forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtydiqa_id.py
187 lines (163 loc) · 6.87 KB
/
tydiqa_id.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import List
import datasets
import json
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
_CITATION = """\
@article{clark-etal-2020-tydi,
title = "{T}y{D}i {QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages",
author = "Clark, Jonathan H. and
Choi, Eunsol and
Collins, Michael and
Garrette, Dan and
Kwiatkowski, Tom and
Nikolaev, Vitaly and
Palomaki, Jennimaria",
journal = "Transactions of the Association for Computational Linguistics",
volume = "8",
year = "2020",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2020.tacl-1.30",
doi = "10.1162/tacl_a_00317",
pages = "454--470",
}
@inproceedings{cahyawijaya-etal-2021-indonlg,
title = "{I}ndo{NLG}: Benchmark and Resources for Evaluating {I}ndonesian Natural Language Generation",
author = "Cahyawijaya, Samuel and
Winata, Genta Indra and
Wilie, Bryan and
Vincentio, Karissa and
Li, Xiaohong and
Kuncoro, Adhiguna and
Ruder, Sebastian and
Lim, Zhi Yuan and
Bahar, Syafri and
Khodra, Masayu and
Purwarianti, Ayu and
Fung, Pascale",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.699",
doi = "10.18653/v1/2021.emnlp-main.699",
pages = "8875--8898"
}
"""
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_DATASETNAME = "tydiqa_id"
_DESCRIPTION = """\
TyDiQA dataset is collected from Wikipedia articles with human-annotated question and answer pairs covering 11 languages.
The question-answer pairs are collected for each language without using translation services.
IndoNLG uses the Indonesian data from the secondary Gold passage task of the original TyDiQA dataset and
randomly split off 15% of the training data and use it as the test set.
"""
_HOMEPAGE = "https://github.com/IndoNLP/indonlg"
_LICENSE = "Creative Common Attribution Share-Alike 4.0 International"
# For publicly available datasets you will most likely end up passing these URLs to dl_manager in _split_generators.
# In most cases the URLs will be the same for the source and seacrowd config.
# However, if you need to access different files for each config you can have multiple entries in this dict.
# This can be an arbitrarily nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
_DATASETNAME: "https://storage.googleapis.com/babert-pretraining/IndoNLG_finals/downstream_task/downstream_task_datasets.zip"
}
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "1.0.0"
class TyDiQAIdDataset(datasets.GeneratorBasedBuilder):
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="tydiqa_id_source",
version=SOURCE_VERSION,
description="TyDiQA Id source schema",
schema="source",
subset_id="tydiqa_id",
),
SEACrowdConfig(
name="tydiqa_id_seacrowd_qa",
version=SEACROWD_VERSION,
description="TyDiQA Id Nusantara schema",
schema="seacrowd_qa",
subset_id="tydiqa_id",
),
]
DEFAULT_CONFIG_NAME = "tydiqa_id_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"label": datasets.Value("string")
}
)
elif self.config.schema == "seacrowd_qa":
features = schemas.qa_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
url = _URLS[_DATASETNAME]
base_path = Path(dl_manager.download_and_extract(url))
train_data_path = base_path / "IndoNLG_downstream_tasks" / "question_answering" / "train_preprocess.json"
valid_data_path = base_path / "IndoNLG_downstream_tasks" / "question_answering" / "valid_preprocess.json"
test_data_path = base_path / "IndoNLG_downstream_tasks" / "question_answering" / "test_preprocess.json"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": train_data_path},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": valid_data_path},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": test_data_path},
)
]
def _generate_examples(self, filepath: Path):
if self.config.schema == "source":
for example in json.load(open(filepath, 'r')):
yield example["id"], example
elif self.config.schema == "seacrowd_qa":
for example in json.load(open(filepath, 'r')):
yield example["id"], {
"id": example['id'],
"question_id": example['id'],
"document_id": example['id'],
"question": example['question'],
"type": 'abstractive',
"choices": [],
"context": example['context'],
"answer": [example['label']],
"meta": {}
}
else:
raise ValueError(f"Invalid config: {self.config.name}")