```mermaid
+---
+title: TDSP (Team Data Science Process)
+---
graph TD
+ %% Definición del subgrafo y estilo
subgraph TDSP
style TDSP fill:#EEEEEE, stroke:#333, stroke-width:2px
+ %% Definición de los nodos
A(Start)
B(Business Understanding)
C(Data Accquisition & Understanding)
@@ -74,22 +82,21 @@ graph TD
E(Deployment)
F(End)
-
+ %% Conexiones entre nodos
A --> B
B <--> C
-
B <--> D
-
C <--> D
-
D <--> E
-
E <--> C
-
E --> F
end
+ %% Definición de estilo personalizado para los nodos
classDef miestilo fill:#8dc5e8,stroke:#333,stroke-width:2px
+ classDef subgraphTitle fill:#ffffff,stroke:#333,stroke-width:0px,font-size:16px
+
+ %% Aplicación del estilo personalizado a los nodos
class A,B,C,D,E,F miestilo
@@ -104,6 +111,9 @@ KDD is a non-linear, iterative process focusing on the discovery of actionable k
```mermaid
+---
+title: KDD (Knowledge Discovery in Databases)
+---
graph TD
subgraph KDD
style KDD fill:#EEEEEE, stroke:#333, stroke-width:2px
@@ -143,6 +153,9 @@ Guo's model is particularly useful for ensuring that data science projects are r
```mermaid
+---
+title: Guo's Data Science Workflow
+---
graph LR
subgraph GUO
@@ -218,3 +231,30 @@ graph LR
```
+
+```mermaid
+sequenceDiagram
+
+ participant Sarah
+
+ participant John
+
+ Sarah->>John: Hello John, how are you?
+
+ John-->>Sarah: Not too bad, thanks!
+
+
+```
+
+```mermaid
+gantt
+ title Example Gantt diagram
+ dateFormat YYYY-MM-DD
+ section Team 1
+ Research & requirements :done, a1, 2020-03-08, 2020-04-10
+ Review & documentation : after a1, 20d
+ section Team 2
+ Implementation :crit, active, 2020-03-25 , 20d
+ Testing :crit, 20d
+
+```
diff --git a/srcsite/05_acquisition/0550_data_acquisition_and_preparation.md b/srcsite/05_acquisition/0550_data_acquisition_and_preparation.md
index c7b6fce..04ee681 100755
--- a/srcsite/05_acquisition/0550_data_acquisition_and_preparation.md
+++ b/srcsite/05_acquisition/0550_data_acquisition_and_preparation.md
@@ -149,4 +149,4 @@ To ensure robust and reliable metabolomic data analysis, several techniques are
* **Feature Selection**: In metabolomics, feature selection methods help identify the most relevant metabolites associated with the biological question under investigation. By reducing the dimensionality of the data, these techniques improve model interpretability and enhance the detection of meaningful metabolic patterns.
-Data cleaning in metabolomics is a rapidly evolving field, and several tools and algorithms have been developed to address these challenges. Notable software packages include XCMS, MetaboAnalyst, and MZmine, which offer comprehensive functionalities for data preprocessing, quality control, and data cleaning in metabolomics studies.
+Data cleaning in metabolomics is a rapidly evolving field, and several tools and algorithms have been developed to address these challenges. Notable software packages include [XCMS](https://xcmsonline.scripps.edu/), [MetaboAnalyst](https://www.metaboanalyst.ca/), and [MZmine](https://mzmine.github.io/mzmine_documentation/), which offer comprehensive functionalities for data preprocessing, quality control, and data cleaning in metabolomics studies.