-
Notifications
You must be signed in to change notification settings - Fork 170
/
emotion_extract.py
136 lines (103 loc) · 3.68 KB
/
emotion_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import (
Wav2Vec2Model,
Wav2Vec2PreTrainedModel,
)
import os
import librosa
import numpy as np
class RegressionHead(nn.Module):
r"""Classification head."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class EmotionModel(Wav2Vec2PreTrainedModel):
r"""Speech emotion classifier."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.classifier = RegressionHead(config)
self.init_weights()
def forward(
self,
input_values,
):
outputs = self.wav2vec2(input_values)
hidden_states = outputs[0]
hidden_states = torch.mean(hidden_states, dim=1)
logits = self.classifier(hidden_states)
return hidden_states, logits
# load model from hub
device = 'cuda' if torch.cuda.is_available() else "cpu"
model_name = 'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim'
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = EmotionModel.from_pretrained(model_name).to(device)
def process_func(
x: np.ndarray,
sampling_rate: int,
embeddings: bool = False,
) -> np.ndarray:
r"""Predict emotions or extract embeddings from raw audio signal."""
# run through processor to normalize signal
# always returns a batch, so we just get the first entry
# then we put it on the device
y = processor(x, sampling_rate=sampling_rate)
y = y['input_values'][0]
y = torch.from_numpy(y).to(device)
# run through model
with torch.no_grad():
y = model(y)[0 if embeddings else 1]
# convert to numpy
y = y.detach().cpu().numpy()
return y
#
#
# def disp(rootpath, wavname):
# wav, sr = librosa.load(f"{rootpath}/{wavname}", 16000)
# display(ipd.Audio(wav, rate=sr))
rootpath = "dataset/nene"
embs = []
wavnames = []
def extract_dir(path):
rootpath = path
for idx, wavname in enumerate(os.listdir(rootpath)):
wav, sr = librosa.load(f"{rootpath}/{wavname}", 16000)
emb = process_func(np.expand_dims(wav, 0), sr, embeddings=True)
embs.append(emb)
wavnames.append(wavname)
np.save(f"{rootpath}/{wavname}.emo.npy", emb.squeeze(0))
print(idx, wavname)
def extract_wav(path):
wav, sr = librosa.load(path, 16000)
emb = process_func(np.expand_dims(wav, 0), sr, embeddings=True)
return emb
def preprocess_one(path):
wav, sr = librosa.load(path, 16000)
emb = process_func(np.expand_dims(wav, 0), sr, embeddings=True)
np.save(f"{path}.emo.npy", emb.squeeze(0))
return emb
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Emotion Extraction Preprocess')
parser.add_argument('--filelists', dest='filelists',nargs="+", type=str, help='path of the filelists')
args = parser.parse_args()
for filelist in args.filelists:
print(filelist,"----start emotion extract-------")
with open(filelist) as f:
for idx, line in enumerate(f.readlines()):
path = line.strip().split("|")[0]
preprocess_one(path)
print(idx, path)