diff --git a/neural_speed/convert/convert_quantized_mistral.py b/neural_speed/convert/convert_quantized_mistral.py index 7e25bd22b..a0af0e13a 100644 --- a/neural_speed/convert/convert_quantized_mistral.py +++ b/neural_speed/convert/convert_quantized_mistral.py @@ -161,9 +161,6 @@ def main(args_in: Optional[List[str]] = None) -> None: f.write(struct.pack("f", config["rms_norm_eps"])) f.write(struct.pack("f", config["rope_theta"] if "rope_theta" in config else 10000)) f.write(struct.pack("f", rope_scale)) - f.write(struct.pack("f", 0.0)) # config.json "rope_scaling.factor", not enabled - f.write(struct.pack("i", 0)) # rope_scaling.original_max_position_embeddings - f.write(struct.pack("i", 0)) # params["rope_scaling"]["type"] =="yarn" else 0)) f.write(struct.pack("f", 0.0)) # config.json "rope_scaling.factor", not enabled f.write(struct.pack("i", 0)) # rope_scaling.original_max_position_embeddings diff --git a/neural_speed/convert/convert_quantized_mixtral.py b/neural_speed/convert/convert_quantized_mixtral.py new file mode 100644 index 000000000..cbd9d81ed --- /dev/null +++ b/neural_speed/convert/convert_quantized_mixtral.py @@ -0,0 +1,291 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- +# +# Copyright (c) 2023 Intel Corporation +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import json +import sys +import re +import argparse +from common import * + + +def permute_func(weights, n_head: int, n_head_kv: int): + if n_head_kv is not None and n_head != n_head_kv: + n_head = n_head_kv + return (weights.reshape(n_head_kv, 2, weights.shape[0] // n_head_kv // 2, + *weights.shape[1:]).swapaxes(1, 2).reshape(weights.shape)) + + +def convert_to_q4_bestla_tensor(src_name, dst_name, model, fout, q_config, n_head, n_head_kv=0, permute_func=None): + # unpack weight and repack into jblas format + import neural_speed.llama_cpp as cpp_model + if ".weight" in src_name: + src_name = src_name.replace(".weight", "") + qzeros = model[f"{src_name}.qzeros"] + zeros = qzeros_to_zeros(qzeros) + scales = model[f"{src_name}.scales"] + qweight = model[f"{src_name}.qweight"] + + int_weight, gptq_scales, gptq_zeros = unpack_weight(qweight, scales, qzeros, q_config) + int_weight = int_weight.view(-1, int_weight.shape[-1]) + + # shuffle weight in GPTQ when act order is on + if 'desc_act' in q_config and q_config['desc_act']: + g_idx = model[f"{src_name}.g_idx"] + int_weight2 = int_weight.clone() + group_size = q_config['group_size'] + group_dict = {} + for i in range(len(g_idx)): + group_idx = g_idx[i].item() + if group_idx not in group_dict: + target_idx = group_idx * group_size + group_dict[group_idx] = 0 + else: + group_dict[group_idx] = group_dict[group_idx] + 1 + target_idx = group_idx * group_size + group_dict[group_idx] + int_weight2[target_idx] = int_weight[i] + int_weight = int_weight2 + + # permute_func for llama-like model + if permute_func: + int_weight = permute_func(int_weight.t(), n_head, n_head_kv).t().contiguous() + gptq_scales = permute_func(gptq_scales.t(), n_head, n_head_kv).t().contiguous() + gptq_zeros = permute_func(gptq_zeros.t(), n_head, n_head_kv).t().contiguous() + + shape = int_weight.shape[::-1] + # write_header(fout, shape[::-1], dst_name, GGML_QJBLAS_TYPE) + n_dims = len(shape) + str = dst_name.encode('utf-8') + fout.write(struct.pack("iii", n_dims, len(str), GGML_QJBLAS_TYPE)) + # import pdb;pdb.set_trace() + for i in range(n_dims): + fout.write(struct.pack("i", shape[n_dims - 1 - i])) + fout.write(str) + + weight_dtype = "int8" + if q_config['bits'] == 4: + int_weight = (int_weight - 8) * 16 + gptq_scales = gptq_scales / 16 + gptq_zeros = (gptq_zeros - 8) * 16 + weight_dtype == "int4" + + dst = np.zeros((int_weight.shape[0], int_weight.shape[1] * 4), dtype=np.int8) + int_weight = np.ascontiguousarray(int_weight.numpy()) + gptq_scales = np.ascontiguousarray((gptq_scales.float()).numpy()) + if q_config['sym']: + gptq_zeros = np.empty(0, dtype=np.int8) + else: + gptq_zeros = np.ascontiguousarray(gptq_zeros.numpy()) + if 'desc_act' in q_config and q_config['desc_act']: + g_idx = np.ascontiguousarray(g_idx.numpy()) + else: + g_idx = np.empty(0, dtype=np.int32) + + # pack int weight in bestla format + byte_size = cpp_model.Model.np_bestla_qpack(int_weight, + gptq_scales, + gptq_zeros, + g_idx, + dst, + weight_dtype=weight_dtype, + group_size=q_config['group_size'], + alg="sym" if q_config['sym'] else "asym", + compute_dtype="int8") + dst.flatten()[:byte_size].tofile(fout) + print(f"convert_to_q4_bestla_tensor: {src_name:>40} -> {dst_name:<40} shape: {shape}, byte_size: {byte_size:<10}") + + +def main(args_in: Optional[List[str]] = None) -> None: + parser = argparse.ArgumentParser(description="Convert a model to a NE compatible file") + parser.add_argument("--outtype", choices=["f32", "f16"], help="output format (default: based on input)") + parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") + parser.add_argument("model", type=Path, help="directory containing model file") + args = parser.parse_args(args_in) + + out_path = args.outfile.as_posix() + model_path = args.model.as_posix() + + model, config, quantize_config = load_quantized_model(model_path) + f = open(out_path, "wb") + + # possible data types + # ftype == 0 -> float32 + # ftype == 1 -> float16 + ftype = 0 + if args.outtype == "f16": + ftype = 1 + + # 1. write hparams + n_vocab = config["vocab_size"] + n_embd = config["hidden_size"] + n_layer = config["num_hidden_layers"] + n_head = config["num_attention_heads"] + ffn_hidden_size = config["intermediate_size"] + + # hardcoded: + n_mult = 256 + # 1. write head and params + ne_file_magic = 0x67676d66 + f.write(struct.pack("i", ne_file_magic)) # magic: ne in hex + #f.write(b"ggjt"[::-1]) # magic + rope_scale = 1 + if "rope_scaling" in config and config["rope_scaling"] is not None: + rope_scale = config["rope_scaling"]["factor"] if "factor" in config["rope_scaling"] else 1 + + n_head = n_head + n_head_kv = 8 + values = [ + 1, # file version + n_vocab, + n_embd, + 256, #hparams.n_mult, + n_head, + n_head_kv, # n_head_kv (multi_query attention) + n_layer, + n_embd // n_head, # rot (obsolete) + 0, #file_type.value, # TODO + ] + + f.write(struct.pack("i" * len(values), *values)) + f.write(struct.pack("i", 0)) + f.write(struct.pack("f", 0)) + f.write(struct.pack("f", 0)) + f.write(struct.pack("i", 0)) + f.write(struct.pack("i", 0)) # word_embed_proj_dim (for opt) + f.write(struct.pack("i", 0)) # do_layer_norm_before (for opt) + + f.write(struct.pack("i", 0)) + f.write(struct.pack("i", ffn_hidden_size)) + f.write(struct.pack("i", 0)) + f.write(struct.pack("i", 8)) # n_experts + f.write(struct.pack("i", 2)) # n_expert_used + + f.write(struct.pack("f", config["rms_norm_eps"])) + f.write(struct.pack("f", config["rope_theta"] if "rope_theta" in config else 10000)) + f.write(struct.pack("f", rope_scale)) + + f.write(struct.pack("f", 0.0)) # config.json "rope_scaling.factor", not enabled + f.write(struct.pack("i", 0)) # rope_scaling.original_max_position_embeddings + f.write(struct.pack("i", 0)) # params["rope_scaling"]["type"] =="yarn" else 0)) + + # TODO, bos_token_id = 0 in https://huggingface.co/decapoda-research/llama-7b-hf/blob/main/config.json + # but bos_token_id = 1 in llama.cpp + f.write(struct.pack("i", 1)) + f.write(struct.pack("i", 2)) + + f.write(struct.pack("i", 0)) + f.write(struct.pack("i", 0)) + + # 2. vocab + tokenizer_path = os.path.join(model_path, "tokenizer.model") + vocab = load_vocab(Path(tokenizer_path)) + for text, score in vocab.all_tokens(): + f.write(struct.pack("i", len(text))) + f.write(text) + f.write(struct.pack("f", score)) + + def