-
Notifications
You must be signed in to change notification settings - Fork 0
/
build_graph.py
364 lines (305 loc) · 16.3 KB
/
build_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# -*- coding: utf-8 -*-
"""
Given a collection of dialogue action trajectories, this script convert them into
a single action transition graph that represent them.
Copyright (c) 2024 Idiap Research Institute
MIT License
@author: Sergio Burdisso ([email protected])
"""
import os
import re
import json
import shutil
import logging
import argparse
import networkx as nx
from graphviz import Digraph
DEFAULT_SYS_NAME = "system"
DEFAULT_USER_NAME = "user"
DEFAULT_TOKEN_START = "[start]"
DEFAULT_TOKEN_END = "[end]"
NODE_UTTERANCE_LEN = 30
# e.g. python build_graph.py -i output/trajectories-dialog2flow-joint-bert-base.json -te 0.05 -tn 0 -ew prob-out
parser = argparse.ArgumentParser(prog="Generate action transition graph from a given trajectories JSON file.")
parser.add_argument("-i", "--input-path", help="Path to the 'trajectories.json' file or folder with trajectoriy files", required=True)
parser.add_argument("-o", "--output-path", help="Folder to store the graphs per domain", default="output/graph")
parser.add_argument("-d", "--target-domains", nargs='*', help="Target domains to use. If empty, all domains")
parser.add_argument("-te", "--prune-threshold-edges", type=float, help="Threshold value for pruning the graph edges", default=0.2)
parser.add_argument("-tn", "--prune-threshold-nodes", type=float, help="Threshold value for pruning the graph nodes", default=0.023)
parser.add_argument("-ew", "--edges-weight", choices=["max", "max-out", "prob-out"], help="How to weight the edges: "
"'max' for frequency / max overall frequency; "
"'max-out' for frequency / max output sibling frequency; "
"'prob-out' for frequency / sum(all output siblings)", default="max-out")
parser.add_argument("-png", "--png-visualization", action="store_true", help="Generate PNG image files.")
parser.add_argument("-iv", "--interactive-visualization", action="store_true", help="Generate interactive visualization files.")
args = parser.parse_args()
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO, format='[%(asctime)s.%(msecs)03d] %(message)s')
class WidestWeight:
def __init__(self, weight, inverse=True):
self._value = 1 / weight if inverse else weight
def __add__(self, weight):
weight = weight._value if type(weight) == WidestWeight else weight
return WidestWeight(max(self._value, weight), inverse=False)
def __radd__(self, weight):
return self.__add__(weight)
def __lt__(self, weight):
weight = weight._value if type(weight) == WidestWeight else weight
return self._value < weight
@staticmethod
def nx_weight(weight="weight"):
return lambda u, v, data: WidestWeight(data[weight])
def node2turn(node):
node = node.replace("system: ", "agent: ").capitalize()
m = re.match(r"(.+):\s+(?:\d+_)?(.+)", node)
return f"{m.group(1)}: {m.group(2).capitalize()}"
def get_utterance(node):
m = re.match(r".+:\s+\d+_(.+)", node)
return m.group(1).capitalize()
def get_node_id(node):
return node.split("_")[0].lower().replace("[", "").replace("]", "").replace(" ", "_")
def get_node_name(node, label=False, no_cluster_ids=False):
if label:
if re.search(r"\d", node):
node = node.replace("system: ", "S").replace("user: ", "U")
m = re.match(r"([SU].+?)_(.+)", node)
utterance = "<BR/>".join([m.group(2)[ix * NODE_UTTERANCE_LEN: (ix + 1) * NODE_UTTERANCE_LEN] for ix in range(len(m.group(2)) // NODE_UTTERANCE_LEN + 1)])
if no_cluster_ids:
return f'<{utterance.capitalize()}>'
else:
return f'<<B>{m.group(1)}</B><I>("{utterance}")</I>>'
else:
return "<<B>" + node.replace("system: ", "").replace("user: ", "").upper() + "</B>>"
return node.replace("system: ", "S").replace("user: ", "U")
def get_tooltip(info, node_id):
if not info or not node_id[1:].isdigit():
return ""
speaker = "system" if node_id[0] == "s" else "user"
ix = int(node_id[1:])
return "\n".join(f"- {utt}" for utt in info[speaker][ix]["utterances"][:3])
def prune_graph(G, threshold=0.023, by="node", remove_unrecheable=True): # by= ["node", "edge", "both"]
if by in ["node", "both"]:
G.remove_nodes_from([n for n, weight in G.nodes(data='weight') if weight < threshold])
if by in ["edge", "both"]:
G.remove_edges_from([(u, v) for u, v, weight in G.edges(data='weight') if weight < threshold])
