-
Notifications
You must be signed in to change notification settings - Fork 0
/
barcode_correction.py
663 lines (511 loc) · 25 KB
/
barcode_correction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
# coding=utf-8
# Import Libraries
import argparse
import sys
import timeit
import networkx as nx
import pysam
# Edit distance between two sequences
def similarity(a, b):
return sum(x != y for x, y in zip(a, b))
# Return key of dictionary entry with maximum value
def key_with_max_value(d):
v = list(d.values())
k = list(d.keys())
return k[v.index(max(v))]
# Returns ?
def update_tag(tag, value):
return [value if x[0] == value[0] else x for x in tag]
# Returns ?
def get_edge(code, in_list, errors):
edge = [[code, in_list[x]] for x in range(0, len(in_list)) if (similarity(in_list[x], code) <= errors)]
return edge
# Returns the barcode of a read
def extract_barcode(read_entry, barcode_type):
qname = str(read_entry.qname)
barcode_sequence = ""
try:
barcode_entry = qname.split(':')[-1]
bc1 = barcode_entry.split(',')[0]
bc2 = barcode_entry.split(',')[1]
# switch barcodes if read pair is in F2R1 orientation
if (read_entry.is_forward and read_entry.is_read2) or (read_entry.is_reverse and read_entry.is_read1):
tmp = bc1
bc1 = bc2
bc2 = tmp
# Grouping by barcodes
if barcode_type == "BEGINNING":
barcode_sequence = bc1
elif barcode_type == "END":
barcode_sequence = bc2
elif barcode_type == "BOTH":
barcode_sequence = bc1 + bc2
except Exception as e:
print(e)
print("Cannot find barcode in read: " + qname)
print("Does the file contain barcodes in headers?")
exit(1)
return barcode_sequence
# Returns group of reads with the same barcode
def extract_bc_groups(barcode_entries, bc_network): # Input, list of reads with equal start and end
barcode_groups = {}
sorted_key_list = sorted(barcode_entries.keys(), key=lambda s: len(barcode_entries.get(s)), reverse=True)
while len(barcode_entries) > 0:
# The reads are stored in dict barcode_entries. Their keys are the barcodes.
# Get the most frequent key (Barcode)
most_frequent_barcode = sorted_key_list[0]
# Create a new key of the most common barcode to which reads with the same barcode are added (barcode read group).
barcode_groups[most_frequent_barcode] = list()
sim = list(bc_network.adj[most_frequent_barcode])
for i in sim:
barcode_groups[most_frequent_barcode].extend(
barcode_entries[i]) # Grouping reads based on similarity of the barcodes
del barcode_entries[i] # Removing barcodes already considered
bc_network.remove_node(i)
sorted_key_list.remove(i)
return barcode_groups # Dictionary with Barcode as a key and reads as values
# Return reverse complement of sequence
def reverse_complement(seq):
seq_dict = {'A': 'T', 'T': 'A', 'G': 'C', 'C': 'G', 'N': 'N'}
return "".join([seq_dict[base] for base in reversed(seq)])
# Reduce mapping quality to < 20
def reduce_mapq(read_original):
if read_original.mapq >= 20:
read_original.mapq = 19
read_new = read_original
else:
read_new = read_original
return read_new
# Return integer value of ascii quality character
def ascii2int(ascii_values):
quality = [ord(i) - 33 for i in ascii_values]
return quality
# Return most frequent base at a locus
def most_common_base(nucleotides, qualities, min_bq):
hq = [x for x in range(0, len(qualities)) if qualities[x] >= min_bq]
result_list = [nucleotides[i] for i in hq]
max_base = max(sorted(set(result_list)), key=result_list.count)
num_diff_bases = len(set(result_list))
diff_count = len([x for x in range(0, len(result_list)) if result_list[x] != max_base])
base_count = len([x for x in range(0, len(result_list)) if result_list[x] == max_base])
return max_base, num_diff_bases, base_count, diff_count
# Returns most frequent base of a locus disregarding quality values
def most_common_base_low_qual(nucleotides):
max_base = max(sorted(set(nucleotides)), key=nucleotides.count)
num_diff_bases = len(set(nucleotides))
return max_base, num_diff_bases
# Returns qualities for a given base as integer
def get_qualities(base_of_interest, nucleotides, qualities):
quality = [(ord(qualities[x]) - 33) for x in range(0, len(nucleotides)) if nucleotides[x] == base_of_interest]
