-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
74 lines (74 loc) · 2.1 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
Package: fuseMLR
Type: Package
Title: Fusing Machine Learning in R
Version: 0.0.1
Authors@R: c(person(given = c("Cesaire", "J."),
family = c("K.", "Fouodo"),
role = c("aut", "cre"),
email = "[email protected]")
)
Maintainer: Cesaire J. K. Fouodo <[email protected]>
Description: Recent technological advances have enable the simultaneous collection
of multi-omics data i.e., different types or modalities of molecular data,
presenting challenges for integrative prediction modeling due to the heterogeneous,
high-dimensional nature and possible missing modalities of some individuals.
We introduce this package for late integrative prediction modeling, enabling
modality-specific variable selection and prediction modeling, followed by the
aggregation of the modality-specific predictions to train a final meta-model.
This package facilitates conducting late integration predictive modeling in a
systematic, structured, and reproducible way.
License: GPL-3
Encoding: UTF-8
Imports:
R6,
stats,
digest
Suggests:
testthat (>= 3.0.0),
UpSetR (>= 1.4.0),
caret,
ranger,
glmnet,
Boruta,
knitr,
rmarkdown,
pROC,
checkmate
Config/testthat/edition: 3
Depends: R (>= 3.6.0)
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.2
Collate:
'Data.R'
'HashTable.R'
'Lrner.R'
'Model.R'
'PredictData.R'
'PredictLayer.R'
'PredictMetaLayer.R'
'Predicting.R'
'Target.R'
'TestData.R'
'TestLayer.R'
'TestMetaLayer.R'
'Testing.R'
'TrainData.R'
'TrainLayer.R'
'TrainMetaLayer.R'
'Training.R'
'VarSel.R'
'bestLayerLearner.R'
'cobra.R'
'createCobraPred.R'
'createDif.R'
'createLoss.R'
'createWeights.R'
'multi_omics.R'
'predict.bestLayerLearner.R'
'predict.cobra.R'
'weightedMeanLearner.R'
'predict.weightedMeanLearner.R'
'testingFunctions.R'
'trainingFunctions.R'
VignetteBuilder: knitr, rmarkdown
BugReports: https://github.com/imbs-hl/fuseMLR/issues