Skip to content

Latest commit

 

History

History
 
 

Step-by-Step

This document describes the step-by-step instructions to run large language models (LLMs) on 4th Gen Intel® Xeon® Scalable Processor (codenamed Sapphire Rapids) with PyTorch and Intel® Extension for PyTorch.

The scripts run_clm.py, run_mlm.py and run_plm.py provide three quantization approaches respectively (PostTrainingDynamic, PostTrainingStatic, QuantAwareTraining) based on Intel® Neural Compressor and return last token prediction accuracy by trainer.

The script run_clm_no_trainer.py supports GPTJ, OPT, LLaMA, BLOOM, MPT and Falcon quantization and validates last word prediction accuracy with lm_eval now, and we are adding more models.

Prerequisite

1. Create Environment

# Installation
git clone https://github.com/intel/intel-extension-for-transformers.git itrex
cd itrex
pip install -v .
cd examples/huggingface/pytorch/language-modeling/quantization
pip install -r requirements.txt

Run

Here is how to run the scripts:

Causal Language Modeling (CLM)

run_clm_no_trainer.py quantizes the large language models using the dataset NeelNanda/pile-10k calibration and validates lambada_openai, piqa, winogrande, hellaswag and other datasets accuracy provided by lm_eval, an example command is as follows.

GPT-J-6b

Quantization

# "--sq" is used to enable smooth quant
# "--int8_bf16_mixed" is used to enable int8-bf16 mixed mode for platform that natively supports bf16
# "--peft_model_id" is used to loaded PEFT weights from peft_model_id
python run_clm_no_trainer.py \
    --model EleutherAI/gpt-j-6B \
    --quantize \
    --sq \
    --alpha 1.0 \
    --output_dir "saved_results" \
    --ipex \
    --peft_model_id "peft_model_id"
# "--approach weight_only" is used to enable weight only quantization.
python run_clm_no_trainer.py \
    --model EleutherAI/gpt-j-6B \
    --quantize \
    --approach weight_only \
    --woq_bits 4 \
    --woq_group_size 128 \
    --woq_scheme asym  \
    --woq_algo RTN \
    --woq_enable_mse_search \
    --output_dir "saved_results"

Notes: Weight-only quantization based on fake quantization is previewly supported and supports RTN, GPTQ[1], AWQ[2], TEQ algorithms. For more details, please refer to link

python run_clm_no_trainer.py \
    --model EleutherAI/gpt-j-6B \
    --woq_algo GPTQ \
    --woq_bits 4 \
    --quantize \
    --pad_max_length 2048 \
    --gptq_pad_max_length 2048 \
    --gptq_use_max_length \
    --approach weight_only \
    --output_dir "test_models" \

Accuracy with lm_eval

# FP32 Accuracy
python run_clm_no_trainer.py \
    --model EleutherAI/gpt-j-6B \
    --accuracy \
    --batch_size 112 \
    --tasks "lambada_openai" "lambada_standard"\
    --int8 \
    --ipex \
    --output_dir "saved_results"  # load int8 model
# to validate FP32 model, please remove "--int8" and "--output_dir".

OPT-1.3b/2.7b/6.7b

Quantization

# "--sq" is used to enable smooth quant
# "--int8_bf16_mixed" is used to enable int8-bf16 mixed mode for platform that natively supports bf16
# "--peft_model_id" is used to loaded PEFT weights from peft_model_id
python run_clm_no_trainer.py \
    --model facebook/opt-2.7b \
    --quantize \
    --sq \
    --alpha 0.5 \
    --ipex \
    --output_dir "saved_results" \
    --int8_bf16_mixed \
    --peft_model_id "peft_model_id"

Accuracy with lm_eval

python run_clm_no_trainer.py \
    --model facebook/opt-2.7b \
    --accuracy \
    --batch_size 112 \
    --tasks "lambada_openai" "lambada_standard" \
    --int8 \
    --ipex \
    --output_dir "saved_results"  # load int8 model
# to validate FP32 model, please remove "--int8" and "--output_dir".

LLAMA-7b/13b/30b

Note: LLAMA requires IPEX requirements >= 2.1 to get better accuracy, please source install from intel_extension_for_pytorch.

