-
Notifications
You must be signed in to change notification settings - Fork 29
/
app.py
226 lines (173 loc) · 8.47 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# -*- coding: utf-8 -*-
import sys
import os
import uuid
from datetime import datetime
import httpx
from fastapi import FastAPI, File, UploadFile, Form, HTTPException, Request, status
import cv2
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.outputs import OutputKeys
import numpy as np
from starlette.staticfiles import StaticFiles
from starlette.templating import Jinja2Templates
app = FastAPI()
model_paths = {
"universal": {'path': 'damo/cv_unet_universal-matting', 'task': Tasks.universal_matting},
"people": {'path': 'damo/cv_unet_image-matting', 'task': Tasks.portrait_matting},
}
default_model = list(model_paths.keys())[0]
default_model_info = model_paths[default_model]
loaded_models = {default_model: pipeline(default_model_info['task'], model=default_model_info['path'])}
UPLOAD_FOLDER = "./upload"
OUTPUT_FOLDER = "./output"
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
class ModelLoader:
def __init__(self):
self.loaded_models = {default_model: loaded_models[default_model]}
def load_model(self, model_name):
if model_name not in self.loaded_models:
model_info = model_paths[model_name]
if not model_info:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid model selection")
model_path = model_info['path']
task_group = model_info['task']
self.loaded_models[model_name] = pipeline(task_group, model=model_path)
return self.loaded_models[model_name]
model_loader = ModelLoader()
def get_filename():
filename = uuid.uuid4()
original_image_filename = f"original_{filename}.png"
image_filename = f"image_{filename}.png"
mask_filename = f"mask_{filename}.png"
return original_image_filename, image_filename, mask_filename
# remove excess transparent background and crop the image
def crop_image_by_alpha_channel(input_image: np.ndarray | str, output_path: str):
img_array = cv2.imread(input_image, cv2.IMREAD_UNCHANGED) if isinstance(input_image, str) else input_image
if img_array.shape[2] != 4:
raise ValueError("Input image must have an alpha channel")
alpha_channel = img_array[:, :, 3]
bbox = cv2.boundingRect(alpha_channel)
x, y, w, h = bbox
cropped_img_array = img_array[y:y + h, x:x + w]
cv2.imwrite(output_path, cropped_img_array)
return output_path
def process_image(image_bytes: bytes):
img = cv2.imdecode(np.frombuffer(image_bytes, np.uint8), cv2.IMREAD_UNCHANGED)
final_img = convert_image_to_white_background(image=img)
if final_img is None:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid image")
return final_img
def convert_image_to_white_background(image_path: str = None, image: np.ndarray | None = None):
try:
if image_path is not None:
img = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
elif image is not None:
img = image
else:
raise ValueError("Either image_path or image must be provided.")
if img.shape[2] == 4:
alpha_channel = img[:, :, 3]
rgb_channels = img[:, :, :3]
alpha_channel_3d = alpha_channel[:, :, np.newaxis] / 255.0
alpha_channel_3d = np.repeat(alpha_channel_3d, 3, axis=2)
white_background_image = np.ones_like(rgb_channels, dtype=np.uint8) * 255
foreground = cv2.multiply(rgb_channels, alpha_channel_3d, dtype=cv2.CV_8UC3)
background = cv2.multiply(white_background_image, 1 - alpha_channel_3d, dtype=cv2.CV_8UC3)
final_img = cv2.add(foreground, background)
else:
final_img = img
return final_img
except Exception as e:
print(f'Error: {e}')
return None
@app.post("/switch_model/{new_model}")
async def switch_model(new_model: str):
if new_model not in model_paths:
return {"content": "Invalid model selection"}, status.HTTP_400_BAD_REQUEST
model_info = model_paths[new_model]
loaded_models[new_model] = pipeline(model_info['task'], model=model_info['path'])
model_loader.loaded_models = loaded_models
return {"content": f"Switched to model: {new_model}"}, status.HTTP_200_OK
@app.post("/matting")
async def matting(image: UploadFile = File(...), model: str = Form(default=default_model, alias="model")):
try:
image_bytes = await image.read()
img = cv2.imdecode(np.frombuffer(image_bytes, np.uint8), cv2.IMREAD_UNCHANGED)
if model not in model_paths:
return {"content": "Invalid model selection"}, status.HTTP_400_BAD_REQUEST
selected_model = model_loader.load_model(model)
original_image_filename, image_filename, mask_filename = get_filename()
cv2.imwrite(os.path.join(UPLOAD_FOLDER, original_image_filename), img)
final_img = convert_image_to_white_background(image=img)
if final_img is None:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid image")
result = selected_model(final_img)
cv2.imwrite(os.path.join(OUTPUT_FOLDER, image_filename), result[OutputKeys.OUTPUT_IMG])
cv2.imwrite(os.path.join(OUTPUT_FOLDER, mask_filename), result[OutputKeys.OUTPUT_IMG][:, :, 3])
response_data = {
"code": 0,
"result_image_url": f"/output/{image_filename}",
"mask_image_url": f"/output/{mask_filename}",
"original_image_size": {"width": img.shape[1], "height": img.shape[0]},
"generation_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
}
return response_data
except HTTPException as e:
return {"error": str(e)}, e.status_code
except Exception as e:
return {"error": str(e)}, status.HTTP_500_INTERNAL_SERVER_ERROR
@app.post("/matting/url")
async def matting_url(request: Request, model: str = Form(default=default_model, alias="model")):
try:
json_data = await request.json()
image_url = json_data.get("image_url")
except Exception as e:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=f"Error parsing JSON data: {str(e)}")
if not image_url:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Image URL is required")
try:
async with httpx.AsyncClient() as client:
response = await client.get(image_url)
response.raise_for_status()
img_array = np.frombuffer(response.content, dtype=np.uint8)
img = cv2.imdecode(img_array, cv2.IMREAD_UNCHANGED)
except httpx.RequestError as e:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=f"Failed to fetch image from URL: {str(e)}")
if model not in model_paths:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid model selection")
selected_model = model_loader.load_model(model)
original_image_filename, image_filename, mask_filename = get_filename()
cv2.imwrite(os.path.join(UPLOAD_FOLDER, original_image_filename), img)
final_img = convert_image_to_white_background(image=img)
if final_img is None:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid image")
result = selected_model(final_img)
cv2.imwrite(os.path.join(OUTPUT_FOLDER, image_filename), result[OutputKeys.OUTPUT_IMG])
cv2.imwrite(os.path.join(OUTPUT_FOLDER, mask_filename), result[OutputKeys.OUTPUT_IMG][:, :, 3])
response_data = {
"code": 0,
"result_image_url": f"/output/{image_filename}",
"mask_image_url": f"/output/{mask_filename}",
"original_image_size": {"width": img.shape[1], "height": img.shape[0]},
"generation_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
}
return response_data
templates = Jinja2Templates(directory="web")
app.mount("/static", StaticFiles(directory="./web/static"), name="static")
app.mount("/output", StaticFiles(directory="./output"), name="output")
app.mount("/upload", StaticFiles(directory="./upload"), name="upload")
@app.get("/")
async def read_index(request: Request):
return templates.TemplateResponse(
"index.html", {
"request": request,
"default_model": default_model,
"available_models": list(model_paths.keys())
})
if __name__ == "__main__":
import uvicorn
default_bind_host = "0.0.0.0" if sys.platform != "win32" else "127.0.0.1"
uvicorn.run(app, host=default_bind_host, port=8000)