-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_gen.py
322 lines (237 loc) · 10.8 KB
/
dataset_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import argparse
import json
import pandas as pd
import os
from glob import glob
from sklearn.model_selection import train_test_split
def prep_data(file_path, label):
df = pd.read_csv(file_path)
df = df.drop(columns='Unnamed: 0')
df = df.drop(columns='count')
#df = df.drop(columns='temperature')
#df = df.drop(columns='humidity')
df.index.name = 'index'
df['class'] = label
return df
def parse_raw_file(raw_file_path):
metadata = None
name = None
df = None
with open(raw_file_path) as topo_file:
for line in topo_file:
line = line.strip()
if line.startswith('#'):
if line.startswith('#measurement'):
metadata = line.replace('#measurement,','')
metadata = metadata[1:-(len(metadata) - metadata.rindex('"'))]
metadata = metadata.replace('""','"')
metadata = json.loads(metadata)
if metadata is not None:
name = metadata['data']['name'].replace('_',' ').lower()
name = ''.join([i for i in name if not i.isdigit()])
name = name.strip()
df = pd.read_csv(raw_file_path)
df = df.iloc[3:]
df.columns = df.iloc[0]
df = df[1:]
df.rename(columns={'#header:timestamp': 'timestamp'}, inplace=True)
df.rename(columns={'3': 'index'}, inplace=True)
#df.index.names = ['index']
df['class'] = name
df.reset_index(drop=True, inplace=True)
df.index.names = ['index']
return df, name
def create_dataset(args):
print('Creating combined smell dataset')
#combine all raw data into a single df
raw_dfs = []
raw_file_list = [y for x in os.walk(args.raw_dataset_path) for y in glob(os.path.join(x[0], '*.csv'))]
print('\tFound', len(raw_file_list), 'raw smell data files')
for raw_file_path in raw_file_list:
raw_df, class_name = parse_raw_file(raw_file_path)
if raw_df is not None:
raw_dfs.append(raw_df)
#raw_dfs_keys = [item for item in range(0, len(raw_dfs))]
#Add 0 to begining to include timestamp + add 0 to end to include class
channel_map = [999, 999, 999, 69, 69, 69, 41, 41, 41, 40, 40, 40, 33, 33, 33, 999, 999, 999, 999, 999, 999, 999, 61, 61,
61, 47, 47,
47, 43, 43, 43, 999, 999, 999, 999, 90, 90, 90, 67, 67, 67, 53, 53, 53, 42, 42, 42, 999, 999, 999,
999, 94, 94, 94,
89, 89, 89, 85, 85, 85, 59, 59, 59, 999, 999, 1, 1, 0]
df = pd.concat(raw_dfs, axis=0)
print('Removing unused channels from the dataset.')
#drop channels that are not active
drop_list = []
for idx, x in enumerate(channel_map):
if x == 999:
colname = df.columns[idx]
print(colname)
drop_list.append(colname)
for colname in drop_list:
df = df.drop(columns=colname)
print('Encoding class label names as numbers')
#fix classes
df['class_name'] = df['class'].astype('category')
df['class'] = df['class_name'].cat.codes
class_map = dict()
for index, row in df.iterrows():
class_name = row['class_name']
class_id = row['class']
if class_id not in class_map:
class_map[class_id] = class_name
df = df.drop('class_name', axis=1)
print('Cleaning up indexes')
#clean up indexes
df = df.reset_index()
df.rename(columns={'index': 'timepoints'}, inplace=True)
#more index cleanup
df = df.drop(columns='timepoints')
df.index.name = 'index'
print('\tDataset contains', len(class_map), 'classes with', len(df.index), 'input records')
print('Saving smell dataset to:', args.output_dataset_path)
df.to_csv(args.output_dataset_path)
print('Saving smell dataset metadata to:', args.output_dataset_metadata_path)
with open(args.output_dataset_metadata_path, 'w', encoding='utf-8') as f:
json.dump(class_map, f, ensure_ascii=False, indent=4)
class_list = dict()
demo_df = pd.DataFrame(columns=df.columns)
demo_df.index.name = 'index'
# create demo dataset
for i, row in df.iterrows():
if row['class'] not in class_list:
class_list[row['class']] = 0
class_list[row['class']] += 1
if class_list[row['class']] <= args.demo_max_records:
demo_df.loc[len(demo_df)] = row
demo_df.to_csv(args.output_demo_dataset_path)
def process_timeseries_train_test(args, raw_dfs, min_sample_size, train=True):
new_raw_dfs = []
mindex = 0
for df in raw_dfs:
df['mindex'] = mindex
mindex += 1
n = len(df) - min_sample_size
if n > 0:
df = df.drop(index=df.index[:n])
df = df.reset_index()
new_raw_dfs.append(df)
channel_map = [999, 999, 69, 69, 69, 41, 41, 41, 40, 40, 40, 33, 33, 33, 999, 999, 999, 999, 999, 999, 999, 61, 61,
61, 47, 47,
47, 43, 43, 43, 999, 999, 999, 999, 90, 90, 90, 67, 67, 67, 53, 53, 53, 42, 42, 42, 999, 999, 999,
999, 94, 94, 94,
89, 89, 89, 85, 85, 85, 59, 59, 59, 999, 999, 1, 1]
df = pd.concat(new_raw_dfs, axis=0)
print('Removing unused channels from the dataset.')