Quantization

# "--sq" is used to enable smooth quant
# "--int8_bf16_mixed" is used to enable int8-bf16 mixed mode for platform that natively supports bf16
# "--peft_model_id" is used to loaded PEFT weights from peft_model_id
python run_clm_no_trainer.py \
    --model decapoda-research/llama-7b-hf \
    --quantize \
    --sq \
    --alpha 0.8 \
    --ipex \
    --output_dir "saved_results" \
    --int8_bf16_mixed \
    --peft_model_id "peft_model_id"

Accuracy with lm_eval

python run_clm_no_trainer.py \
    --model decapoda-research/llama-7b-hf \
    --accuracy \
    --batch_size 112 \
    --tasks  "lambada_openai" "lambada_standard" \
    --int8 \
    --ipex \
    --output_dir "saved_results"  # load int8 model
# to validate FP32 model, please remove "--int8" and "--output_dir".

MPT-7b-chat

Quantization

mosaicml/mpt-7b has been updated frequently, and has not yet been integrated into transformers, so we fixed a commit number 68e1a8e0ebb9b30f3c45c1ef6195980f29063ae2 as local folder to enable it.

# "--sq" is used to enable smooth quant
# "--int8_bf16_mixed" is used to enable int8-bf16 mixed mode for platform that natively supports bf16
python run_clm_no_trainer.py \
    --model mosaicml/mpt-7b-chat \
    --quantize \
    --sq \
    --alpha 0.85 \
    --ipex \
    --output_dir "saved_results"

Accuracy with lm_eval

python run_clm_no_trainer.py \
    --model mosaicml/mpt-7b-chat \
    --accuracy \
    --batch_size 112 \
    --tasks  "lambada_openai" \
    --int8 \
    --ipex \
    --output_dir "saved_results"  # load int8 model
# to validate FP32 model, please remove "--int8" and "--output_dir".

Falcon-7b-instruct

Quantization

tiiuae/falcon-7b-instruct has been updated frequently, and has not yet been integrated into transformers, so we fixed a commit number c7f670a03d987254220f343c6b026ea0c5147185 as local folder to enable it.

# "--sq" is used to enable smooth quant
# "--int8_bf16_mixed" is used to enable int8-bf16 mixed mode for platform that natively supports bf16
python run_clm_no_trainer.py \
    --model tiiuae/falcon-7b-instruct \
    --quantize \
    --sq \
    --alpha 0.7 \
    --output_dir "saved_results"

Accuracy with lm_eval

python run_clm_no_trainer.py \
    --model tiiuae/falcon-7b-instruct \
    --accuracy \
    --batch_size 112 \
    --tasks  "lambada_openai" \
    --int8 \
    --ipex \
    --output_dir "saved_results"  # load int8 model
# to validate FP32 model, please remove "--int8" and "--output_dir".

To do quantization based transformers language-modeling example run_clm.py, please use the following command.

Causal Language Modeling (CLM)

python run_clm.py \
    --model_name_or_path EleutherAI/gpt-neo-125M \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --tune \
    --quantization_approach PostTrainingStatic \
    --do_train \
    --do_eval \
    --output_dir ./tmp/clm_output \
    --overwrite_output_dir

Masked Language Modeling (MLM)

python run_mlm.py \
    --model_name_or_path bert-base-uncased \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --tune \
    --quantization_approach PostTrainingStatic \
    --do_train \
    --do_eval \
    --output_dir ./tmp/mlm_output \
    --overwrite_output_dir

Permutation Language Modeling (PLM)

    python run_plm.py \
    --model_name_or_path xlnet-base-cased \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --tune \
    --quantization_approach PostTrainingStatic \
    --do_train \
    --do_eval \
    --output_dir ./tmp/plm_output \
    --overwrite_output_dir

[1]. Elias, Frantar, et al. "GPTQ: Accurate Post-training Compression for Generative Pretrained Transformers." arXiv preprint arXiv:2210.17323 (2023). [2]. Lin, Ji, et al. "AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration." arXiv preprint arXiv:2306.00978 (2023).