdh5qP3XtYFRYzC9z1/abNL7lnS0qlsVqV+kDjJEoV/kABRXF7s0bLzaUun2+U6WnGxBlC1T9xJjBzQiIiKiQOPHFwseVmNteo5fV6ZJsQgL5m6Y27ppUsj1Hmh1q2/ec889WL58OcLCwrwWFDXParM6vO9cORdz8BcpZz7CpoxPUFFTgB7h3XH/yPvZOzAArNi7Am8feBt5lXnoGtLVYd5iw2KhL2z6Q0gOOQ4X7MKE+BnIKk9DviETarkWJls1ugSH4xbdXxAbMh4AoFbIYLI47nbtaS3ogGZfFSmjuBpmm0BljdWFVZFqTySEDRIklz7c61RbqvkrGRERERHRBXKZvFWP//ncz1i2exlWXreyxcfoOOXKprk9B9qHH37I4pkf0Cg0Du+ziba7EKemZVecxJyN4/Dh4WdwrkKPUlMhDucfxhObnsCKvSt8HR458dyW5zBnwxwcyj+EfEM+DuUfwt9++BtiX4ttkDt9gR4yyCA5+DOqVgYho/QwRnSdgtsHPou+kSOhUYbgsk4j8GrSqxgX//u2ekoekRCegFJjKWqsF5bGNltRZipDz4iezT7WaDFADvc/8NtsHjT7NwH2QSMiIiIKJB1pUcjY0NhWPb7KXIUvjn7h1lzGjXSg9m6Kyz3Q6tu3bx++/PJLnD17FjU1DbsRrlmzxiOBkXNx4XHIrcpt8j4B0aqeG/oCPVLSU5BZlomE8AQk9U5iLxA3ZFecxNI9f0WB8WyD7QICleZKLN+znL3QmiHVK2S05d9ofYEer/z8Csyi8dDMnIocPLHpCQDA7FGzkZKeghBVCEZ3n4RfcjY3iFQlqaCSK2G01s5TOKLrFIzoOgUAoJBJSE6MxS8Zxd5/Qg60pEyU1DsJR/KP4Lfc2nnbqi3lGNotzvmqSBdUm8shlysBqwQLHA97vdTm9M0tmwfNzRcNh3ASERERBb72XNvRF+hRWl3aqmMICJSZyvDyrpfx/YnvsWzaMl7nu8ntAtpnn32GO++8E1OnTkVKSgqmTp2KkydPIi8vDzfddJM3YqQmTOk9Bal5qU1OJKiWq7EpfVOL3gz6Aj2e2/oc9ufsR5GhCGabGS9rX8b8q+az6OOiwwU7kWM47fD+thhi276KoG33Ubhs9zKYrI5Xi6y2VGP53toCaN2Qxgh1X5wsOY6i6lwI2CCDDAqFAlabFTbheKi1LzW1knJz6lZFemnHVyg0ZCEhfCDmjb7Z+euq7jSSBAgBmaQAmihONkUhKVBsbGGRsaWVMFbQiIiIiAJKoBbNmrpeA0IBAOtP/Qfzd3xqn05GF6XDlowtKDAUtPq8AgI5lTkori5u0XDOQG1vT3G7gPbCCy9g6dKleOCBBxAaGorly5ejV69euO+++9CtWzdvxEhNmDVkFtbo1yCtKK3Bdrkkh0KmwK+5v7bouMt2L8MPp35AldmAurdHbkUuntryFOLD45GcmNza0Nu92hUHHf9pkUluj5xuVt0KiVvPbEVFTQWMZiPMNjNswgaVXIXPj3yO965/L4CLaG3jsyOfOb1fCIHsimwAtUMaD58/jNLqM6g2V0AGCTZIkElyaOQa2GCDTGrdPAX+xt1VkepoFKGAJEElDwKsAjU2o9P95ZIcAgIaueOh6s6wDkZERERE/kpfoMfcDXNxJP8ITFYT1HI1vj/xPZISnsSxwl/w6bElMNtMkEkyFBoKcSj/kMdjMFqN+C7tu1bNh9YRuV1AO336NK699loAgFqtRlVVFSRJwrx58zBp0iQsWrTI40FSY7poHV5NehW3r70d5aZyABJkkEEtVwMAKmuaXvVuXdo6fHjwQ2SUZaBneE/cM+wee1FMX6DHdye+Q5W5qsFj6rp6vrDrhQ5TQNMX6rEufx22bdqGXpG93OrB1dyKg521nT0Rol3dH+AdmTtgspoaTdRutBrxS9YvmLdhHjbM2uDRc7eFtprXQF+gR3lNudN9bBd6mAFA74jeOFt2FoVVZTDbamCFBYAEuUwBk7X2A89ve6C18fkig2IQogxHpbnCpTkaJUiQSTJ0De3aovO5+5Lp6L+kEREREbUHgfKdbunupdh5difMVgssF0Zn5FTmYGfmL5AkGYxWAwAJVi9fS3iiR1tH43YBLTIyEhUVFQCA2NhYHDlyBIMHD0ZpaSkMBoPHAyTHkhOTcUW3K7Dr3C5YbDbIJTkgARabpcmhnSv2rsDC7QtRaa6EVqlFVlkWjhYctR8rJT0FZaYyh+c7mHuwQ6yKpy/Q49GUR3Eg/wCkYglBiiC3xohr5MFQQAULml5muMhQhBV7V3hsSGxKegr2ZO2B0eq4V4+AwOYzmwMmf+6s1ugpKekpLu0nSRL0BXqkl6YjPiweocpY6AsPwGYzwwobLDYztMpQAMJ/e6C1WQWt9kSdgrpCAFDJgiCTBwGwoKzG8d8aG2xQypTQKrVtE+aFKi17rhERERH5j+yKk3h9zxqn09IIhze8qzVT5mw4tQHVlupG26utFfVuef/JWISlBdeHgVKm9A63C2jjx49HSkoKBg8ejBkzZmDOnDnYsmULUlJSMHly85NJk2eFB4UjWBmMGosNZlEDtSwIkgQoZA1Tqy/Q4/ldz6PQUAgBCSZLDdRyFSw2C1YdXIXkxGT8mvsrTGYn8z9ZqzH07aHQRelw/8j72+2caAu2LsCOzB2w2mxQCCWMFqNbS/72jBiMnMozOFWaCqBxb5tKc2WDyehb69fcX50WI+pYhAWfHPqkZZOytzXR5D89pqkPvMyyTCgkBSyicfG5PovNgk3pm5BZloke4T0Qo+2E7PJMFFgNgBCwCSsqayqhkivZA+0C+yT9kgRAQK1QQ2lRwmxzMB+aAEwWE/Kr8tsqRCIiIiLyI9kVJ/HCT7ejpObiwnmxIbFIuTOlYcHnwhfNX/M2YeXBT3C6JA1BiiBM6jUJc0fP9XjnAX2BHh8f+hjfnfgOcsjRJ7IPMkoycCT/COaNnufS+YqqizwaU1PUMjVMNsfX9gAgg8ztudM7dvmsBQW0N998E0ZjbU+Xp556CkqlErt27cIf/vAHPPvssx4PkJyzCitMVhNM1hrYhECJ1QAJEn469xPWpa2zD7n8+NDHOF95HrYLBR2rAKotVlhsFugLa5ewrTBVwArnF/xmmxmH8w97tADkT/QFemw4vQE1NjNkkMNsrYFNkkGSJGzN2Nrk/h8f+hi7s3ZDQGBM3Bh00V6GSE1XqMuDYLI13Suz0lyJJzc/ied3Po+i6iKo5WoMiBqA24bc5vTXixV7V+D5nc8jrzIPkiQhJiQGoapQl5/f7qzdLu8biJwNUa6/z/yt85FdkQ2FpEB4UDh2Zu5EpCYSWqW22WGcVeYq/H3T3xEfHg+tQgtJRKDUdB7WC4U3GWS1hTibBaYmfllqr9alrcPyPcvx2/lDMJrNiAiKwRXawRgTPhulpvO1CwjAgrr1C6K10TDbzDBZTReGoV9U93dqX86+Bn/HXNbCT3b2QCMiIiLyveyKk1i8awYqzIUNt1dm44+f/xHHHjxm/0H8VNEZ7Mk6icP5O2CyVgFS7XQgqw6uwpH8I43mgW5Nz7G6qXN2Z+1GlbkKNiFwtOAYQtUhCFIEochQhOcnPd/s8Wy25qc0aa248DhklWU5LaLJZXL3507v4BW0Fg3hrCOTyfDEE0/giSee8GhQ5LqqmipYbVYIIWBD7QW8gEBeZR7uW3cfVmIlkhOT8dWxrxqNoRYQqLHVILMsE3/97q84kHvApXMKCBjMBizfs9ztAlpbrA7Z0nPoC/SYv2U+Kmpqu87WtadNWAFRW2C8dP+5G+Zif85+mG1mKCQFfs35FdXmGpiFCc39dSmvKbcXa0xWE3bn7MbenL3oEd4Db1zzRqOiwYq9KzD3x7mosV0YGiqAnIocV5rErqAqMMa5t+Tv8rq0dbj323tRXF0MG2w4lHcIu87uwvvXv99gnr/HUh7DiaKTEBeKNHlVeThRdAIJ4QmI1ERCCDkqzKVOo6i2VONU0SlIkgSNIhRm28W55yRJBiFqP5AMFufFOF9pySqczqzYuwLzt85HibHE3g4V5hLkVZzGSet5CAhYbWZ0C+4NrUqBEJUcp0tPY3jX4Ui+LBnPbX0OpabSRsc128x4POVx9Ins49Whx/ZMs4JGRERE5FP6Aj0+OrywUfHMfn+RHuvS1uGNvW/gcP4RVNVUXbimuvCN7sL/swor9mbvxbLdy3DdZddh+Z7l2Je9DxU1FRAQkEtyhKnDGkzVU9c5YnP6ZhRX164GL5PV/jjePbQ7ssqzcKr4VIMRKxZhQ4mxBACw9vhapJekY/UfVzv97hqkCHI6/U5rqeVqDOs6DAVVBTDVOC6gSZBcvp7MrjiJwwU7YTDn4liJzivX8YHA7QLaxIkTcccdd+Dmm29GeHi4N2IiN5SZyiCTZBcmML+obnna+Vvn49sT3+Jk8UmHx6gyV+HdX99167ySJNlXI2xKXW+U44XHEaQIQqgqFBllGSg1ll4sNKB2frH+nfujylKF0upSdA3p2qrhoY5WNGlu/rK6x23L2OZwH5PVhEc3PmovytX1PKuqMVzoudf6crwNNmSUZeDeb+/Ftru3NYh52d5lF4tnLXSy+GTAzINWp7lW3Ve2D6u+XoXvT3wPs7g4JNAGG/IN+Xg85XEkJyZjXdo6PLrxUZwoPtHEOQQyyjIwtMtQRGl6I7siA3lVZ5zOxWaDDRBAjcUEW72VDiyiBlZhBmxAlQtDaz3JlR54nlY3PLzYWNzoPjPMOFFyAJ3UXWCxWZBVmQatUotQlQYhyhB0D+2Oh658CB8f+hj7cvY1efxTxaewbPcyFBoKXX5eHfyHMSIiIqKAtWz3Mhwu3OV0nz9+8UdYbBaIC/9zxCIseOfXd7D68GpUm6sbjLayCAuKjcXYemYrlu1ehrmj52LuhrnYk7UHFZcsfCVBgr5Q3+w8zQICB88fxE2f34S1t651eM0VERTR5I/HnqKL0uHuoXdje+Z2OJiWG0HyIChkCpQam49DX6DHl8f/hfSS31BlLsW6Uxa8rH0Z86+a3+5GpDXH7QLa4MGDMX/+fDz44IOYPn06Zs2ahenTp0OlUnkjPmpGsCrY6Rv5t/O/4dB5zy97Wzd0tKnhVevS1uGhHx5CdkU2rDarfTjWpQQEqi3VSD2fat+Wb8jHwxsextaMregf1R//S/sf8irzXC6sLdi6AFvSt8ACC6QL/yuuLm52/rK6lVCcFajKjGX4T+p/oFbUFuVyK3Ptv2B4Wr4hHwu2LsAXM76wb0svTm/1cY1Wo8tzufkNJ837/cnv8W7Wuyi1lTYontV3vOg4ntvyHL449gVOF592eqq0ojT07zwaJdUFLufVLExQyTQw1Vu4o+6xBYZz+DVvE0Z0neLSsVpjXdo6PJbyWG0PPCGQVpiGXWd3YeGEhV79YPv40McoqHTcs9FkNaDUVACVTA2lTAOTxQiVXIaYkBiM7D4SADCl9xSHBTSLsOA/v/0HCpkCGqWm0eInnsQOaERERES+9Z/f/oOm5pGuz91OBZXmSof3mYUZ36V9h87aztiXU9tD7dLrV3ev99KK0nDDZzfg5gE3Y9aQWY2GkHp7wbR/TPwHkhOTERsaiyJDURPnkxCsDIZMJkOwKrjRj/BTek2BWZiRWZaJClMFvj/5fYOeahIk5FXkYf7W+YgPj/f6D/b+xO0C2uuvv45ly5Zh06ZNWL16Ne666y7I5XLcfPPNuP322zFhwgRvxEkOjIkbg+0Z253u4603qNlmxs1f3Iy48DgMjRlq7xXy4cEPkVeZ53iC8GZYhAVf6r8EUPvmlEtyFFcXNzvvmr5Aj3Un1sFSbyirgIDRasR3ad85LRo5WgmlPhtsKDWVQjJK2Fq1tdlfPFrrm7Rv7L3F9AX6Zie3d9WPp39s0ePaYvht0xy38Rv73kCRuajZufuW7l4KAM3uZ7QacbxoL4wO5q5rOjobzLamu2BbYcEX+lfbpID24cEPUVBVAENNNWpsNZBJEqot1Xh+5/O4utfVTU626gm/ZP3S4Be6xgRswga5TIkaWzWClVqYrbV/Gyb3ql14ZtaQWXhx14sOj2CymmC2WmGymKC6ZPETT7jYHCyhEREREfmKvkAPk9X5xPfekFeVh3Un1sFoMTrs/OGuk8Un8eKuF/Hvff/GS5Nesl/DpqSnIEgRBAWUsKBl18sqSYUa4biIWPcdWSVXQS0Pgk0AZpux3rWrQHlNOSRIMFvMeOiHh1BoKESNpQapualYc3wNgmRBsMHWZLGy7jq4zFjm0e/kgUDWogfJZJg6dSpWrVqF8+fPY+XKldi7dy8mTZrk6fioGbOGzPLp+U02E06XpGPdiXWY8dUMxL4Wi/+l/c9jY7oFBCzCAouwoNJciYc2PIShK4Zixd4VjfZNSU9BtbXpIljdGHZHzleddykeq7DCAgvMwuyxgpYjZpsZy3YvA1D73CQPXdwXG5y3RVOe2/Icrnj3CszZMAev/fIa5myYg5HvjMSML2ZAX6D3SFz1CQf/vtSBnAPNFsWA2l+dnP3yVF9LPrSdFVJzKhoPGfUkfYEer+95HZvPbEaxsRhGWzVssMIiLBBCIL8qH58c+sTleN2VU5bTbA5swgKFTFXbU89a++EdExxjL+rponUIU4U5PwZq/w4YLAZUmCrsi594BMd8EhEREflcSnqKT84rIHA0/2izHSpaotxUjgd/eBD3fXcf9AV6bD2zFWfLzra4eAYA3cO6QyE13RcqMujinPUhqhBEajohWhsDjULb4HrSbDOjxlaDXVm7kFmWiSpzFWpEjf06wWgzNtvTzworDuYdbPHzCEQtKqDVycvLw9tvv42XX34Zhw4dwuWXX+6puBx666230KtXLwQFBWHkyJHYuXOn18/pz3TROihkbnck9LDaxQiqLdXIqchptFiBJ1mFFYfzD+OxlMcaFdGcrSBispnwx8//iHVp6xrdpy/Qo8baurnFvKWut9ivub9CLsk9ckyF3L3Xy4q9K7Bk5xJUmasabK+2VONL/Ze4/evbPV9Ec6GgoS/Q2xd88Oyp3X39SlDK1A7vtXroV6ymrEtbhykfTcHcDXNRZmo831rdB+DurN3QF+jx9OanMek/k3DH2un4/NjLyK5wPDeiq+fPLM9sdj/rhYU4ACBcHQ4JUqO/W3OunOPyec3C7PTXQcGCGBEREVHAySxr/nult3iq55mjY7/767uY+fVMbMnY0qpCXSdFJ9w68Fb8ecSfG10fyiU5HrjiAfvt0XGjoZKrEKoOglqhcvgjemtGVtUtoNBRuF15KS8vx9dff43Vq1dj27Zt6N27N2bOnInPPvsMffv29UaMdp9//jnmzp2Lt956C+PGjcPKlStxzTXX4NixY+jRo4dXz+3POms6I68qz9dhtBkBAYPFgHk/zmsw5vrSVTIvtfb4WuzO2m1fmbROXe8ub49Fb4kyY21RpMJUgSBFkMu9qByRQYa4sDi3HvPyzy87/UBJPZ/aaL62S3lj+GdKeopXP+hcJ1Bjc/whqJCUrT5D3aIch88fhlVY0S20G0bHjcY3x79BgcH5yqpWYUVlTSWe2/ocfj73MwzmaphtZhwRh5Beegh3Dl6I2NB+LYpr+d7lLvXYE7CixFT7N6rKDCjlSlhsDXtwLp60GJ8f/bzJRR6aYrV5rlBf98738OKkREREROSGhPAEX4fgNXULDDiilqsxotsIZJZmosxUZu+8IIcckACFTIHkfsm4Glfjvqvvg1KpRLQ2Gu+nvo8SYwk6BXXCvcPvxeJJi+3HnDVkFk4WncTJ4pMwWbwzNNZgdn3qm/bA7QJaTEwMOnXqhBkzZuCFF17AFVdc4Y24mvTaa6/h3nvvxZ///GcAwLJly/Djjz9ixYoVePFFx/PntHfXJV6HD1I/8GrPL39ksplw37r77AUxq7A6LYQJCORV5uGFXS80KKDV9e7y1pBMCRKGxgytHdNvc+8Pl1apxet7Xsdveb/BbDNDDkWjFVfdiUMhU2Bs3Fi3Hpdd7ni11To/nv7R4eqe+gI9/vztnxusjPr5kc/x3vXvOSyiuVLM/DX3V78tfNankgchu+Jki4tUK/auwBObnmhQPC2sLsTR/KMuFRAFBHIqcpBflY9CQxGEEJDLlLAJE9JLf8POc2vxfwOecDuu7IqT2HXW+QpJDeIQAnKZAnJJgtVmbfLDdlCXQcg3FMBsEbCIGpisLf1A9u/XBBERERE1ltQ7CV20XZBvyPd1KG3OYrPg/evfx6b0TfbJ+8+UnkFxdTF6hvfE3cPuxu97/x7r16+3P2bxpMUNCmaX0kXrsHjiYmxK34QXdr4Ag8XzxS5PTTMUKNwqoAkhsHz5ctxxxx3QarXeiqlJNTU1OHDgAJ588skG26dOnYqff/65TWPxN/NGz8OOzB04UXTC74sJnpZXmYf5W+bjw4MfYlvGtmYLKjbY8Fvebw22eap3lyPh6nCs/uNqPLT+IWzJ2OJWjspN5Xhr31vIr8qHxVo7j5SwARKEw3mnZJBhSu8pCFeHY93JdbBYrRCo7V2jkCncfo24sn+1pRqb0jc1WRD7y7d/wc9ZF9+jNdYa7M3e67TX2sbT67Fs37soNGThs+N98ZcRf2o0OWWFqQIyyFyaA81XZFBAIVPhcMGuFhXQsitOYsnP85t8bbrT+y6rIgtySW4vstdN4m+xWbAr6ytEBEVhcPR4t2I8XLATRovrcx3aYIEcckgyCRBSk0tmW4UVZmsNTNYaNDehv0aucXhf/Vfsl/pX8diWL1FoKIZWGY6JPf4Pt+gec/IIIiIiIvIFXbQO2+7ehgFvDfB1KG1OISmgi9Y5HaVjNrs/b1rdMdccX+OVUWsRmgiPH9OfuV1Ae/DBBzFx4kT069ey3hQtVVhYCKvVipiYmAbbY2JikJfX9AvBZDLBZLrY46e8vBxA7QuvJS8+T6uLobWx9I3oi5cmvYSbvrzJE2E14s+9fGyw4XD+YeiLXJ/HrNpSjUO5h6CLqv3jZLFaIJNkrerd5Yharka/yH7oG9EXVTVVbrdjpbkSaUVp9tvWC0MFHVX6JUiICY7BP6f8Ew9veBgRQRGwWCVU1lRALpMgk4DU3FS3XnNKSdls70absGF/9v5Gx33whwfxU9ZPDbbVLQyxNWNrk3F8f/J7PLl5HvIrC2ATVmRVHMfOs9uwaMIi3D/yfvt+FqsFkiR5vfbh7utfDjlkkgIKmQJWYYNNWJFReth+v0Dte77BypX1Ju2q3yY7zq1BsdH9RR+a0jCHteezwYJSYwG2Zn6G40V7cEv/x5osolmttka5yig74tb5xYXVOGGTQZIkCCEaHbPSVAmLzQKZpIDN5vy9WF5Tju7/6o7S6lJEaCJwz9B7MKhz7epG4kJ7Pr1tOjLKL7Z9jcmItSeXI7fqDB6+/N/281ssVvvj/OGzoa156rOIvIt58i22f+BgrvwT8xI4fJ2rvhF9UTtVuz9M1eJYZFAkSo2lHptSpn9U/2bbvDW5GdVtFLZnbPfodb0MMlzb99qAf1+7E79bBTSZTIZ+/fqhqKiozQtodaRLJqkRQjTaVufFF1/EokWLGm3fuHFjm/egcyYlpfWrjXir66QCCkSrolFcUwwT2n5JYVfYYHNrEQABgcXfLMas7rUrmOafz4fNYoNGEQKTzQjJJlDjqedqAxKsCVi/fj1O5Z/yzDHhvFdYuAjHmb1nUFRUhGpTNYQkrx06JyRUWypxKv8UVq5Zifig+GbPc854DjLR/FojNmHDybMnG3Qp/qHgB7yT/Y7Dx5RVlzXYv87CkwuRW5UNa23JBRACJcYSPLnxSZw/cR5XhNcOG8/MzbQXSrxJK9OiylbV/I4X2CCguDAkWAYFbLDAaL34eKvFgvXr18PUuScQ3BkAYKqpAeS1c6WtX78e6DESAHCkwPuLpNhgQU7lKZQZ8x0O5zxxIg1n9l/4oeJCbMXV7v+CZRFmqGwKWGBBTUVNo/xnns+EsAoISTS7MlFGWYb939WV1Xjpp5dwQ78q3KJ7DGWlZXj/+JIGxbP6dud8i6vybkLRiUp8e/5bHDYcRY0k0F3TEzdETLK/xjoaT3wWkfcxT77F9g8czJV/Yl4Chy9zdc/gf+DDw8/47PyumN1tNr4+/zXOVp+FSZhaNSpGAQWSg5ObvDZqSktyE2+MR8+gnjhjPOP2Yx3RyDQYahzqctz+ymBwfWir23OgvfLKK3j88cexYsUKDBo0yN2Ht1hUVBTkcnmj3mb5+fmNeqXVeeqpp/DII4/Yb5eXlyM+Ph5Tp05FWFiYV+N1hdlsRkpKCpKSkqBUtn6icemgZ3uKySU5tEotrh1wLVYfXY1WrLTrd36r+Q2fTv8UAPDBlx9AZpShxmqGShYESW5BjdkzBbQwTRievfFZ6KJ0CDodBKmiLkcSZJDB5uHhhwICCq0C06dPx89bf8a7qe/CaDbAagOsogYSAKNkxOLMxbW91UJj8Jfhf2nQs6u+N/e9iYhzETBUOf+jIiAQ3SUa06dPt2979r1nnT7GAgtEP4Fr+13bYPt9y++D9UL5rD6DMODDgg8Rc1kMtmRswfHq420yfHNMjzHYnrkdZtH8G0AGGeSSAhZhhlySQ8AGm622F1oduaI2P3vPleFsWe0QSJVKhRpr7fOdPn06vjpyHgCQWXbcC8+oMaswo9xchB3nPsf4+NqerOtPv4djhT/DbDPhsshE/H3cHFzb79p6sR1rwZkEzDAjWhuNob2GNni9AMDz559HtjkbNgG4mtq6HoI22LAp8xPconsM4eHh2HH2S6eP++bEvxEdrMT+0v0X5j+UUGrMR7E5E5dffnmj12V75unPIvIO5sm32P6Bg7nyT8xL4PCHXBmO1P5guznjvzBaCyEgUFpdCouwOLzelSBBo9BArVB7fWXIIHkQFty2ADMKZ2DLmS3ILMtEkDwI+/P2I78qH8cKjrk1v/afhv8JC65Z0Ox+rc3N7wp/h6HvDHX7cY7ERsTivj/c57Hj+UrdSEVXuF1Au+OOO2AwGDB06FCoVCpoNA3noSku9sxwo0upVCqMHDkSKSkpuOmmi0MVU1JScMMNNzT5GLVaDbVa3Wi7Uqn0qz/cnoqnW0g35FTmNLufHHKEB4U7HRqmlCmhVWpxZeyVeGTsI/jfif+1aoUNlUwFjVKDnuE9cX3i9dh8ZjP2Ze+DRVggQYJMkqFLcBeMix+Hr/Vfe311xVOlp/Bj+o9ITkyGQq6AXCaHwiaDWdQgWBHksWJh1+CuGNJtCACgf3R/ZFdk1z5fyGqneBK1f4AjgiKQX5XvkeddZCyCUqnE3cPvxufHPkeJsRT1xzlWW6pRbamGQlKg2FiMp7c8DYVMgdmjZjc61hdHv3BprLwECUarscHruLnFBwQEHvzhQSRGJzYY62+1NS6e1cmpzMETm56AQqZwafXH5qhkKtTYnPdenDN6DgwWA/Zl73NaRJMgQa1QQy0PgtlaOwm+QlIBkoCs3hLTEmrf8zLZxZ59tb1oa59zXRt+qX8VFtG2vT4raorx5fFXUVKdjzNlh2C58Hz35OThr98fxQfXf4CUM4fw1fHXUGEuatE5bLWT+CE+PL7R370ITURtQUy4/j6o/1qprKn9srTu9CqYhfP52c6WH0FmmbVeTmuPdL7yPN7a/xZuHHCjyzG0F/722UhNY558i+0fOJgr/8S8BA5f5yqp151I6nUnbhseB6B2VfpVB1fhYN5BZFVkwWazQZLVXleFqkNxU/+bEKoORUJ4At5PfR+Hzh9q8ppCJVNBBhmMNtfn8gUajvjqGdETSqUSQ7oNsV/rAbWLp21K34Rntz6LClOFS9d2EiQMihnkVlu3NDdDug2BVqlt9cqZEiQEKYKgkCnaxfvZnefgdgFt2bJl7j7EYx555BHMmjULl19+OcaMGYN33nkHZ8+exf33N917pqOZP34+/vbD35zuo5AUmNRrEpZNW4bff/J7e5FDXPgfAKgkFcb1GIcxcWNwx5A7oIvWIUwVhkJDYYt6uCmggOnZhoWA2wpuw7Ldy7A1YyuMFiP6R/XHw6MeRp/IPjhZfNLpEr+ecufaO/HRTR/BKqyosdbAdGFidU8uJlC/yDNn1BzszdqLipraP6aSkKCQFAhTh6FXp14em9TRaK79MNBF6y78oW86Z1ZhgwwSqsxVeOXnVxoV0NalrcOenD0u5VwuyRtNCh+kCGr2cdmV2fjk0CdYMnmJfVunoE4orC50+Bij1eiwd5IECd1CuuH6xOvx9oG3nZ47NjQWb1/7Nu785k6Hv1JFa6ORnJiMPpF9sGz3Mryf+r7T+eAUkgJm28VJ8K0wQy4pG/RAc9UP6R+4/ZjWsgorzpUfR15VJkS9RhYACg2FeOiHh5BbWQCT1fUhrZeSJAkquarJ11VsaCzUCjUMLfzVUMCGlDMf4XP9S83uW1s4bfylxgorDp0/1KLzExEREZF3JCcm2xcVqyumZZRl2FeorL/gWK+IXrhv3X0ori6G2WqGFVZIkNAzvCceH/s4ADR73QzUXgtUmCpgsVnsc/gGKYLw8KiHm9y/bsL+w/mH8d9D/3Vp1UsZZMgsy3SlCTzi2r7X4iv9Vy0euRYkD0KEOgJWWDGgSwdc7MHdB9x1113eiMMlt956K4qKirB48WLk5uZi0KBBWL9+PRISEnwWkz+ZPWo2Hk15FNWW6ibvV8qUuGfYPZg7ei500TpM6zsNnxz6BFZhtQ+DUkgKzBoyC29f17D4MLTrUBQaClFWU+Z2XF2CuzTapovWYeV1K5vcf/UfV2PB1gXYlrkN1ZZqxIbGYs6oOVi+d3mDCfVbq8RUgod+eAgRQRGosdZN6i4Am+fmkys0XCwEJScm46XJL+H5nc+jpLoECrkCUZoojOw+EpGaSOzO2u2RIbhqxcVel7kVuQ73E/UGkJ4rOwd9gb5BT7D5W+e7HE9T8xDGh8W71CNyc/rmBgW0hIgEnCw56dJ5G8UBCT0jemJF8goAcFpEe/vat5GcmIyf/vQTxn8wHkXGhj2qtAot/jrirwAuvl47azvjxV0vNnk8AQGlXIkqcxVkkgK4MFTXJqwwOXhPXur9357G/Rv+h4qaytr539qYBKDAkNWgeFZHQDSYd8wRBRSwXfhfU6zCir6RfZvsQTii2wh8edT50Es55E6H7m5I/wDVFlcKfI7bt7leiURERETkO/WLaY7uX4mVTotsj258FNVWx9/Ru2i74P3r38e5snNYeWAlcitz0S2kG+4beV+TI3fqmzd6HjJLM7ExfWOzz0Wj1KBnRM9m9/OURRMXIbsiG/ty9sFsc2/YlVySIz4sHlWWKoSrwnHXEN/VhnzF7QIaAJw+fRoffvghTp8+jeXLl6NLly7YsGED4uPjMXDgQE/H2MDf/vY3/O1vzVeLO6rkfslNDoEMkgfhtamvNXiz172xjxQcgcliglqhxqDoQZgzek6j494z7B4cLTiKiiLXuqLWP+91ide59Rx00Tp8MeOLRtt/TP8RGSUZMNk8N6wtvyofBYYCWC788ZBB5tKCDBqFBqGqUFhtVhQbix0WmozWhl2DZ4+ajat7XY1N6ZuQWZaJhPAETOk9Be+lvocgRZDD4qc7hnS92I3YlXm7gNpeN/M2zMOGWRsA1P6q89v535p9nAQ5ZJIEm7BBIVNAX6DHc1ufw7aMbSiudm0496U971q7MIDlwuqNK5JX4ONDH6PK3LiYolVo7R+gumgdVt24Cs9ufRZZFVlQSAqEB4VjcJfBuH3I7Q0eN2vILLy862WH7wFJkiCX5LDYbMCFX6kgSTBYmh9X/9jmScipalnhsP7zejXpVZd+UWuKBBksonXFo9jwWKhlapwoOdHk/QIC+kI9roy9stF9Sb2T8IjlkSYe1fDxtfMHNs6BBAlF1TmtLj7666rDREREROSa5opsw7oNc9iBYVjMMKz+42p754LmCmaX0kXrsGzaMizYugBf6h3/OCxBwtCYoZjca7Jbx28NXbQO713/Hjalb8LqQ6vxW/5v9mtQlVyFrsFdYbFZcL6qdt5jmSSDEAIKmQL9o/pDLpNjSPiQRgXJjsLtAtr27dtxzTXXYNy4cdixYweWLFmCLl264NChQ3jvvffw1VdfeSNOclFdRfm387/BZDFBJskQGxqL1695vdELvO6NfWkxp34vpDp1j31s42NIK3atF5hKpsLvEn7XZEGuJWonZffsha3BYrD3vgNqV/SUIDXby2Vwl8HY85c9AIDQF0NRWdP0sM9gZXCjbXVde+tLCE+AWq6G0WJs1XOUQYaHrnjIflslV8FocW18/8b0jVixdwXiw+Pxp2//5MK5antZSQDkMgWyy7Mx7oNxbk/aabZcLPLpC/RIzUt16/H12WBDiCrEfvuR0Y9gyc4lDYotMsjw6JhHGzyubphmc++Fi8NimxasCkZlTWXtIgi22h5ociFzNIrWbuWvT7lcPJMgIS40DuerzttXIbYKKzQKDeaNnofZo2bj75v/joqaCpeOV58n3l/T+k5DpCYSL+16yeHxyoxlTd6ni9ZBqVDCanH83nNWwBcQsNlav7BEdU11ox6ZRERERNR+PH3V0/ZhnlZhhRACaoUatw++3T5iqzXqOoWs2LsCC7YvQIGhoMH9GoUGyf2SsWjiojb/zll3PfrQlRevG+vmb6u7FiqoKsC3ad+61fOuI3C7gPbkk0/i+eefxyOPPILQ0FD79okTJ2L58uUeDY7cV7+i3FxRrG5/V9+wdUWGIW8PsffycUYlV2HZtGUe+4MQqg516wJfggSlXIkaq/MeNfWPKSBgERYoJSVUUKFaNO4RplVoGxRpuod2x4mipnvbTOw50aVYk3on4YPUD3A0/6hbK7Zc6uYBNzcolE7oMQE/pv/o0mMFBJ7f+TxGx41u9Ae+KSq5CjZhg0ySwSrMOFd+rtWLICzYusDp4hauGBM/xv7vxZMWAwDeT30fJcYSdArqhHuH32vfXp+r7wVJkposiEmQ0CmoE7LLs2EVAnVDBG0AymucP6ctmZ83e946fx35V7yd/LbTuR+m9ZmGNfo1bq9S2tqeW7EhsZhzZW3B/P1f30e+Ib/J/UwWk8NFIOLD4nGyuOU98Sxo/fBLi7A0mpuPiIiIiNoPV4Z5esLsUbMDovDU1LVQU9dMHZ3bBbTDhw9j9erVjbZHR0ejqKhlq7KRZ7lTFGvJsaO10citdDy3Vh0bbB6NY0S3Efjvof82u58MMoyOG40QVQjOV51HenE6Kszu9cYRQmB85HicsJ7A2bKzAGoLJ2q5GhGaiAZFmrmj5uKxlMcaTRLZO7w3Fl690KXz6aJ1eH7i83gs5TGcLj7tVhFNLskhl+S4vPvljc63dNpSDH5rsMuFlJzKHPx87mcXz6kAhBU2YXF7/Lwj60+tb9XjJUi4fXDDYZeLJy326B//2LDYJif67B7SHSq56kIPtYbtXVB9FilnPkJSrzsbPe7XvE1urbZZV6By1i190cRFyKnIwZH8IxcXrYCEaG007ht5H24bfBs+OfQJPkj9wGOrvwLA28lv29/z88fPx8M/Nj3BqlmYHc71cPOAmx3OM9dW5JIcu7N2+zQGIiIiIvKu5oZ5El1K5u4DIiIikJvbuHiSmpqK2NhYjwRF/i35smRoFBooZUrIHLyEJEhNDl9sjaTeSU5XQKwjl+S4uufVWDZtGe4dfi86aTq16HzXdbkOS6cuxeCYweis7YxobTTiw+MxNm5sgyLN7FGz8WrSq0iMTESIMgRRmijcorsF625f51YBMTkxGWtvXYsnxj3h8mNCVaHoHdEbdw+7G+9d/16TQw67hDRexMGZ5lYDjQyKRKQmEjVWI0y2apeLZ46GPtY9Xl+gb3K+MndM6zPN612g/z7279AqtJAg2efM0yq0eGb8MwhWBTssfn51fGmT29//7WmXz62UlC49P120Du9e/y7+MekfmDdmHl6f9jqO/u0ozj9+HosnLYYuWoclk5fgqfFPQS6Tu3x+Z9RydYMvIPePdL46sqO5HmYNmQWZ5PZHk8fIIUeQIojzoBERERERUQNu90CbOXMm/v73v+PLL7+EJEmw2Wz46aef8Nhjj+HOOxv3rqD259LFB8pN5TDbzPaCAqTaYsnEBNeGL7pKF62DQqZovmAjASaryd4T7+NDH+Ns+Vm3ziVJEuKD4jG933QkRic2OyTWU11z6wob//z5n06fpwQJw2KG4b9//G+zBZXOms7Ir8x3ezhfU5SSEvddfh8+Pfwpig3Fbg35c1SQKKkuwbq0dfg5q/meb87cOuBWfHbLZ606hivq8tzUajznKs5hW8a2Jh9XYS5EdsVJJIRfZt/2/m9Po8TUfG/OOgNjXF+kxZWeqEm9ky6sPtt6TQ1XDpaCUSUaF0XDVeFOh5V7o3ZVf65DZzRKDULVoRgbN9bzQRARERERUcByu4C2ZMkS3H333YiNjYUQAgMGDIDVasXMmTMxf/58b8RIfubSxQfUcjXWn1yP9NJ01FhqoFKoMCh6EBZOXOjxc0dro5FTmQMZ5LA5KAhZbJYGw8OCVe73hFMqlPZ/e3NIrCPBqmCUGksBNL7wj9JEYWLPiS5PONk1tCtOFZ+C1dr6AtqTVz2J2wbfhjf3vumRghwAWGDB/K3zoZKr3H6sBAkKKPDo2EfxYlLbDftzVDCdNWSW0+GH60+/j9kjXrbf3nXua7fO+4+r/+HW/s3RReuglqsbDT921/CY4Xjt96812n5t9LX4Ov/rBq8VOeR4+Mqmh3YCtT0RXVkJ112dNZ1RWF3odJ9gZTBiw2KbXIGViIiIiIg6NrcLaEqlEv/973/xj3/8A7/++itsNhuGDx+Ofv36eSM+8lOXFpXuGHKHywsXtMa9w+/FSz+9BGszK+3VHx42Jm4Mtmdsd2tIVrQ2usUxekJSrySsOb4GNmGzFxNkkgx/6P8HfDHjC7eOFRsai0hNJHIqc1oVk66zzj6XmNnqmTnP6hwvPI4uwe4NNQVqe7Vp5VrcNug2j8bTUrpoHTQKjX0p6EvpC+v1spMAk63p/ZrSRdvFK3M0DI0Zil+yf2nx40OUIQ57Qs7sPhN9+/XFqt9WNbuIQ52U9BSEBYW5vZqrMyO6jkCkNhKb0jc53EeChFsG3IIR3UZ47e8XEREREREFLrcLaHV69+6N3r17w2q14vDhwygpKUGnTi2ba4oCX1v10qq/qmL9glD9XlrdQ7o3iGXWkFn4995/o7ym3OXzDO0y1EMRt8yiiYuQXZGNI/lHUGOtgUquwqAug7Bo4iK3jzWi2wiknE5pdUz1V1719PxQJqsJFTVNL/RQV0B0dE6VpIIuyn+KHcn9kvGl/ssm76u2XHyOGSVpcHWsolahxcIJCz0QXWNPj38aN3x2Q4sXEpg3ep7T9/7CCQuxZIrrq1lmlmViZLeR+PncblRbqiGTAJuwtfg1J0HCJ3/4BKeLT+NAzgGHhbn7Rt6HFckrWnQOIiIiIiJq/9yeqXnu3Ll4//33AQBWqxUTJkzAiBEjEB8fj23btnk6PqJGFk9ajOxHs/HWNW/ZJ3Ov+1/dZO716aJ1+L9B/+fWsLBJvSZ5Omy36KJ1eO/69/D8pOfxwKgH8Pyk55tcJMAVSb2Tmh265gqj1Wj/d5g6rNXHu1TdkNVLyaXaSd0dqXajF1dbWDRxEdRydaPtEiRoVeH22xtOfwEJTU/gL4ccvcJ7oYu2C4Z2GYpXk1712vLXyYnJiNREtuixQYogjy9vnRCegDB1GK5PTEZiVD9Ea6PRLbRbi4d1qmQq6KJ1SE5Mxkc3foShXYZCXq/dw9XheHb8syyeERERERGRU273QPvqq69wxx13AAC+++47pKen4/jx4/joo4/wzDPP4KeffvJ4kERNcTaZ+6Xmjp6Lb45/g3xDfrPHVUpKTOw5EWfyz3g8Znd4qlefLloHi7XplSHdPU6dIV2GYHPG5lYf0xWSJCFEFeJwWKSrq4C2FV20DlfFX4UdmTtgFmbU9aFTyNToHtLXvt9PWRsdLsLwxjVveK1g1pRh3YY5Hd7oiEau8XgsSb2TcCT/CIqrizE2bizKTGWI1ERi9eHVLVqltf4qo1yqnIiIiIiIWsrtHmiFhYXo2rUrAGD9+vWYMWMGLrvsMtx77704fPiwxwMkcmb2qNk4OPsgzj9+HgdnH3RYdNBF6zA2fmztKqHNmNx7sl8NCfQHEiQ8dMVD9tvX97++RcdRSIoGvX9coVFoYDA7nuReIWvxSHSvGRU3Cp00naCSaSCDDDJJDhlkCFdF2ffJrTyHpoZwhqnC2rR4BgBzRs2BUqZsfsdLqBWNe9q1li5ah3mj52FCwgR00nTChIQJmDd6HnpF9GrR8XpE9PBwhERERERE1BG5XUCLiYnBsWPHYLVasWHDBkyZMgUAYDAYIJe7d2FM1JYm9prY7DxPQfKgJlcTDHQhqpBWPX7GgBkNeu4k9U6CQnKvcCWDDIO6DHL73D3De6LGWuPw/qh6RSl/opApIJfJIJMUACSYbTXQF+1GVsVJ6Av0MFgqm3ycpxdocEVyYjKeHPek28XNIV2HeCUeXbQOD135EF6d+ioeuvIh6KJ1uC7xOkRro6GULq7WKoccuigdlFLTxT+VTIWHr3C84icREREREZGr3C6g3XPPPZgxYwYGDRoESZKQlJQEANizZw/69+/v8QCJPCWpd1Kz+8SHxbfL1fd+3+f3kEuNiyMjuo5w+ri6+aE+u+WzBtt10TpEBEU4fNzY+LEYGzcWYeowBMmDEKYOw+i40fjHxH/ACucrqF7quv7XwSYcFz6vCLvCreO1BZPVhBBVCMwWEyzCBJuwQMCGQkM2dp5dg48PfQxHCwi0dK6v1lo8aTHeuOYNdA/pDo1cg1BVKGJDYhEkb3r+uS7aLg16JXrbrCGzMCFhAgZ00WFQ9CAMjRmKm3Q34esZX2P5tOXoHtLdvq8ECbGhsVj2+2Vt3puPiIiIiIjaJ7fHPi1cuBCDBg3CuXPncMstt0Ctrh3CI5fL8eSTT3o8QCJP0UXrIIfcaQEnPjy+DSNqO4smLkJORQ6O5B+B0WpEkDwIg7oMwrvXv4vBbw1u0CZ1K5oqZUqUPlnq8JjDug3D9jPbL8zzdVGQPAhPjXsKfSL7YFP6JmSWZSIhPAFTek+pzYEkh1W4VkRTyVS4ffDteGHnCw73mRA5waVjtaWE8ATkVuTCgtq552pXkBQwCyMO5Kbg13zHCx9oVdo2irKx2aNm4+peVzfIW6+IXvjuxHdYd2IdSqpLoJArMLjLYDx11VNtOp+YLlqHxRMXN/ma0kXrWCgjIiIiIiKvatHkQTfffHOjbXfddVergyHyttFxo/FTluOFLlRylcP7ApkuWod3r3+3yeJDXHgcMssyAVwsngFAXGic02POGTUHp4pOIb8qHzXWGtiEDUGKIDw65lF7YaWp3nyRmkgUGAqajVkGGcb3GA9dtA4hyhBUmCsa7aNVaBEf5H9Fz6TeSXh0w6NN3ne28rjTx47o7rxXoLc1tXiFv0y876mFNYiIiIiIiNzVogLa5s2bsXTpUuj1ekiShP79+2Pu3Ln2+dCI/NW717+LAW8NcHj/mRLfrrzpTY6KD38f+3c8lvIYqi3V9uGDGoUGj4993Onx6ooqqw6uQkZZBnqG98Tdw+5utthy/8j78eKuF2ERzlcG7RrSFTfqbgQA/L7v77FGv6bBHHYyyHBN32ucHsNXdNE6SJLkaJSmU205LJKIiIiIiIhc43YB7c0338S8efNw8803Y86cOQCA3bt3Y/r06Xjttdfw4IMPejxIIk/RResQJA+C0Wps8v4SY0kbR+R7dUPfVh5YidzKXHQL6Yb7Rt7n0pC45MRkt3snLZ60GADwj53/cLpfZU0lJveaXPuYiYtrh6AWHEGNpQYqhQqDogfhud89hzN7/bPoGaQMgrnGvQUBorXRftPbi4iIiIiIiC5yu4D24osvYunSpQ0KZQ8//DDGjRuHJUuWsIBGfq9HRA+cKDrR5H3dw7o3ub29mz1qdpvOIbV40mKs+m0VzpWfc7hPtaXa3mNOF63De9e/12gIat+IvjgD/yygDeoyCL9k/eLWY/6g+4OXoiEiIiIiIqLWcHsVzvLyckybNq3R9qlTp6K8vNwjQRF509xRc6GSNZ7rLEgehL8O/6sPIuqYuoZ0dXq/1dZwoQFdtA4PXfkQXp36Kh668iG/nwvr6auedmtFTQkS5lw5x4sRERERERERUUu5XUC7/vrrsXbt2kbb//e//+G6667zSFBE3jR71Gws+/0ydA/pDjnkkEtyxIbG4rWpr3ElvzY0pbfzOROVMmUbReIdyYnJmDFghsv7zxgww++LgkRERERERB2VS0M4X3/9dfu/dTodlixZgm3btmHMmDEAaudA++mnn/Doo02vOkfkb9p6yCI1NmvILPxw8gccPH+wyfvbQzHps1s+A74EPj/2udP9QpQhtfsSERERERGRX3KpgLZ06dIGtzt16oRjx47h2LFj9m0RERH44IMPMH/+fM9GSETtki5ah9V/XI2/fPsX/JT1k327BAlR2ij8Y6LzRQYCxWe3fIbyT8rxw+kfmrxfDjk+/eOnbRwVERERERERucOlAtqZM/45STcRBTZdtA677t2FdWnrsOrgKmSUZaBneE/cPezudrUa5fo71mP2utl458A7sMFm3x6jjcF717/Xrp4rERERERFRe+T2Kpx1CgsLIUkSOnfu7Ml4iKgDSk5MbvdFpBXJK7AieYWvwyAiIiIiIqIWcGsRgdLSUjzwwAOIiopCTEwMunTpgqioKDz44IMoLS31UohERERERERERES+43IPtOLiYowZMwbZ2dm4/fbbodPpIISAXq/HqlWrsHnzZvz888/o1KmTN+MlIiIiIiIiIiJqUy4X0BYvXgyVSoXTp08jJiam0X1Tp07F4sWLGy04QEREREREREREFMhcHsL5zTff4NVXX21UPAOArl274pVXXsHatWs9Glx9S5YswdixY6HVahEREeG18xAREREREREREdXncgEtNzcXAwcOdHj/oEGDkJeX55GgmlJTU4NbbrkFs2fP9to5iIiIiIiIiIiILuXyEM6oqChkZGQgLi6uyfvPnDnj1RU5Fy1aBABYtWqV185BRERERERERER0KZcLaNOmTcMzzzyDlJQUqFSqBveZTCY8++yzmDZtmscDbA2TyQSTyWS/XV5eDgAwm80wm82+CsuuLgZ/iIUaYm4CA/Pkv5ibwMFcBQbmybfY/oGDufJPzEvg8Ldc+Usc/sDfctNeuNOekhBCuLJjVlYWLr/8cqjVajzwwAPo378/AODYsWN46623YDKZsH//fsTHx7csahetWrUKc+fORWlpabP7Lly40N5zrb7Vq1dDq9V6IToiIiIiIiIiailDj5H2f2vPHvBhJNQRGAwGzJw5E2VlZQgLC3O6r8sFNKB2mObf/vY3bNy4EXUPkyQJSUlJePPNN9G3b1+3AnVU4Kpv3759uPzyy+233SmgNdUDLT4+HoWFhc02TFswm81ISUlBUlISlEqlr8OhepibwMA8+S/mJnAwV4GBefIttn/gYK78E/MSOPwhV18dOW//982DGi9i2FH5Q27ao/LyckRFRblUQHN5CCcA9OrVCz/88ANKSkpw8uRJAEDfvn0RGRnZokAffPBB/N///Z/TfXr27NmiYwOAWq2GWq1utF2pVPrVC87f4qGLmJvAwDz5L+YmcDBXgYF58i22f+BgrvwT8xI4/CVX/hCDv/GX3LQX7rSlWwW0Op06dcKoUaNa8tAGoqKiEBUV1erjEBEREREREREReUuLCmi+cPbsWRQXF+Ps2bOwWq04ePAggNoecCEhIb4NjoiIiIiIiIiI2q2AKaA999xz+M9//mO/PXz4cADA1q1bcfXVV/soKiIiIiIiIiIiau9kvg7AVatWrYIQotF/LJ4REREREREREZE3BUwBjYiIiIiIiIiIyBdYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInIiIApoGRkZuPfee9GrVy9oNBr06dMHCxYsQE1Nja9DIyIiIiIiIiKidk7h6wBccfz4cdhsNqxcuRJ9+/bFkSNH8Je//AVVVVV49dVXfR0eERERERERERG1YwFRQJs2bRqmTZtmv927d2+kpaVhxYoVLKAREREREREREZFXBcQQzqaUlZUhMjLS12EQEREREREREVE7FxA90C51+vRpvPHGG/jXv/7ldD+TyQSTyWS/XV5eDgAwm80wm81ejdEVdTH4QyzUEHMTGJgn/8XcBA7mKjAwT77F9g8czJV/Yl4Ch7/lyl/i8Af+lpv2wp32lIQQwouxOLVw4UIsWrTI6T779u3D5Zdfbr+dk5ODCRMmYMKECXjvvfdadPzVq1dDq9W2LGgiIiIiIiIi8gpDj5H2f2vPHvBhJNQRGAwGzJw5E2VlZQgLC3O6r08LaIWFhSgsLHS6T8+ePREUFASgtng2ceJEXHnllVi1ahVkMucjUJvqgRYfH4/CwsJmG6YtmM1mpKSkICkpCUql0tfhUD3MTWBgnvwXcxM4mKvAwDz5Fts/cDBX/ol5CRz+kKuvjpy3//vmQTE+icEf+UNu2qPy8nJERUW5VEDz6RDOqKgoREVFubRvdnY2Jk6ciJEjR+LDDz9stngGAGq1Gmq1utF2pVLpVy84f4uHLmJuAgPz5L+Ym8DBXAUG5sm32P6Bg7nyT8xL4PCXXPlDDP7GX3LTXrjTlgExB1pOTg6uvvpq9OjRA6+++ioKCgrs93Xt2tWHkRERERERERERUXsXEAW0jRs34tSpUzh16hTi4uIa3OfDEahERERERERERNQBND8O0g/cfffdEEI0+R8REREREREREZE3BUQBjYiIiIiIiIiIyFdYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJ1hAIyIiIiIiIiIicoIFNCIiIiIiIiIiIidYQCMiIiIiIiIiInKCBTQiIiIiIiIiIiInWEAjIiIiIiIiIiJyggU0IiIiIiIiIiIiJxS+DoCIiIiIiIiICACyK07icMFOFBqyUFAzCEm9k6CL1vk6LCL2QCMiIiIiIiIi39MX6LH+9LvQF+5Glbkc2zO2Y+nupdAX6H0dGhELaERERERERETkeynpKTDbyhEXmoiY4FgM6jIIxdXF2JS+ydehEXEIJxERERERERH5XmZZJnpHdoFGrkakVgVJkhCuDkdmWaavQyMKnB5o119/PXr06IGgoCB069YNs2bNQk5Ojq/DIiIiIiIiIiIPSAhPQGVNGWJC1VApZBBCoMxUhp4RPX0dGlHgFNAmTpyIL774Amlpafj6669x+vRp3Hzzzb4Oi4iIiIiIiIg8IKl3EjprO+NowVGcKzuHowVHEamJxORek30dGlHgDOGcN2+e/d8JCQl48sknceONN8JsNkOpVPowMiIiIiIiIiJqLV20DvNGz8Om9E3ILMvEsK7DMKX3FK7CSX4hYApo9RUXF+O///0vxo4d67R4ZjKZYDKZ7LfLy8sBAGazGWaz2etxNqcuBn+IhRpibgID8+S/mJvAwVwFBubJt9j+gYO58k/MS+Dwh1z1jeiLviP6NtjG145/5KY9cqc9JSGE8GIsHvX3v/8db775JgwGA0aPHo1169ahc+fODvdfuHAhFi1a1Gj76tWrodVqvRkqERERERERERH5MYPBgJkzZ6KsrAxhYWFO9/VpAc1Rgau+ffv24fLLLwcAFBYWori4GJmZmVi0aBHCw8Oxbt06SJLU5GOb6oEWHx+PwsLCZhumLZjNZqSkpCApKYnDUP0McxMYmCf/xdwEDuYqMDBPvsX2DxzMlX9iXgIHc+W/mBvvKC8vR1RUlEsFNJ8O4XzwwQfxf//3f0736dmzp/3fUVFRiIqKwmWXXQadTof4+Hjs3r0bY8aMafKxarUaarW60XalUulXLzh/i4cuYm4CA/Pkv5ibwMFcBQbmybfY/oGDufJPzEvgYK78F3PjWe60pU8LaHUFsZao6zhXv4cZERERERERERGRpwXEIgJ79+7F3r17cdVVV6FTp05IT0/Hc889hz59+jjsfUZEREREREREROQJMl8H4AqNRoM1a9Zg8uTJSExMxJ/+9CcMGjQI27dvb3KIJhERERERERERkacERA+0wYMHY8uWLb4Og4iIiIiIiIiIOqCAKKB5St28aeXl5T6OpJbZbIbBYEB5eTknAfQzzE1gYJ78F3MTOJirwMA8+RbbP3AwV/6JeQkczJX/Ym68o64+VFcvcqZDFdAqKioAAPHx8T6OhIiIiIiIiIiI/EFFRQXCw8Od7iMJV8ps7YTNZkNOTg5CQ0MhSZKvw0F5eTni4+Nx7tw5hIWF+Tocqoe5CQzMk/9ibgIHcxUYmCffYvsHDubKPzEvgYO58l/MjXcIIVBRUYHu3btDJnO+TECH6oEmk8kQFxfn6zAaCQsL4xvATzE3gYF58l/MTeBgrgID8+RbbP/AwVz5J+YlcDBX/ou58bzmep7VCYhVOImIiIiIiIiIiHyFBTQiIiIiIiIiIiInWEDzIbVajQULFkCtVvs6FLoEcxMYmCf/xdwEDuYqMDBPvsX2DxzMlX9iXgIHc+W/mBvf61CLCBAREREREREREbmLPdCIiIiIiIiIiIicYAGNiIiIiIiIiIjICRbQiIiIiIiIiIiInGAB7RIvvvgirrjiCoSGhqJLly648cYbkZaW1mAfIQQWLlyI7t27Q6PR4Oqrr8bRo0cb7PPOO+/g6quvRlhYGCRJQmlpaaNznThxAjfccAOioqIQFhaGcePGYevWrc3GePjwYUyYMAEajQaxsbFYvHgxLp3K7t///jd0Oh00Gg0SExPx0Ucfud8Yfsbfc2M0GnH33Xdj8ODBUCgUuPHGG5vcb/v27Rg5ciSCgoLQu3dvvP322261g79rD3nKzc3FzJkzkZiYCJlMhrlz57rbDH6pPeRmzZo1SEpKQnR0NMLCwjBmzBj8+OOPbreFv2vLXP36669ISkpCREQEOnfujL/+9a+orKxsNsbmPova6/uovvaQp0B+T7WH9t+1axfGjRuHzp07Q6PRoH///li6dGnLGsRPtYc81ffTTz9BoVBg2LBhLreBv2oPudm2bRskSWr03/Hjx1vWKH6qPeQKAEwmE5555hkkJCRArVajT58++OCDD9xvED/SHnJz9913N/k+GjhwYMsapR1jAe0S27dvxwMPPIDdu3cjJSUFFosFU6dORVVVlX2fV155Ba+99hrefPNN7Nu3D127dkVSUhIqKirs+xgMBkybNg1PP/20w3Nde+21sFgs2LJlCw4cOIBhw4YhOTkZeXl5Dh9TXl6OpKQkdO/eHfv27cMbb7yBV199Fa+99pp9nxUrVuCpp57CwoULcfToUSxatAgPPPAAvvvuu1a2jm/5e26sVis0Gg0efvhhTJkypcl9zpw5g+nTp2P8+PFITU3F008/jYcffhhff/11C1rEP7WHPJlMJkRHR+OZZ57B0KFDW9AK/qk95GbHjh1ISkrC+vXrceDAAUycOBHXXXcdUlNTW9Ai/qutcpWTk4MpU6agb9++2LNnDzZs2ICjR4/i7rvvdhqfK59F7fV9VF97yFMgv6faQ/sHBwfjwQcfxI4dO6DX6zF//nzMnz8f77zzTusax4+0hzzVKSsrw5133onJkye3rDH8THvKTVpaGnJzc+3/9evXr2WN4qfaS65mzJiBzZs34/3330daWho+/fRT9O/fv+UN4wfaQ26WL1/e4P1z7tw5REZG4pZbbmld47RHgpzKz88XAMT27duFEELYbDbRtWtX8dJLL9n3MRqNIjw8XLz99tuNHr9161YBQJSUlDTYXlBQIACIHTt22LeVl5cLAGLTpk0O43nrrbdEeHi4MBqN9m0vvvii6N69u7DZbEIIIcaMGSMee+yxBo+bM2eOGDdunOtPPAD4W27qu+uuu8QNN9zQaPsTTzwh+vfv32DbfffdJ0aPHu3ScQNRIOapvgkTJog5c+a4dLxAE+i5qTNgwACxaNEil/YNVN7K1cqVK0WXLl2E1Wq1b0tNTRUAxMmTJx3G48pnUX3t+X1UX6DnqU6gvqfaS/vfdNNN4o477mj2+QaqQM7TrbfeKubPny8WLFgghg4d6s7TDgiBmBtH52zvAjFXP/zwgwgPDxdFRUUtes6BIhBzc6m1a9cKSZJERkaGS8+5I2EPtGaUlZUBACIjIwHU9iDKy8vD1KlT7fuo1WpMmDABP//8s8vH7dy5M3Q6HT766CNUVVXBYrFg5cqViImJwciRIx0+7pdffsGECROgVqvt237/+98jJycHGRkZAGp/9Q8KCmrwOI1Gg71798JsNrsco7/zt9y44pdffmkQH1Cbv/3797er3NQXiHnqKNpDbmw2GyoqKuzPob3yVq5MJhNUKhVksotfBzQaDYDaoWWOuPJZ1BG1hzwF8nuqPbR/amoqfv75Z0yYMMHl+AJNoObpww8/xOnTp7FgwQKXYwo0gZobABg+fDi6deuGyZMnuzQlTqALxFx9++23uPzyy/HKK68gNjYWl112GR577DFUV1e7HF8gCMTcXOr999/HlClTkJCQ4HJ8HQULaE4IIfDII4/gqquuwqBBgwDAPvwoJiamwb4xMTFOhyZdSpIkpKSkIDU1FaGhoQgKCsLSpUuxYcMGREREOHxcXl5ek+euH9vvf/97vPfeezhw4ACEENi/fz8++OADmM1mFBYWuhyjP/PH3LjCUf4sFku7yU19gZqnjqC95OZf//oXqqqqMGPGDI8e1594M1eTJk1CXl4e/vnPf6KmpgYlJSX2oQO5ubkOH+fKZ1FH017yFKjvqUBv/7i4OKjValx++eV44IEH8Oc//9nl+AJJoObp5MmTePLJJ/Hf//4XCoXC5ZgCSaDmplu3bnjnnXfw9ddfY82aNUhMTMTkyZOxY8cOl+MLNIGaq/T0dOzatQtHjhzB2rVrsWzZMnz11Vd44IEHXI7P3wVqburLzc3FDz/80G4/h1qLBTQnHnzwQRw6dAiffvppo/skSWpwWwjRaJszQgj87W9/Q5cuXbBz507s3bsXN9xwA5KTk+1vgIEDByIkJAQhISG45pprnJ67/vZnn30W11xzDUaPHg2lUokbbrjBPjZaLpe7HKM/89fcuKK5/LUngZyn9q495ObTTz/FwoUL8fnnn6NLly4tOkYg8GauBg4ciP/85z/417/+Ba1Wi65du6J3796IiYmxf1609LOoo2kPeQrk91Sgt//OnTuxf/9+vP3221i2bFmTz6M9CMQ8Wa1WzJw5E4sWLcJll13mcjyBJhBzAwCJiYn4y1/+ghEjRmDMmDF46623cO211+LVV191Ob5AE6i5stlskCQJ//3vfzFq1ChMnz4dr732GlatWtVueqEFam7qW7VqFSIiIhwuiNfRtc+fUDzgoYcewrfffosdO3YgLi7Ovr1r164Aaqu13bp1s2/Pz89vVNl1ZsuWLVi3bh1KSkoQFhYGAHjrrbeQkpKC//znP3jyySexfv16+7C+uu6ZXbt2bVQpzs/PB3CxkqzRaPDBBx9g5cqVOH/+vP2XmdDQUERFRbnbFH7HX3PjCkf5UygU6Ny5s8vHCQSBnKf2rj3k5vPPP8e9996LL7/80uGCA+2Bt3MFADNnzsTMmTNx/vx5BAcHQ5IkvPbaa+jVqxcAtPizqCNpD3kK5PdUe2j/uuMMHjwY58+fx8KFC3Hbbbe5FaO/C9Q8VVRUYP/+/UhNTcWDDz4IoLYQIISAQqHAxo0bMWnSJLfi9DeBmhtHRo8ejU8++cSt+AJFIOeqW7duiI2NRXh4uH0fnU4HIQSysrICfuGHQM5NHSEEPvjgA8yaNQsqlcqt2DoK9kC7hBACDz74INasWYMtW7bYX4x1evXqha5duyIlJcW+raamBtu3b8fYsWNdPo/BYACABmOY627bbDYAQEJCAvr27Yu+ffsiNjYWADBmzBjs2LEDNTU19sds3LgR3bt3R8+ePRscS6lUIi4uDnK5HJ999hmSk5MbnS+Q+HtuXDFmzJgG8QG1+bv88suhVCpdPo4/aw95aq/aS24+/fRT3H333Vi9ejWuvfZatx4bKNoqV/XFxMQgJCQEn3/+OYKCgpCUlASg9Z9F7Vl7yVOgvqfaS/s39bxMJlOL4vNHgZ6nsLAwHD58GAcPHrT/d//99yMxMREHDx7ElVde2aIY/UGg58aR1NTUBoWK9qA95GrcuHHIyclBZWWlfZ8TJ05AJpM1KDgFmvaQmzrbt2/HqVOncO+997Yorg7Bw4sSBLzZs2eL8PBwsW3bNpGbm2v/z2Aw2Pd56aWXRHh4uFizZo04fPiwuO2220S3bt1EeXm5fZ/c3FyRmpoq3n33XftqdKmpqfZVRwoKCkTnzp3FH/7wB3Hw4EGRlpYmHnvsMaFUKsXBgwcdxldaWipiYmLEbbfdJg4fPizWrFkjwsLCxKuvvmrfJy0tTXz88cfixIkTYs+ePeLWW28VkZGR4syZM55vsDbk77kRQoijR4+K1NRUcd1114mrr75apKamitTUVPv96enpQqvVinnz5oljx46J999/XyiVSvHVV195trF8qD3kSQhh3zZy5Egxc+ZMkZqaKo4ePeq5hvKB9pCb1atXC4VCIf797383eA6lpaWebSwfa6tcCSHEG2+8IQ4cOCDS0tLEm2++KTQajVi+fLnT+Fz5LBKifb6P6msPeQrk91R7aP8333xTfPvtt+LEiRPixIkT4oMPPhBhYWHimWee8WBL+VZ7yNOl2ssqnO0hN0uXLhVr164VJ06cEEeOHBFPPvmkACC+/vprD7aU77WHXFVUVIi4uDhx8803i6NHj4rt27eLfv36iT//+c8ebKm21x5yU+eOO+4QV155pQdapf1iAe0SAJr878MPP7TvY7PZxIIFC0TXrl2FWq0Wv/vd78Thw4cbHGfBggXNHmffvn1i6tSpIjIyUoSGhorRo0eL9evXNxvjoUOHxPjx44VarRZdu3YVCxcubLAE7bFjx8SwYcOERqMRYWFh4oYbbhDHjx9vddv4WiDkJiEhoclj17dt2zYxfPhwoVKpRM+ePcWKFSta1S7+pr3kqan7ExISWtM0PtcecjNhwoQm77/rrrta2zx+pS1zNWvWLBEZGSlUKpUYMmSI+Oijj1yKsbnPIkfPI9DfR/W1hzwF8nuqPbT/66+/LgYOHCi0Wq0ICwsTw4cPF2+99ZawWq2taht/0h7ydKn2UkBrD7l5+eWXRZ8+fURQUJDo1KmTuOqqq8T333/fqnbxR+0hV0IIodfrxZQpU4RGoxFxcXHikUceaVBoCkTtJTelpaVCo9GId955p8Vt0RFIQlyYQY6IiIiIiIiIiIgaCdwJsYiIiIiIiIiIiNoAC2hEREREREREREROsIBGRERERERERETkBAtoRERERERERERETrCARkRERERERERE5AQLaERERERERERERE6wgEZE9P/t3L9KHGscx+Hv6lGIbGJ01bUI6YKICUhyBeksBMUmhYViZWeVwhRBG0sLsRRTBeJNBLPRIoUXEFAUEyV4Af4JwT2dh5zIcJqzm+jzwMLOOzD7e9vPzCwAAAAUENAAAAAAoICABgBwAy0sLGR4eLjZYwAA3Ailer1eb/YQAAD8d6VSqfD81NRUVldXc3FxkUql0qCpAABuLgENAOAP8+3bt6vvGxsbef36dT5//ny1dufOnXR2djZjNACAG8krnAAAf5j+/v6rT2dnZ0ql0i9r/36Fc3p6OuPj41laWkq1Ws39+/ezuLiYHz9+5OXLl+nu7s6DBw+yvr7+028dHR3lxYsX6erqSqVSydjYWA4ODhq7YQCAJhPQAABuiffv3+f4+Di1Wi3Ly8tZWFjI6Ohourq68unTp8zOzmZ2djZfvnxJkpyenub58+cpl8up1WrZ2tpKuVzOyMhIvn//3uTdAAA0joAGAHBLdHd3Z2VlJQMDA5mZmcnAwEBOT0/z6tWrPHr0KPPz82lvb8/29naS5N27d2lpacna2lqePHmSwcHBvHnzJoeHh9nc3GzuZgAAGuivZg8AAEBjDA0NpaXln/un1Wo1jx8/vjpubW1NpVLJyclJkmRnZye7u7u5e/fuT9c5Pz/P3t5eY4YGAPgNCGgAALdEW1vbT8elUunatcvLyyTJ5eVlnj17lrdv3/5yrd7e3v9vUACA34yABgDAtZ4+fZqNjY309fXl3r17zR4HAKBp/AcaAADXmpycTE9PT8bGxvLx48fs7+/nw4cPmZuby9evX5s9HgBAwwhoAABcq6OjI7VaLQ8fPszExEQGBwczMzOTs7MzT6QBALdKqV6v15s9BAAAAAD8rjyBBgAAAAAFBDQAAAAAKCCgAQAAAEABAQ0AAAAACghoAAAAAFBAQAMAAACAAgIaAAAAABQQ0AAAAACggIAGAAAAAAUENAAAAAAoIKABAAAAQAEBDQAAAAAK/A1HSDyGuo6o8wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -391,7 +397,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.0" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_management_notebooks/2017-05-14-running_compliance_checker.ipynb b/jupyterbook/content/code_gallery/data_management_notebooks/2017-05-14-running_compliance_checker.ipynb index 88762c7f..f090d884 100644 --- a/jupyterbook/content/code_gallery/data_management_notebooks/2017-05-14-running_compliance_checker.ipynb +++ b/jupyterbook/content/code_gallery/data_management_notebooks/2017-05-14-running_compliance_checker.ipynb @@ -48,7 +48,7 @@ "\n", "Created: 2017-05-14\n", "\n", - "The IOOS Compliance Checker is a Python-based tool that helps users check the meta data compliance of a netCDF file. This software can be run in a web interface here: https://data.ioos.us/compliance/index.html The checker can also be run as a Python tool either on the command line or in a Python script. This notebook demonstrates the python usage of the Compliance Checker.\n", + "The IOOS Compliance Checker is a Python-based tool that helps users check the meta data compliance of a netCDF file. This software can be run in a web interface here: [https://compliance.ioos.us/index.html](https://compliance.ioos.us/index.html) The checker can also be run as a Python tool either on the command line or in a Python script. This notebook demonstrates the python usage of the Compliance Checker.