convert_mixtral_to_fp32_tensor(src_name, dst_name, model, fout): + #data = model[src_name] + # qwen-gptq is torch.bfloat16 mostly. + if model[src_name].dtype == torch.float32: + data = model[src_name].squeeze().numpy() + else: + data = model[src_name].squeeze().to(torch.float32).numpy() + #data = model[src_name].squeeze().numpy() + data = data.astype(np.float32) + shape = data.shape + n_dims = len(shape) + print("convert_mixtral_to_fp32_tensor: %40s" % src_name + "-> %-40s" % dst_name + " shape: ", shape, " type: ", + data.dtype) + #data = data.to(torch.float32) + + #ftype_cur = {torch.float16: 1, torch.float32: 0}[data.dtype] + # default type is fp32 + ftype_cur = 0 + if ftype == 1 and n_dims > 1: + # print(" Converting to float16", data.shape, data[:3, :3].tolist()) + data = data.astype(np.float16) + ftype_cur = 1 + else: + # print(" Converting to float32", data.shape, data[:3, :3].tolist() if n_dims > 1 else data[:3].tolist()) + data = data.astype(np.float32) + + # header + # write_header(fout, shape, dst_name, ftype_cur) + str = dst_name.encode('utf-8') + f.write(struct.pack("iii", n_dims, len(str), ftype_cur)) + for i in range(n_dims): + f.write(struct.pack("i", data.shape[n_dims - 1 - i])) + f.write(str) + + # data + data.tofile(f) + #data.numpy().tofile(fout) + + # 3. write tensors + list_vars = model + convert_mixtral_to_fp32_tensor("model.embed_tokens.weight", "tok_embeddings.weight", list_vars, f) + convert_mixtral_to_fp32_tensor("model.norm.weight", "norm.weight", list_vars, f) + convert_mixtral_to_fp32_tensor("lm_head.weight", "output.weight", list_vars, f) + + for name in list_vars.keys(): + print(f"name = {name}") + + for i in range(n_layer): + convert_to_q4_bestla_tensor(f"model.layers.{i}.self_attn.q_proj", + f"layers.{i}.attention.wq.weight", + list_vars, + f, + quantize_config, + n_head, + n_head, + permute_func=permute_func) + convert_to_q4_bestla_tensor(f"model.layers.{i}.self_attn.k_proj", + f"layers.{i}.attention.wk.weight", + list_vars, + f, + quantize_config, + n_head, + n_head_kv, + permute_func=permute_func) + convert_to_q4_bestla_tensor(f"model.layers.{i}.self_attn.v_proj", f"layers.{i}.attention.wv.weight", list_vars, + f, quantize_config, n_head) + convert_to_q4_bestla_tensor(f"model.layers.{i}.self_attn.o_proj", f"layers.{i}.attention.wo.weight", list_vars, + f, quantize_config, n_head) + + convert_mixtral_to_fp32_tensor(f"model.layers.{i}.block_sparse_moe.gate.weight", + f"layers.{i}.ffn_gate_inp.weight", list_vars, f) + + for j in range(8): + convert_to_q4_bestla_tensor(f"model.layers.{i}.block_sparse_moe.experts.{j}.w1", + f"layers.{i}.ffn_gate.{j}.weight", list_vars, f, quantize_config, n_head) + convert_to_q4_bestla_tensor(f"model.layers.{i}.block_sparse_moe.experts.{j}.w2", + f"layers.{i}.ffn_down.{j}.weight", list_vars, f, quantize_config, n_head) + convert_to_q4_bestla_tensor(f"model.layers.{i}.block_sparse_moe.experts.{j}.w3", + f"layers.{i}.ffn_up.{j}.weight", list_vars, f, quantize_config, n_head) + + convert_mixtral_to_fp32_tensor(f"model.layers.{i}.input_layernorm.weight", f"layers.{i}.attention_norm.weight", + list_vars, f) + convert_mixtral_to_fp32_tensor(f"model.layers.{i}.post_attention_layernorm.weight", + f"layers.