return quality
# Change all base qualities of the read to 0 ("!")
def error_read_qual(read_entry):
adjusted_read = read_entry
qualities = adjusted_read.qual
qualities = "!" * len(qualities)
adjusted_read.qual = qualities
return adjusted_read
# Change discordant bases in a barcode group to Ns
def error_read_seq(read_entry):
adjusted_read = read_entry
adjusted_read.seq = "N" * len(adjusted_read.seq)
return adjusted_read
# Check if there is at least one high quality base
def low_quality_base_check(qualities, min_bq):
return max(qualities) >= min_bq
# Get consensus read qualities
def consensus_quality(qualities, min_bq, errors):
# Get number of bases with good quality
copies = len([x for x in range(0, len(qualities)) if qualities[x] >= min_bq])
# Compute base qualities of consensus base
max_qual = max(qualities)
if max_qual < min_bq:
new_qual = max_qual
else:
# Unreliable consensus labeled with quality 0: if more than 25% discordant bases
if (errors >= 1 and float(errors) / (copies + errors) > 0.25):
new_qual = 0
# Otherwise, the maximum quality value across PCR copies is used as new quality, with minimum of 30
else:
max_quality = max(qualities)
new_qual = max(30, max_quality)
return new_qual
# Compute consensus sequence of reads with the same barcode
def generate_consensus_read(reads, min_bq, set_n):
consensus_seq = list()
consensus_qual = list()
consensus_read = reads[0]
# Objects to save info in lexicographic order of the reads
read_names_list = list()
reads_dict = {}
flag_dict = {}
color = ['230,242,255', '179,215,255', '128,187,255', '77,160,255', '26,133,255']
if len(reads) == 1:
# Add info about the amount of duplicates per barcode family group
count = 1
current_color = color[0]
# Adding barcodes to tag in bam file
consensus_read.tags += [('DP', count)]
consensus_read.tags += [('YC', current_color)]
consensus_read.tags += [('YD', 0)]
# Info about barcode groups
log_info = (consensus_read.qname, str(consensus_read.pos), str(len(reads)), "non-duplex")
log_info = "\t".join(log_info) + "\n"
else:
# Use the characteristics of the first read's alignment to check if other reads in the barcode group
# diverge in the number and alignment of gaps (these will be flagged as bad quality)
first_ref_length = reads[0].reference_length
first_read_length = reads[0].rlen
first_cigar = reads[0].cigarstring
# Containers for consensus read
seq_dict = {}
qual_dict = {}
orientation = set()
mapq_list = list()
lq_read_count = 0
last_read = reads[0]
# Compare the sequence of reads in a barcode group
for i in reads:
# Store orientation
if (i.is_read1 and i.is_forward) or (i.is_read2 and i.is_reverse):
orientation.add("forward")
else:
orientation.add("reverse")
# In case that the amount of indels differs between duplicates, take the first read as consensus, but change all base qualities to 0
if (first_ref_length != i.reference_length) or (first_read_length != i.rlen) or (first_cigar != i.cigarstring):
read_name = i.qname
flag = i.flag
reads_dict[read_name] = i
flag_dict[read_name] = flag
read_names_list.append(read_name)
lq_read_count = lq_read_count + 1
continue
# Saving the amount of duplicates from first round of correction
last_read = i
# Adding reads to a dictionary to sort them in lexicographical order
read_name = i.qname
flag = i.flag
reads_dict[read_name] = i
flag_dict[read_name] = flag
read_names_list.append(read_name)
read_length = i.rlen
seq = i.seq
qual = i.qual
mapq_list.append(i.mapq)
soft_clip = i.pos - i.qstart
for b in range(0, read_length):
base = seq[b]
base_qual = qual[b]
real_b = soft_clip + b
if real_b in seq_dict:
seq_dict[real_b].append(base)
qual_dict[real_b].append(base_qual)
else:
seq_dict[real_b] = list()
qual_dict[real_b] = list()
seq_dict[real_b].append(base)
qual_dict[real_b].append(base_qual)
for position in sorted(seq_dict):
current_qual = ascii2int(qual_dict[position])
if low_quality_base_check(current_qual, min_bq):
base = most_common_base(seq_dict[position], current_qual, min_bq)
consensus_base = base[0]
num_diff_bases = base[1]
consensus_base_count = base[2]
