From 3be78eb815ad9143817b3713da4e7f86b328e8d9 Mon Sep 17 00:00:00 2001 From: imarranz Date: Mon, 23 Dec 2024 14:31:02 +0100 Subject: [PATCH] :zap: Update, general update. --- .../034_workflow_management_concepts.md | 52 ++++++++++++++++--- .../0550_data_acquisition_and_preparation.md | 2 +- 2 files changed, 47 insertions(+), 7 deletions(-) diff --git a/srcsite/03_workflow/034_workflow_management_concepts.md b/srcsite/03_workflow/034_workflow_management_concepts.md index 96c7e0b..6b2dc3c 100755 --- a/srcsite/03_workflow/034_workflow_management_concepts.md +++ b/srcsite/03_workflow/034_workflow_management_concepts.md @@ -24,6 +24,9 @@ CRISP-DM is a widely adopted model that provides a comprehensive framework for c
```mermaid +--- +title: CRISP-DM (Cross-Industry Standard Process for Data Mining) +--- graph TD subgraph CRISP-DM style CRISP-DM fill:#EEEEEE, stroke:#333, stroke-width:2px @@ -62,11 +65,16 @@ Developed by Microsoft, TDSP structures projects into five key phases: business
```mermaid +--- +title: TDSP (Team Data Science Process) +--- graph TD + %% Definición del subgrafo y estilo subgraph TDSP style TDSP fill:#EEEEEE, stroke:#333, stroke-width:2px + %% Definición de los nodos A(Start) B(Business Understanding) C(Data Accquisition & Understanding) @@ -74,22 +82,21 @@ graph TD E(Deployment) F(End) - + %% Conexiones entre nodos A --> B B <--> C - B <--> D - C <--> D - D <--> E - E <--> C - E --> F end + %% Definición de estilo personalizado para los nodos classDef miestilo fill:#8dc5e8,stroke:#333,stroke-width:2px + classDef subgraphTitle fill:#ffffff,stroke:#333,stroke-width:0px,font-size:16px + + %% Aplicación del estilo personalizado a los nodos class A,B,C,D,E,F miestilo @@ -104,6 +111,9 @@ KDD is a non-linear, iterative process focusing on the discovery of actionable k
```mermaid +--- +title: KDD (Knowledge Discovery in Databases) +--- graph TD subgraph KDD style KDD fill:#EEEEEE, stroke:#333, stroke-width:2px @@ -143,6 +153,9 @@ Guo's model is particularly useful for ensuring that data science projects are r
```mermaid +--- +title: Guo's Data Science Workflow +--- graph LR subgraph GUO @@ -218,3 +231,30 @@ graph LR ```
+ +```mermaid +sequenceDiagram + + participant Sarah + + participant John + + Sarah->>John: Hello John, how are you? + + John-->>Sarah: Not too bad, thanks! + + +``` + +```mermaid +gantt + title Example Gantt diagram + dateFormat YYYY-MM-DD + section Team 1 + Research & requirements :done, a1, 2020-03-08, 2020-04-10 + Review & documentation : after a1, 20d + section Team 2 + Implementation :crit, active, 2020-03-25 , 20d + Testing :crit, 20d + +``` diff --git a/srcsite/05_acquisition/0550_data_acquisition_and_preparation.md b/srcsite/05_acquisition/0550_data_acquisition_and_preparation.md index c7b6fce..04ee681 100755 --- a/srcsite/05_acquisition/0550_data_acquisition_and_preparation.md +++ b/srcsite/05_acquisition/0550_data_acquisition_and_preparation.md @@ -149,4 +149,4 @@ To ensure robust and reliable metabolomic data analysis, several techniques are * **Feature Selection**: In metabolomics, feature selection methods help identify the most relevant metabolites associated with the biological question under investigation. By reducing the dimensionality of the data, these techniques improve model interpretability and enhance the detection of meaningful metabolic patterns. -Data cleaning in metabolomics is a rapidly evolving field, and several tools and algorithms have been developed to address these challenges. Notable software packages include XCMS, MetaboAnalyst, and MZmine, which offer comprehensive functionalities for data preprocessing, quality control, and data cleaning in metabolomics studies. +Data cleaning in metabolomics is a rapidly evolving field, and several tools and algorithms have been developed to address these challenges. Notable software packages include [XCMS](https://xcmsonline.scripps.edu/), [MetaboAnalyst](https://www.metaboanalyst.ca/), and [MZmine](https://mzmine.github.io/mzmine_documentation/), which offer comprehensive functionalities for data preprocessing, quality control, and data cleaning in metabolomics studies.