-
Notifications
You must be signed in to change notification settings - Fork 3
/
data_handler.jl
295 lines (231 loc) · 10 KB
/
data_handler.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
using Match
using Base.Filesystem
using CSV
using Statistics
# using JuliaDB
function download_and_extract(set::String)
url = @match set begin
"destillation_column" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/process_industry/destill.dat.gz"
"glass_furnace" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/process_industry/glassfurnace.dat.gz"
"power_plant" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/process_industry/powerplant.dat.gz"
"evaporator" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/process_industry/evaporator.dat.gz"
"stirring_tank" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/process_industry/pHdata.dat.gz"
"fractional_distillation_column" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/process_industry/distill2.dat.gz"
"industrial_dryer" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/process_industry/dryer2.dat.gz"
"heat_exchanger" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/process_industry/exchanger.dat.gz"
"winding_process" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/process_industry/winding.dat.gz"
"stirred_tank_reactor" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/process_industry/cstr.dat.gz"
"power_plant_2" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/process_industry/steamgen.dat.gz"
"ball_and_beam" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/mechanical/ballbeam.dat.gz"
"hair_dryer" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/mechanical/dryer.dat.gz"
"cd_arm" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/mechanical/CD_player_arm.dat.gz"
"wing_flutter" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/mechanical/flutter.dat.gz"
"flexible_arm" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/mechanical/robot_arm.dat.gz"
"steel_subframe" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/mechanical/flexible_structure.dat.gz"
"pregnant_woman" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/biomedical/foetal_ecg.dat.gz"
"tongue_displacement" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/biomedical/tongue.dat.gz"
"lake_erie" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/environmental/erie.dat.gz"
"two_layer_wall" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/thermic/thermic_res_wall.dat.gz"
"heating_system" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/thermic/heating_system.dat.gz"
"internet_traffic" => "ftp://ftp.esat.kuleuven.be/pub/SISTA/data/timeseries/internet_traffic.dat.gz"
"silverbox" => "http://www.nonlinearbenchmark.org/FILES/BENCHMARKS/SILVERBOX/SilverboxFiles.zip"
"cascaded_tanks" => "http://www.nonlinearbenchmark.org/FILES/BENCHMARKS/CASCADEDTANKS/CascadedTanksFiles.zip"
"f16" => "http://www.nonlinearbenchmark.org/FILES/BENCHMARKS/F16/F16GVT_Files.zip"
"emps" => "http://www.nonlinearbenchmark.org/FILES/BENCHMARKS/EMPS/EMPS.zip"
"wiener_hammerstein" => "http://www.nonlinearbenchmark.org/FILES/BENCHMARKS/WIENERHAMMERSTEINPROCESS/WienerHammersteinFiles.zip"
end
try
print("Making directory ", "./data", "...")
mkdir("./data")
println("Done!")
catch
println("Directory already exists.")
end
# paths and file names
set_name = split(url, "/")[end]
folder = string("./data/", set, "/")
file_path = string(folder, set_name)
unzipped_file_name = string(split(set_name, ".")[1], "")
unzipped_file_path = string(folder, unzipped_file_name)
try
print("Making directory ", folder, "...")
mkdir(folder)
println("Done!")
catch
println("Directory already exists.")
end
# Download data. If data exists, return
print("Downloading data from ", url, "...")
if isfile(string(unzipped_file_path, ".zip")) || isdir(unzipped_file_path) || isfile(string(unzipped_file_path, ".dat"))
println("File already exists.")
return unzipped_file_path
end
download(url, file_path);
println("Done!")
# Unzip based on file type
file_type = split(set_name, ".")[end]
cmd = @match file_type begin
"gz" => `gzip -d $file_path`
"zip" => `unzip $file_path -d $folder`
end
run(cmd)
# remove the .gz to get the atual file name
return file_path
end
"""
Loads the data, filters missing values and casts.
"""
function load_io_data(fp::String, dtype=Float64; header=false)
filter_missing(row) = Iterators.filter(r -> !ismissing(r), row)
cast(row) = map(r -> dtype(r), row)
collate(row) = Iterators.reduce(vcat, row)
process_row(row) = row |> filter_missing |> cast |> collate
data = map(process_row, CSV.File(fp, header=header))
return data
end
# data pre-processing
# returns a whitener and dewhitener
function standardize(signal)
μ = mean(signal)
σ = std(signal)
process(zi) = (zi - μ) ./ σ
return process
end
function unstandardize(signal)
μ = mean(signal)
σ = std(signal)
unprocess(zi) = σ .* zi .+ μ
return unprocess
end
function load_silverbox()
fp = "./data/silverbox/SilverboxFiles/SNLS80mV.csv"
data = load_io_data(fp; header=true)
u_raw = map(d -> d[1:1, :], data)
y_raw = map(d -> d[2:2, :], data)
u = standardize(u_raw).(u_raw)
y = standardize(y_raw).(y_raw)
uv = u[1:40400]
yv = y[1:40400]
ut = u[40400:end]
yt = y[40400:end]
stats = (μu = 0.0, μy = 0.0, σu = 1.0, σy = 1.0)
return (ut, yt), (uv, yv), stats
end
function load_cascaded_tanks()
fp = "./data/cascaded_tanks/CascadedTanksFiles/dataBenchmark.csv"
raw_data = load_io_data(fp; header=true)
raw_data[1] = raw_data[1][1:4]
# data = standardize(raw_data).(raw_data)
ut = map(d -> d[1:1, :], raw_data)
yt = map(d -> d[2:2, :], raw_data)
μu = mean(ut)
σu = std(ut)
μy = mean(yt)
σy = std(yt)
uv = standardize(ut).(map(d -> d[3:3, :], raw_data))
yv = standardize(yt).(map(d -> d[4:4, :], raw_data))
ut = standardize(ut).(ut)
yt = standardize(yt).(yt)
return (ut, yt), (uv, yv), (μu = μu, μy = μy, σu = σu, σy = σy)
end
function load_wing_flutter()
fp = "./data/wing_flutter/flutter.dat"
data = load_io_data(fp)
u_raw = map(d -> d[1:1, :], data)
y_raw = map(d -> d[2:2, :], data)
u = standardize(u_raw).(u_raw)
y = standardize(y_raw).(y_raw)
uv = u
yv = y
ut = u
yt = y
# Currently not bothering accounting for stats...
stats = (μu = 0.0, μy = 0.0, σu = 1.0, σy = 1.0)
return (ut, yt), (uv, yv), stats
end
function load_flexible_arm()
fp = "./data/flexible_arm/robot_arm.dat"
data = load_io_data(fp)
u_raw = map(d -> d[1:1, :], data)
y_raw = map(d -> d[2:2, :], data)
u = standardize(u_raw).(u_raw)
y = standardize(y_raw).(y_raw)
uv = u
yv = y
ut = u
yt = y
# Currently not bothering accounting for stats...
stats = (μu = 0.0, μy = 0.0, σu = 1.0, σy = 1.0)
return (ut, yt), (uv, yv), stats
end
function load_liquid_saturated_heat_exchanger()
fp = "./data/heat_exchanger/exchanger.dat"
data = load_io_data(fp; header=false)
u_raw = map(d -> d[2:2, :], data)
y_raw = map(d -> d[3:3, :], data)
μu = mean(u_raw)
σu = std(u_raw)
μy = mean(y_raw)
σy = std(y_raw)
u = standardize(u_raw).(u_raw)
y = standardize(y_raw).(y_raw)
uv = u[1000:3000]
yv = y[1000:3000]
ut = u[1:1000]
yt = y[1:1000]
stats = (μu = μu, μy = μy, σu = σu, σy = σy)
return (ut, yt), (uv, yv), stats
end
function load_f16()
fp1 = "./data/f16/F16GVT_Files/BenchmarkData/F16Data_FullMSine_Level1.csv"
fp2 = "./data/f16/F16GVT_Files/BenchmarkData/F16Data_FullMSine_Level2_Validation.csv"
fp3 = "./data/f16/F16GVT_Files/BenchmarkData/F16Data_FullMSine_Level3.csv"
fp4 = "./data/f16/F16GVT_Files/BenchmarkData/F16Data_FullMSine_Level4_Validation.csv"
fp5 = "./data/f16/F16GVT_Files/BenchmarkData/F16Data_FullMSine_Level5.csv"
fp6 = "./data/f16/F16GVT_Files/BenchmarkData/F16Data_FullMSine_Level6_Validation.csv"
fp7 = "./data/f16/F16GVT_Files/BenchmarkData/F16Data_FullMSine_Level7.csv"
split_data(xi) = (xi[1:2, :], xi[3:5, :])
row_filt(D) = map(x -> x[1:5], D)
stand = standardize(row_filt(load_io_data(fp4, header=true))) # use this dset for standarization
loader(fp) = split_data.(stand.(row_filt(load_io_data(fp, header=true))))
u1, y1 = unzip(loader(fp1))
u2, y2 = unzip(loader(fp2))
u3, y3 = unzip(loader(fp3))
u4, y4 = unzip(loader(fp4))
u5, y5 = unzip(loader(fp5))
u6, y6 = unzip(loader(fp6))
u7, y7 = unzip(loader(fp7))
ut = hcat.(u1, u3, u5, u7)
yt = hcat.(y1, y3, y5, y7)
uv = hcat.(u2, u4, u6)
yv = hcat.(y2, y4, y6)
stats = (μu = 0.0, μy = 0.0, σu = 1.0, σy = 1.0)
return (ut, yt), (uv, yv), stats
end
#
# Identification is model (r, u) -> y
#
function load_wiener_hammerstein()
fp1 = "./data/wiener_hammerstein/WienerHammersteinFiles/WH_MultisineFadeOut.csv"
fp2 = "./data/wiener_hammerstein/WienerHammersteinFiles/WH_TestDataset.csv"
# fp3 = "./data/wiener_hammerstein/WienerHammersteinFiles/WH_SineSweepInput_meas.csv"
row_filt(D) = map(x -> x[1:6], D)
raw_train_data = row_filt(load_io_data(fp1, header=true))
# Creater a standardizer for the inputs and outputs
# D = [[di[1], di[2], di[5]] for di in raw_train_data]
# stand = standardize(raw_train_data)
# split into inputs and outputs, for two experiments
split_data(data) = map(d -> ([d[1] d[2]; d[3] d[4]], [d[5] d[6]]), data)
ut, yt = unzip((split_data(raw_train_data)))
σu = std(ut)[:, 1][:, :]
σy = std(yt)[:, 1][:, :]
μu = mean(ut)[:, 1][:, :]
μy = mean(yt)[:, 1][:, :]
S(di) = ((di[1].-μu) ./ σu, (di[2].-μy) ./ σy)
test_data = row_filt(load_io_data(fp2, header=true))
ut, yt = unzip(S.(split_data(raw_train_data)))
uv, yv = unzip(S.(split_data(test_data)))
# statistics = (σy = σ[5:6], σu = σ[1:4], μu = μ[1:4], μy=μ[5:6])
statistics = (σy = σy, σu = σu, μu = μu, μy = μy)
return (ut, yt), (uv, yv), statistics
end