-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate_graph.py
64 lines (51 loc) · 2.86 KB
/
evaluate_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# -*- coding: utf-8 -*-
"""
Given path for the ground truth graph and the extracted graph generated with `build_graph.py`,
compute graph size difference between them and print the results, as reported in the paper (Table 6).
Copyright (c) 2024 Idiap Research Institute
MIT License
@author: Sergio Burdisso ([email protected])
"""
import os
import argparse
import networkx as nx
from util import STR_AVERAGE_COLUMN, show_results
# e.g python evaluate_graph.py -i "output/graph" -gt "output/graph/ground_truth"
parser = argparse.ArgumentParser(prog="Evaluate the graphs generated with `build_graph.py`.")
parser.add_argument("-gt", "--groundtruth-path", help="Path to the ground truth graphs", required=True)
parser.add_argument("-i", "--inference-path", help="Path to the generated graphs", required=True)
args = parser.parse_args()
if __name__ == "__main__":
domains = [d for d in os.listdir(args.groundtruth_path)]
domains.append(STR_AVERAGE_COLUMN)
results = {}
for domain in domains:
path_graph = os.path.join(args.groundtruth_path, domain)
if not os.path.isdir(path_graph):
continue
G_true = nx.read_graphml(os.path.join(path_graph, "graph.graphml"))
print(f"\nGround truth '{domain.upper()}' graph loaded ({len(G_true.nodes)} nodes and {len(G_true.edges)} edges)")
for model in os.listdir(args.inference_path):
path_graph = os.path.join(args.inference_path, model)
if not os.path.isdir(path_graph) or os.path.normpath(path_graph) == os.path.normpath(args.groundtruth_path):
continue
path_graph = os.path.join(path_graph, domain, "graph.graphml")
if not os.path.exists(path_graph):
raise ValueError(f"Required generated graph does not exist in '{path_graph}'")
G = nx.read_graphml(path_graph)
print(f" Extracted graph with '{model}' has {len(G.nodes)} nodes and {len(G.edges)} edges")
if model not in results:
results[model] = {}
results[model][domain] = {
"nodes": len(G.nodes),
"true-nodes": len(G_true.nodes),
"diff-nodes": len(G.nodes) - len(G_true.nodes),
"diff-nodes-norm": abs((len(G_true.nodes) - len(G.nodes)) / len(G_true.nodes)),
}
models = list(results.keys())
print("\n\n=============== GRAPH RESULTS ===============")
show_results(models, [d for d in domains],
lambda model, domain: results[model][domain][f"diff-nodes-norm"],
sorted=True, metric_is_ascending=True, percentage=True,
value_extra_getter=lambda model, domain: results[model][domain][f"diff-nodes"] if domain in results[model] else None,
column_value_getter=lambda model, domain: results[model][domain][f'true-nodes'] if domain in results[model] else None)