{i}.ffn_norm.weight", list_vars, f) + + f.close() + print(f"Success! saved as {out_path}") + + +if __name__ == '__main__': + main() diff --git a/neural_speed/models/llama/llama_utils.cpp b/neural_speed/models/llama/llama_utils.cpp index 2bca0673c..741b2c381 100644 --- a/neural_speed/models/llama/llama_utils.cpp +++ b/neural_speed/models/llama/llama_utils.cpp @@ -118,7 +118,7 @@ void Llama::load(model_context* ctx, model_progress_callback progress_callback, const int i_gpu_start = n_layer - n_gpu_layer; model.layers.resize(n_layer); size_t vram_total = 0; - if (ml->verify_tensor("token_embd.weight")) { + if (ml->verify_tensor("token_embd.weight")) { // GGUF model.others[0] = ml->get_tensor("token_embd.weight", {n_embd, n_vocab}, NE_BACKEND_CPU); model.others[1] = ml->get_tensor("output_norm.weight", {n_embd}, NE_BACKEND_CPU); model.others[2] = ml->get_tensor("output.weight", {n_embd, n_vocab}, @@ -168,7 +168,7 @@ void Llama::load(model_context* ctx, model_progress_callback progress_callback, ne_nbytes(layer.ffn[0]) + ne_nbytes(layer.ffn[1]) + ne_nbytes(layer.ffn[2]); } } - } else { + } else { // NE Fortmat model.others[0] = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, NE_BACKEND_CPU); model.others[1] = ml->get_tensor("norm.weight", {n_embd}, NE_BACKEND_CPU); model.others[2] = ml->get_tensor("output.weight", {n_embd, n_vocab}, diff --git a/neural_speed/models/model_utils/model_files.h b/neural_speed/models/model_utils/model_files.h index c102aa537..5ef9973d8 100644 --- a/neural_speed/models/model_utils/model_files.h +++ b/neural_speed/models/model_utils/model_files.h @@ -1076,6 +1076,7 @@ struct model_file_loader { } void read_ne_hparams() { + unsigned int count = 0; hparams.n_vocab = file.read_u32(); hparams.n_embd = file.read_u32(); hparams.n_mult = file.read_u32(); @@ -1083,13 +1084,13 @@ struct model_file_loader { hparams.n_head_kv = file.read_u32(); hparams.n_layer = file.read_u32(); hparams.n_rot = file.read_u32(); - printf("%s: hparams.n_vocab = %-30d\n", __func__, hparams.n_vocab); - printf("%s: hparams.n_embd = %-30d\n", __func__, hparams.n_embd); - printf("%s: hparams.n_mult = %-30d\n", __func__, hparams.n_mult); - printf("%s: hparams.n_head = %-30d\n", __func__, hparams.n_head); - printf("%s: hparams.n_head_kv = %-30d\n", __func__, hparams.n_head_kv); - printf("%s: hparams.n_layer = %-30d\n", __func__, hparams.n_layer); - printf("%s: hparams.n_rot = %-30d\n", __func__, hparams.n_vocab); + printf("%-16s %d.hparams.n_vocab = %-30d\n", __func__, count++, hparams.n_vocab); + printf("%-16s %d.hparams.n_embd = %-30d\n", __func__, count++, hparams.n_embd); + printf("%-16s %d.hparams.n_mult = %-30d\n", __func__, count++, hparams.n_mult); + printf("%-16s %d.hparams.n_head = %-30d\n", __func__, count++, hparams.n_head); + printf("%-16s %d.hparams.n_head_kv = %-30d\n", __func__, count++, hparams.n_head_kv); + printf("%-16s %d.hparams.n_layer = %-30d\n", __func__, count++, hparams.n_layer); + printf("%-16s %d.hparams.n_rot = %-30d\n", __func__, count++, hparams.n_vocab); hparams.ftype = (enum ne_ftype)file.read_u32(); hparams.max_seq_len = file.read_u32(); @@ -1098,49 +1099,57 @@ struct model_file_loader { hparams.par_res = file.read_u32(); hparams.word_embed_proj_dim = file.read_u32(); hparams.do_layer_norm_before = bool(file.read_u32()); - printf("%s: hparams.ftype = %-30d\n", __func__, hparams.ftype); - printf("%s: hparams.max_seq_len = %-30d\n", __func__, hparams.max_seq_len); - printf("%s: hparams.alibi_bias_max = %-30d\n", __func__, hparams.alibi_bias_max); - printf("%s: hparams.clip_qkv = %-30d\n", __func__, hparams.clip_qkv); - printf("%s: hparams.par_res = %-30d\n", __func__, hparams.par_res); - printf("%s: hparams.word_embed_proj_dim = %-30d\n", __func__, hparams.word_embed_proj_dim); - printf("%s: hparams.do_layer_norm_before = %-30d\n", __func__, hparams.do_layer_norm_before); - - // For ChatGLM-2 + printf("%-16s %d.hparams.ftype = %-30d\n", __func__, count++, hparams.ftype); + printf("%-16s %d.hparams.max_seq_len = %-30d\n", __func__, count++, hparams.max_seq_len); + printf("%-16s %d.hparams.alibi_bias_max = %-30d\n", __func__, count++, hparams.alibi_bias_max); + printf("%-16s %d.hparams.clip_qkv = %-30d\n", __func__, count++, hparams.clip_qkv); + printf("%-16s %d.hparams.par_res = %-30d\n", __func__, count++, hparams.par_res); + printf("%-16s %d.hparams.word_embed_proj_dim = %-30d\n", __func__, count++, hparams.word_embed_proj_dim); + printf("%-16s %d.hparams.do_layer_norm_before = %-30d\n", __func__, count++, hparams.do_layer_norm_before); + hparams.multi_query_group_num = file.read_u32(); hparams.ffn_hidden_size = file.read_u32(); - printf("%s: hparams.multi_query_group_num = %-30d\n", __func__, hparams.multi_query_group_num); - printf("%s: hparams.ffn_hidden_size = %-30d\n", __func__, hparams.ffn_hidden_size); + printf("%-16s %d.hparams.multi_query_group_num = %-30d\n", __func__, count++, hparams.multi_query_group_num); + printf("%-16s %d.hparams.ffn_hidden_size = %-30d\n", __func__, count++, hparams.ffn_hidden_size); - // For ChatGLM-2 hparams.inner_hidden_size = file.read_u32(); hparams.n_experts = file.read_u32(); hparams.n_experts_used = file.read_u32(); - printf("%s: hparams.inner_hidden_size = %-30d\n", __func__, hparams.inner_hidden_size); - printf("%s: hparams.n_experts = %-30d\n", __func__, hparams.n_experts); - printf("%s: hparams.n_experts_used = %-30d\n", __func__, hparams.n_experts_used); + printf("%-16s %d.hparams.inner_hidden_size = %-30d\n", __func__, count++, hparams.inner_hidden_size); + printf("%-16s %d.hparams.n_experts = %-30d\n", __func__, count++, hparams.n_experts); + printf("%-16s %d.hparams.n_experts_used = %-30d\n", __func__, count++, hparams.n_experts_used); // rms related file.read_raw(&hparams.rms_norm_eps, sizeof(float)); file.read_raw(&hparams.freq_base, sizeof(float)); file.read_raw(&hparams.freq_scale, sizeof(float)); - printf("%s: hparams.inner_hidden_size = %-30d\n", __func__, hparams.inner_hidden_size); - printf("%s: hparams.n_experts = %-30d\n", __func__, hparams.n_experts); - printf("%s: hparams.n_experts_used = %-30d\n", __func__, hparams.n_experts_used); + printf("%-16s %d.hparams.inner_hidden_size = %-30d\n", __func__, count++, hparams.inner_hidden_size); + printf("%-16s %d.hparams.freq_base = %-30d\n", __func__, count++, hparams.freq_base); + printf("%-16s %d.hparams.freq_scale = %-30d\n", __func__, count++, hparams.freq_scale); file.read_raw(&hparams.rope_scaling_factor, sizeof(float)); hparams.original_max_position_embeddings = file.read_u32(); hparams.use_yarn = file.read_u32(); - printf("%s: hparams.rope_scaling_factor = %-30d\n", __func__, hparams.rope_scaling_factor); - printf("%s: hparams.original_max_position_embeddings = %-30d\n", __func__, hparams.original_max_position_embeddings); - printf("%s: hparams.use_yarn = %-30d\n", __func__, hparams.use_yarn); + printf("%-16s %d.hparams.rope_scaling_factor = %-30d\n", __func__, count++, hparams.rope_scaling_factor); + printf("%-16s %d.hparams.original_max_position_embeddings = %-30d\n", __func__, count++, hparams.original_max_position_embeddings); + printf("%-16s %d.hparams.use_yarn = %-30d\n", __func__, count++, hparams.use_yarn); + unsigned int total = 25; + if (count != total) { + fprintf(stderr, "The number of ne_parameters is wrong.\n"); + } } void read_ne_vocab() { + unsigned int count = 0; + unsigned int ne_hparams_total = 25; file.read_raw(&vocab.bos_token_id, sizeof(model_vocab::id)); file.read_raw(&vocab.eos_token_id, sizeof(model_vocab::id)); file.read_raw(&vocab.pad_token_id, sizeof(model_vocab::id)); file.read_raw(&vocab.sep_token_id, sizeof(model_vocab::id)); + printf("%-16s %d.vocab.bos_token_id = %-30d\n", __func__, ne_hparams_total + count++ , vocab.bos_token_id); + printf("%-16s %d.vocab.eos_token_id = %-30d\n", __func__, ne_hparams_total + count++ , vocab.eos_token_id); + printf("%-16s %d.vocab.pad_token_id = %-30d\n", __func__, ne_hparams_total + count++ , vocab.pad_token_id); + printf("%-16s %d.vocab.sep_token_id = %-30d\n", __func__, ne_hparams_total + count++ , vocab.sep_token_id); vocab.id_to_token.resize(hparams.n_vocab); for (uint32_t i = 0; i < hparams.n_vocab; i++) {