diff_count = base[3]
qualities = get_qualities(consensus_base, seq_dict[position], qual_dict[position])
if num_diff_bases < 3 and consensus_base_count > diff_count:
consensus_quality_num = consensus_quality(qualities, min_bq, diff_count)
if set_n and consensus_quality_num == 0:
consensus_quality_num = qualities[0]
consensus_base = "N"
consensus_quality_ascii = chr(consensus_quality_num + 33)
consensus_qual.append(consensus_quality_ascii)
consensus_seq.append(consensus_base)
elif num_diff_bases >= 3 or consensus_base_count <= diff_count:
consensus_quality_num = 0
if set_n:
consensus_quality_num = qualities[0]
consensus_base = "N"
consensus_quality_ascii = chr(consensus_quality_num + 33)
consensus_qual.append(consensus_quality_ascii)
consensus_seq.append(consensus_base)
else:
print("Error")
else:
consensus_base = most_common_base_low_qual(seq_dict[position])[0]
consensus_quality_num = 0
if set_n:
qualities = get_qualities(consensus_base, seq_dict[position], qual_dict[position])
consensus_quality_num = qualities[0]
consensus_base = "N"
consensus_seq.append(consensus_base)
consensus_quality_ascii = chr(consensus_quality_num + 33)
consensus_qual.append(consensus_quality_ascii)
# Take the info from the last read in the group
sorted_read_names = sorted(read_names_list)
# Take as template the last HQ read, but change the read name and the flag
consensus_read = last_read
consensus_read.qname = sorted_read_names[0]
# Compute average mapping quality
if len(mapq_list) > 0:
consensus_read.mapq = int(round(float(sum(mapq_list)) / len(mapq_list)))
else:
consensus_read.mapq = 0
consensus_read.flag = flag_dict[sorted_read_names[0]]
# Consensus seq per position
consensus_seq = ''.join(consensus_seq)
consensus_read.seq = consensus_seq
# Base qualities are calculated as the mean of the base qualities of each read.
# In case there was more than one divergent base call at the position, the consensus base quality is set to 0
consensus_qual = ''.join(consensus_qual)
consensus_read.qual = consensus_qual
# Add info about the amount of duplicates per family group
count = len(reads) - lq_read_count
if count > 5:
current_color = color[4]
else:
current_color = color[count - 1]
# Add DP tag
consensus_read.tags += [('DP', count)]
# Add color
consensus_read.tags += [('YC', current_color)]
# Add duplex tag
if len(orientation) > 1:
consensus_read.tags += [('YD', 1)]
duplex = "duplex"
else:
consensus_read.tags += [('YD', 0)]
duplex = "non-duplex"
# Info about barcode groups
log_info = (consensus_read.qname, str(consensus_read.pos), str(len(reads)), duplex)
log_info = "\t".join(log_info) + "\n"
return consensus_read, log_info
# Main method bundles argument parsing and BAM file parsing
# Example command line: python barcode_correction.py --infile PATH/TO/test.bam --outfile PATH/TO/corrected.test.bam --barcodes BOTH
def main():
# Read script parameters
parser = argparse.ArgumentParser(description='Correcting BAM files using barcodes info')
parser.add_argument('--infile', required=True, dest='infile', help='Input BAM file.')
parser.add_argument('--outfile', required=True, dest='outfile', help='mixed consensus output BAM file.')
parser.add_argument('--barcodes', required=False, dest='barcodes', choices=['START', 'END', 'BOTH'], default='BOTH',
help='Barcode position: START = 5\' barcode; END = 3\' barcode; BOTH = 5\' and 3\' barcodes. Default = BOTH')
parser.add_argument('--minBQ', required=False, dest='minBQ', type=int, default=10,
help='Minimum base quality to be considered. Default = 30')
parser.add_argument('--barcode_error', required=False, dest='barcode_error', type=int, default=0,
help='Maximum number of sequencing errors allowed in barcode sequence. Default = 0')
parser.add_argument('--n', required=False, dest='n', action='store_true',
help='Use Ns instead of reducing base quality.')
parser.add_argument('--outfile1', required=True, dest='outfile1', help='output duplex BAM file')
try:
args = parser.parse_args()
except IOError as io:
print(io)
sys.exit('Error reading parameters.')