\n", "\n", "## Purpose:\n", "\n", @@ -278,7 +278,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_management_notebooks/2018-02-27-pocean-timeSeries-demo.ipynb b/jupyterbook/content/code_gallery/data_management_notebooks/2018-02-27-pocean-timeSeries-demo.ipynb index bccbdd5d..3c3c02af 100644 --- a/jupyterbook/content/code_gallery/data_management_notebooks/2018-02-27-pocean-timeSeries-demo.ipynb +++ b/jupyterbook/content/code_gallery/data_management_notebooks/2018-02-27-pocean-timeSeries-demo.ipynb @@ -48,7 +48,7 @@ "\n", "Created: 2018-02-27\n", "\n", - "IOOS recommends to data providers that their netCDF files follow the CF-1.6 standard. In this notebook we will create a [CF-1.6 compliant](http://cfconventions.org/latest.html) file that follows file that follows the [Discrete Sampling Geometries](http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/build/ch09.html) (DSG) of a `timeSeries` from a pandas DataFrame.\n", + "IOOS recommends to data providers that their netCDF files follow the CF-1.6 standard. In this notebook we will create a [CF-1.6 compliant](https://cfconventions.org/latest.html) file that follows file that follows the [Discrete Sampling Geometries](https://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/build/ch09.html) (DSG) of a `timeSeries` from a pandas DataFrame.\n", "\n", "The `pocean` module can handle all the DSGs described in the CF-1.6 document: `point`, `timeSeries`, `trajectory`, `profile`, `timeSeriesProfile`, and `trajectoryProfile`. These DSGs array may be represented in the netCDF file as:\n", "\n", @@ -323,7 +323,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We also need to map the our data axes to [`pocean`'s defaults](https://github.com/pyoceans/pocean-core/blob/master/pocean/utils.py#L50-L59). This step is not needed if the data axes are already named like the default ones." + "We also need to map the our data axes to `pocean`'s defaults. This step is not needed if the data axes are already named like the default ones." ] }, { @@ -749,7 +749,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "For more information on `pocean` please check the [API docs](https://pyoceans.github.io/pocean-core/docs/api/pocean.html)." + "For more information on `pocean` please check the [docs](https://pyoceans.github.io/pocean-core/)." ] } ], @@ -779,7 +779,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.10" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/jupyterbook/content/code_gallery/data_management_notebooks/2020-12-08-DataToDwC.ipynb b/jupyterbook/content/code_gallery/data_management_notebooks/2020-12-08-DataToDwC.ipynb index dfc08328..acad7923 100644 --- a/jupyterbook/content/code_gallery/data_management_notebooks/2020-12-08-DataToDwC.ipynb +++ b/jupyterbook/content/code_gallery/data_management_notebooks/2020-12-08-DataToDwC.ipynb @@ -52,12 +52,12 @@ "\n", "Created: 2020-12-08\n", "\n", - "*Caution:* This notebook was created for the [IOOS DMAC Code Sprint](https://www.glos.us/code-sprint/) Biological Data Session.\n", + "*Caution:* This notebook was created for the [IOOS DMAC Code Sprint](https://glos.org/2019-code-sprint/) Biological Data Session.\n", "The data in this notebook were created specifically as an example and meant solely to be\n", "illustrative of the process for aligning data to the biological data standard - [Darwin Core](https://dwc.tdwg.org/).\n", "These data should not be considered actual occurrences of species and any measurements\n", "are also contrived. This notebook is meant to provide a step by step process for taking\n", - "original data and aligning it to Darwin Core. It has been adapted from the R markdown notebook created by Abby Benson [IOOS_DMAC_DataToDWC_Notebook_event.md](https://github.com/ioos/bio_data_guide/blob/master/Standardizing%20Marine%20Biological%20Data/datasets/example_script_with_fake_data/IOOS_DMAC_DataToDwC_Notebook_event.md).\n", + "original data and aligning it to Darwin Core. It has been adapted from the R markdown notebook created by Abby Benson [IOOS_DMAC_DataToDWC_Notebook_event.md](https://github.com/ioos/bio_data_guide/blob/main/datasets/example_script_with_fake_data/IOOS_DMAC_DataToDwC_Notebook_event.md).\n", "\n", "First let's bring in the appropriate libraries to work with the tabular data files and generate the appropriate content for the Darwin Core requirements." ] @@ -263,7 +263,7 @@ " - It's only one file to produce.\n", " - However, several pieces of information will be left out if we choose that option.\n", "\n", - "- **[sampling event](https://dwc.tdwg.org/terms/#event) with [occurrence](https://dwc.tdwg.org/terms/#occurrence) and [extended measurement or fact (eMoF)](https://tools.gbif.org/dwca-validator/extension.do?id=http://rs.iobis.org/obis/terms/ExtendedMeasurementOrFact)**:\n", + "- **[sampling event](https://dwc.tdwg.org/terms/#event) with [occurrence](https://dwc.tdwg.org/terms/#occurrence) and [extended measurement or fact (eMoF)](https://rs.gbif.org/extensions.html#http://rs.iobis.org/obis/terms/ExtendedMeasurementOrFact)**:\n", "\n", " - More difficult to create.\n", " - composed of several files.