diff --git a/README.Rmd b/README.Rmd index 18bc8dc..1df29fb 100644 --- a/README.Rmd +++ b/README.Rmd @@ -152,7 +152,7 @@ createTrainMetaLayer(training = training, - An upset plot of the training data: Visualize patient overlap across layers. ```{r upsetplot, include=TRUE, eval=TRUE, } -fuseMLR::upsetplot(object = training, order.by = "freq") +upsetplot(object = training, order.by = "freq") ``` #### C) Variable selection diff --git a/README.md b/README.md index f7c31b2..ba80bde 100644 --- a/README.md +++ b/README.md @@ -242,7 +242,7 @@ createTrainMetaLayer(training = training, layers. ``` r -fuseMLR::upsetplot(object = training, order.by = "freq") +upsetplot(object = training, order.by = "freq") ``` ![](README_files/figure-gfm/upsetplot-1.png) @@ -310,32 +310,17 @@ print(training) ## Layers trained : 4 ## n : 70 -- Retrieve the basic model of a specific layer. - ``` r -lay_genexpr <- training$getLayer(id = "geneexpr") -model_ge <- lay_genexpr$getModel() -print(model_ge) +# See also summary(training) ``` - ## Class : Model - ## - ## Learner info. - ## ----------------------- - ## Learner : geneexpr_lrner - ## TrainLayer : geneexpr - ## Package : ranger - ## Learn function : ranger - ## - ## Train data info. - ## ----------------------- - ## TrainData : geneexpr_data - ## Layer : geneexpr - ## ind. id. : IDS - ## target : disease - ## n : 50 - ## Missing : 0 - ## p : 19 +- Use `extractModel` to retrieve the list of stored models and + `extractData` to retrieve training data. + +``` r +models_list <- extractModel(training = training) +data_list <- extractData(training = training) +``` #### E) Predicting