# Input BAM
samfile = ''
try:
samfile = pysam.Samfile(args.infile, "rb")
except IOError as io:
exit("Cannot open input file. Error:\n" + io)
# Output BAM
outfile = ''
outfile1 = ''
try:
outfile = pysam.Samfile(args.outfile, mode="wb", template=samfile)
outfile1 = pysam.Samfile(args.outfile1, mode="wb", template=samfile)
except IOError as io:
exit("Cannot open output file. Error:\n" + io)
exit("Cannot open output1 file. Error:\n" + io)
# log file
logfile = open(args.outfile + ".log", 'w')
# stats
n_input_reads = 0
n_output_reads = 0
n_duplex_reads = 0
min_bq = args.minBQ
errors = args.barcode_error
set_n = args.n
pos = 0
positions_dict = {}
unique_barcodes = {}
start = timeit.default_timer()
# Parse BAM file
for read in samfile.fetch():
if not read.is_secondary:
# stats
n_input_reads += 1
ref_start = str(read.pos)
# Both are required. Start of next read, and tlen shows the sign of of the read (- or +), which helps to separate pair reads when they map to the same coordinates
ref_length = str(read.next_reference_start) + ',' + str(read.tlen)
# Getting the barcodes
bc = extract_barcode(read, args.barcodes) # Extract the barcode
code = bc
if ref_start == pos:
# To store the codes for each ref_length
if ref_length in positions_dict:
if code in positions_dict[ref_length]:
positions_dict[ref_length][code].append(read)
else:
positions_dict[ref_length][code] = list()
positions_dict[ref_length][code].append(read)
else:
positions_dict[ref_length] = {}
positions_dict[ref_length][code] = list()
positions_dict[ref_length][code].append(read)
# Allowing errors
if errors > 0:
if ref_length in unique_barcodes:
if code in list(unique_barcodes[ref_length].nodes()):
unique_barcodes[ref_length].add_node(code)
else:
unique_barcodes[ref_length].add_node(code)
edge = get_edge(code, list(unique_barcodes[ref_length].nodes()), errors)
unique_barcodes[ref_length].add_edges_from(edge)
else:
unique_barcodes[ref_length] = nx.Graph()
unique_barcodes[ref_length].add_node(code)
edge = get_edge(code, list(unique_barcodes[ref_length].nodes()), errors)
unique_barcodes[ref_length].add_edges_from(edge)
else:
if len(positions_dict) > 0 and errors > 0:
for pos2 in positions_dict:
# When we allow errors in the Barcodes, we re-group them by similarity (Errors specified in parameter)
barcode_dict = extract_bc_groups(positions_dict[pos2], unique_barcodes[pos2])
for barcode in barcode_dict:
# Printing consensus reads to a new bam file
new_read, log_string = generate_consensus_read(list(barcode_dict[barcode]), min_bq, set_n)
# stats
n_output_reads += 1
if log_string.split('\t')[-1].strip() == "duplex":
n_duplex_reads += 1
logfile.write(log_string)
outfile.write(new_read)
if new_read.has_tag("YD") and new_read.get_tag("YD") == 1:
outfile1.write(new_read)
positions_dict = {}
unique_barcodes = {}
pos = ref_start
if ref_length in positions_dict:
if code in positions_dict[ref_length]:
positions_dict[ref_length][code].append(read)
else:
positions_dict[ref_length][code] = list()
positions_dict[ref_length][code].append(read)
else:
positions_dict[ref_length] = {}
positions_dict[ref_length][code] = list()
positions_dict[ref_length][code].append(read)
# Allowing errors
if errors > 0:
if ref_length in unique_barcodes:
if code in list(unique_barcodes[ref_length].nodes()):
unique_barcodes[ref_length].add_node(code)
else:
unique_barcodes[ref_length].add_node(code)
edge = get_edge(code, list(unique_barcodes[ref_length].nodes()), errors)
unique_barcodes[ref_length].add_edges_from(edge)
else:
unique_barcodes[ref_length] = nx.Graph()
unique_barcodes[ref_length].add_node(code)
edge = get_edge(code, list(unique_barcodes[ref_length].nodes()), errors)
unique_barcodes[ref_length].add_edges_from(edge)
elif len(positions_dict) > 0 and errors == 0:
barcode_dict = positions_dict
for pos2 in barcode_dict:
# printing consensus reads to a new bam file
for barcode in barcode_dict[pos2]:
new_read, log_string = generate_consensus_read(list(barcode_dict[pos2][barcode]), min_bq, set_n)
# stats
n_output_reads += 1
if log_string.split('\t')[-1].strip() == "duplex":
n_duplex_reads += 1
logfile.write(log_string)
outfile.write(new_read)
if new_read.has_tag("YD") and new_read.get_tag("YD") == 1:
outfile1.write(new_read)
positions_dict = {}
pos = ref_start
if ref_length in positions_dict:
if code in positions_dict[ref_length]:
positions_dict[ref_length][code].append(read)
else:
positions_dict[ref_length][code] = list()
positions_dict[ref_length][code].append(read)
else:
positions_dict[ref_length] = {}
positions_dict[ref_length][code] = list()
positions_dict[ref_length][code].append(read)
else:
positions_dict = {}
unique_barcodes = {}
pos = ref_start
if ref_length in positions_dict:
if code in positions_dict[ref_length]:
positions_dict[ref_length][code].append(read)
else:
positions_dict[ref_length][code] = list()
positions_dict[ref_length][code].append(read)
else:
positions_dict[ref_length] = {}
positions_dict[ref_length][code] = list()
positions_dict[ref_length][code].append(read)
# Allowing errors
if errors > 0:
if ref_length in unique_barcodes:
if code in list(unique_barcodes[ref_length].nodes()):
unique_barcodes[ref_length].add_node(code)
else:
unique_barcodes[ref_length].add_node(code)
edge = get_edge(code, list(unique_barcodes[ref_length].nodes()), errors)
unique_barcodes[ref_length].add_edges_from(edge)
else:
unique_barcodes[ref_length] = nx.Graph()
unique_barcodes[ref_length].add_node(code)
edge = get_edge(code, list(unique_barcodes[ref_length].nodes()), errors)
unique_barcodes[ref_length].add_edges_from(edge)
# We need to print the last groups of reads
if len(positions_dict) > 0 and errors > 0:
for pos2 in positions_dict:
# When we allow errors in the Barcodes, we re-group them by similarity (Errors specified in parameter)
barcode_dict = extract_bc_groups(positions_dict[pos2], unique_barcodes[pos2])
for barcode in barcode_dict:
# Printing consensus reads to a new bam file
new_read, log_string = generate_consensus_read(list(barcode_dict[barcode]), min_bq, set_n)
# stats
n_output_reads += 1
if log_string.split('\t')[-1].strip() == "duplex":
n_duplex_reads += 1
logfile.write(log_string)
outfile.write(new_read)
if new_read.has_tag("YD") and new_read.get_tag("YD") == 1:
outfile1.write(new_read)
elif len(positions_dict) > 0 and errors == 0:
barcode_dict = positions_dict
for pos2 in barcode_dict:
# printing consensus reads to a new bam file
for barcode in barcode_dict[pos2]:
new_read, log_string = generate_consensus_read(list(barcode_dict[pos2][barcode]), min_bq, set_n)
# stats
n_output_reads += 1
if log_string.split('\t')[-1].strip() == "duplex":
n_duplex_reads += 1
logfile.write(log_string)
outfile.write(new_read)
if new_read.has_tag("YD") and new_read.get_tag("YD") == 1:
outfile1.write(new_read)
samfile.close()
logfile.close()
outfile.close()
outfile1.close()
stop = timeit.default_timer()
print('TIME')
print(stop - start)
print('INPUT READS')
print(n_input_reads)
print('OUTPUT READS')
print(n_output_reads)
print('DUPLEX READS')
print(n_duplex_reads)
# Run program
main()