\n", @@ -640,7 +640,7 @@ "### Taxonomic Name Matching\n", "\n", "A requirement for [OBIS](https://obis.org/) is that all scientific names match to the [World Register of\n", - "Marine Species (WoRMS)](http://www.marinespecies.org/) and a `scientificNameID` is included. A `scientificNameID` looks\n", + "Marine Species (WoRMS)](https://www.marinespecies.org/) and a `scientificNameID` is included. A `scientificNameID` looks\n", "like this `urn:lsid:marinespecies.org:taxname:275730` with the last digits after\n", "the colon being the **WoRMS aphia ID**. We'll need to go out to WoRMS to grab this\n", "information. So, we create a lookup table of the unique scientific names found in the **occurrence** data we created above." @@ -665,7 +665,7 @@ "id": "trYhL8HTW4Qp" }, "source": [ - "Next, we add the known columns that we can grab information from [WoRMS](http://www.marinespecies.org/) including the required `scientificNameID` and populate the look up table with empty values for those fields (to initialize the DataFrame for population later)." + "Next, we add the known columns that we can grab information from [WoRMS](https://www.marinespecies.org/) including the required `scientificNameID` and populate the look up table with empty values for those fields (to initialize the DataFrame for population later)." ] }, { @@ -1248,9 +1248,9 @@ "source": [ "## Extended Measurement Or Fact (eMoF)\n", "\n", - "The last file we need to create is the **extended measurement or fact (eMoF)** file. The measurement or fact includes measurements/facts about the event (temp, salinity, etc) as well as about the occurrence (percent cover, abundance, weight, length, etc). They are linked to the events using `eventID` and to the occurrences using `occurrenceID`. [Extended Measurements Or Facts](https://tools.gbif.org/dwca-validator/extension.do?id=http://rs.iobis.org/obis/terms/ExtendedMeasurementOrFact) are any other generic observations that are associated with resources that are described using Darwin Core (eg. water temperature observations). See the [DwC implementation guide](https://dwc.tdwg.org/rdf/#2-implementation-guide) for more information.\n", + "The last file we need to create is the **extended measurement or fact (eMoF)** file. The measurement or fact includes measurements/facts about the event (temp, salinity, etc) as well as about the occurrence (percent cover, abundance, weight, length, etc). They are linked to the events using `eventID` and to the occurrences using `occurrenceID`. [Extended Measurements Or Facts](https://rs.gbif.org/extensions.html#http://rs.iobis.org/obis/terms/ExtendedMeasurementOrFact) are any other generic observations that are associated with resources that are described using Darwin Core (eg. water temperature observations). See the [DwC implementation guide](https://dwc.tdwg.org/rdf/#2-implementation-guide) for more information.\n", "\n", - "For the various `TypeID` fields (eg. `measurementTypeID`) include URI's from the [BODC NERC vocabulary](https://www.bodc.ac.uk/resources/vocabularies/vocabulary_search/) or other *nearly permanent* source, where possible. For example, [water temperature](http://vocab.nerc.ac.uk/collection/P25/current/WTEMP/) in the BODC NERC vocabulary, the URI is `http://vocab.nerc.ac.uk/collection/P25/current/WTEMP/`.\n", + "For the various `TypeID` fields (eg. `measurementTypeID`) include URI's from the [BODC NERC vocabulary](https://vocab.nerc.ac.uk/search_nvs/) or other *nearly permanent* source, where possible. For example, [water temperature](http://vocab.nerc.ac.uk/collection/P25/current/WTEMP/) in the BODC NERC vocabulary, the URI is `http://vocab.nerc.ac.uk/collection/P25/current/WTEMP/`.\n", "\n", "We then populate the appropriate fields with the information we have available. The `measurementValue` field is populated with the observed values of the measurement described in the `measurementType` and `measurementUnit` field.\n", "\n", @@ -1598,7 +1598,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.10" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/jupyterbook/content/ioos_installation_conda.md b/jupyterbook/content/ioos_installation_conda.md index afebeaf7..ef03218d 100644 --- a/jupyterbook/content/ioos_installation_conda.md +++ b/jupyterbook/content/ioos_installation_conda.md @@ -148,7 +148,7 @@ For example, if you are seeing kernel errors like the one below. 1. If you believe that only your environment is broken you can follow the [update environment](#updating-the-ioos-environment) instructions from above; 1. Sometimes conda updates can break backwards compatibility and updating is broken. In those cases remove the Miniforge3 directory and perform a fresh install of the new version. -1. In rare cases you may want to install a frozen version of the environment. Like, you need the exact same version that is running on our CIs. You can accomplish that by [downloading the lock file](https://github.com/ioos/ioos_code_lab/raw/main/.binder/conda-lock.yml) and issuing the command: +1. In rare cases you may want to install a frozen version of the environment. Like, you need the exact same version that is running on our CIs. You can accomplish that by [downloading the lock file](https://raw.githubusercontent.com/ioos/ioos_code_lab/main/.binder/conda-lock.yml) and issuing the command: ```shell conda create --name IOOS --file .binder/conda-lock.yml