# drop channels that are not active
drop_list = []
for idx, x in enumerate(channel_map):
if x == 999:
colname = df.columns[idx]
drop_list.append(colname)
for colname in drop_list:
df = df.drop(columns=colname)
print('Encoding class label names as numbers')
# fix classes
df['class_name'] = df['class'].astype('category')
df['class'] = df['class_name'].cat.codes
class_map = dict()
for index, row in df.iterrows():
class_name = row['class_name']
class_id = row['class']
if class_id not in class_map:
class_map[class_id] = class_name
df = df.drop('class_name', axis=1)
print('Cleaning up indexes')
# clean up indexes
df = df.reset_index()
df.rename(columns={'index': 'timepoints'}, inplace=True)
df.rename(columns={'class': 'class_val'}, inplace=True)
file_type = 'train'
save_path = args.output_timeseries_train_dataset_path
if train is False:
file_type = 'test'
save_path = args.output_timeseries_test_dataset_path
print('\t',file_type,'dataset contains', len(class_map), 'classes with', len(df.index), 'input records')
print('Saving smell timeseries dataset to:', save_path)
column_save_list = ['timepoints', 'class_val', 'mindex']
new_column_map = dict()
df_columns = list(df.columns.values)
remap_count = 0
for column_name in df_columns:
if column_name not in column_save_list:
new_column_map[column_name] = 'dim_' + str(remap_count)
remap_count += 1
df = df.rename(columns=new_column_map)
# df = df.rename(columns={'':'timepoints'})
df.index.name = 'index'
first_column = df.pop('mindex')
df.insert(0, 'mindex', first_column)
df.rename(columns={'mindex': ''}, inplace=True)
df.to_csv(save_path, index=False)
print('Saving timeseries smell dataset metadata to:', args.output_timeseries_dataset_metadata_path)
with open(args.output_timeseries_dataset_metadata_path, 'w', encoding='utf-8') as f:
json.dump(class_map, f, ensure_ascii=False, indent=4)
def create_timeseries_dataset(args):
print('Creating combined timeseries smell dataset')
#combine all raw data into a single df
raw_dfs = []
X_index = []
X_index_count = 0
y = []
name_map = dict()
raw_file_list = [y for x in os.walk(args.raw_dataset_path) for y in glob(os.path.join(x[0], '*.csv'))]
print('\tFound', len(raw_file_list), 'raw smell data files')
for raw_file_path in raw_file_list:
raw_df, class_name = parse_raw_file(raw_file_path)
if raw_df is not None:
raw_dfs.append(raw_df)
X_index.append(X_index_count)
y.append(class_name)
X_index_count += 1
if class_name in name_map:
name_map[class_name] += 1
else:
name_map[class_name] = 1
for class_name, dataset_count in name_map.items():
if dataset_count % 2:
print('Removing one dataset from class [', class_name, '] found [', dataset_count,'] classes, sets must be even.')
drop_index = y.index(class_name)
raw_dfs.pop(drop_index)
X_index.pop(drop_index)
y.pop(drop_index)
X_index = pd.DataFrame(X_index, columns=['X_index'])
train_X, test_X, train_y, test_y = train_test_split(X_index, y, test_size=args.test_size, stratify=y,
random_state=args.random_state)
sample_sizes = []
for df in raw_dfs:
sample_sizes.append(len(df))
min_sample_size = min(sample_sizes)
raw_dfs_train = []
raw_dfs_test = []
for index, row in train_X.iterrows():
raw_dfs_train.append(raw_dfs[index])
for index, row in test_X.iterrows():
raw_dfs_test.append(raw_dfs[index])
process_timeseries_train_test(args, raw_dfs_train, min_sample_size, train=True)
process_timeseries_train_test(args, raw_dfs_test, min_sample_size, train=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Smell Dataset Parser')
# general args
parser.add_argument('--project_name', type=str, default='smell_dataset_parser', help='name of project')
parser.add_argument('--raw_dataset_path', type=str, default='raw_data/fw_3_0_1', help='location of dataset')
parser.add_argument('--output_dataset_path', type=str, default='smell_dataset.csv', help='location of dataset')
parser.add_argument('--output_demo_dataset_path', type=str, default='demo_smell_dataset.csv', help='location of dataset')
parser.add_argument('--demo_max_records', type=int, default=15,help='location of dataset')
parser.add_argument('--output_dataset_metadata_path', type=str, default='smell_dataset_metadata.json', help='location of dataset')
parser.add_argument('--output_timeseries_train_dataset_path', type=str, default='smell_timeseries_train_dataset.csv', help='location of dataset')
parser.add_argument('--output_timeseries_test_dataset_path', type=str, default='smell_timeseries_test_dataset.csv',
help='location of dataset')
parser.add_argument('--output_timeseries_dataset_metadata_path', type=str,
default='smell_timeseries_dataset_test_metadata.json',
help='location of dataset')
parser.add_argument('--test_size', type=float, default=0.5, help='size of the testing split')
parser.add_argument('--random_state', type=int, default=42,
help='Pass an int for reproducible output across multiple function calls')
args = parser.parse_args()
create_dataset(args)
create_timeseries_dataset(args)