G.remove_nodes_from(list(nx.isolates(G)))
if remove_unrecheable:
end2start_reachables = nx.ancestors(G, DEFAULT_TOKEN_END).intersection(nx.descendants(G, DEFAULT_TOKEN_START))
G.remove_nodes_from([n for n in G.nodes() if n not in end2start_reachables | {DEFAULT_TOKEN_START, DEFAULT_TOKEN_END}])
def normalize_edges(G, policy): # policy= "max" or "max-out" or "sum-out"
if policy == "max":
max_fr = max([d["fr"] for _, _, d in G.edges(data=True)])
for s0, s1, d in G.edges(data=True):
d["weight"] = d["fr"] / max_fr
elif "-out" in policy:
fn = max if "max-" in policy else sum
for node_id in G.nodes:
out_edges = G.out_edges(node_id, data=True)
if out_edges:
total_fr = fn([d['fr'] for _, _, d in out_edges])
for a, b, d in out_edges:
d['weight'] = d['fr'] / total_fr
def create_graph(trajectories, output_folder, clusters_info_folder=None):
G = nx.DiGraph()
G.add_node(DEFAULT_TOKEN_START, color="green", fr=1)
G.add_node(DEFAULT_TOKEN_END, color="gray", border_color='black', border_size=2, fr=1)
node_info = {}
nodes_are_labels = False
if clusters_info_folder and os.path.exists(clusters_info_folder):
for speaker in [DEFAULT_SYS_NAME, DEFAULT_USER_NAME]:
with open(os.path.join(clusters_info_folder, f"top-utterances.{speaker}.json")) as reader:
node_info[speaker] = json.load(reader)
nodes_are_labels = node_info[speaker][0]["name"]
for trajectory in trajectories.values():
for ix in range(len(trajectory) - 1):
s0, s0_speaker, s0_acts = trajectory[ix]
s1, s1_speaker, s1_acts = trajectory[ix + 1]
# Skipping edges to/from "noise" clusters
if (s0_acts and s0_acts.startswith("-1")) or (s1_acts and s1_acts.startswith("-1")):
if s1_acts and not s1_acts.startswith("-1"):
if s1 not in G.nodes:
G.add_node(s1, fr=0)
G.nodes[s1]["fr"] += 1
continue
edge = G.get_edge_data(s0, s1)
if not edge:
G.add_edge(s0, s1,
fr=1,
label=s0_acts if s0_acts else "ε",
color="blue" if s1_speaker == DEFAULT_USER_NAME else "red")
else:
edge["fr"] += 1
if s1_speaker and s1 != DEFAULT_TOKEN_END:
if "fr" not in G.nodes[s1]:
G.nodes[s1]["fr"] = 0
G.nodes[s1]["fr"] += 1
if s0_speaker:
G.nodes[s0]["color"] = "blue" if s0_speaker == DEFAULT_USER_NAME else "red"
G.nodes[s0]["speaker"] = s0_speaker
# Normalize nodes
max_fr = max([fr for _, fr in G.nodes(data="fr")])
for node, d in G.nodes(data=True):
if node in [DEFAULT_TOKEN_START, DEFAULT_TOKEN_END]:
d["weight"] = 1
else:
d["weight"] = d["fr"] / max_fr
normalize_edges(G, policy=args.edges_weight)
logger.info(f" #Nodes before pruning: {len(G.nodes)}")
G.remove_edges_from(nx.selfloop_edges(G))
prune_graph(G, threshold=args.prune_threshold_nodes)
# Widest path ("Happy path")
G2 = G.copy()
edges_to_remove = []
for s, t in G2.edges():
if (s.startswith("user:") and t.startswith("user:")) or (s.startswith("system:") and t.startswith("system:")):
edges_to_remove.append((s, t))
G2.remove_edges_from(edges_to_remove)
widest_path = nx.shortest_path(G2, DEFAULT_TOKEN_START, DEFAULT_TOKEN_END, weight=WidestWeight.nx_weight())
with open(os.path.join(output_folder, "widest_path.txt"), "w") as writer:
happy_path = [node2turn(n) for n in widest_path[1:-1]]
logger.info(f" Widest path: {happy_path}")
writer.write("\n".join(happy_path))
widest_path = [get_node_id(get_node_name(n)) for n in widest_path] # for Javascript's `graph_happy_path`
output_file = os.path.join(output_folder, "graph")
g = Digraph('G', filename=output_file)
g.node_attr.update(shape="underline", style="filled", fillcolor="white")
prune_graph(G, args.prune_threshold_edges,
by="edge",
remove_unrecheable=True)
logger.info(f" #Nodes after pruning: {len(G.nodes)}")
normalize_edges(G, policy=args.edges_weight) # normalizing again to recompute the weights
for s0, s1, w in G.edges(data="weight"):
try:
color = None
if "speaker" in G.nodes[s1]:
color = "#0288d1" if G.nodes[s1]["speaker"] == DEFAULT_USER_NAME else "#9e9e9e"
else:
color = "#0288d1" if G.nodes[s0]["speaker"] == DEFAULT_USER_NAME else "#9e9e9e"
g.edge(get_node_name(s0), get_node_name(s1),
penwidth=str(w * 5), color=color)
except KeyError:
g.edge(get_node_name(s0), get_node_name(s1), penwidth=str(w * 5))
for n, data in G.nodes(data=True):
if "speaker" in data:
weight, speaker = data["weight"], data["speaker"]
g.node(get_node_name(n),
label=get_node_name(n, label=True, no_cluster_ids=nodes_are_labels),
penwidth=str(1 + weight * 5),
fillcolor="#b3e5fc" if speaker == DEFAULT_USER_NAME else "white")
g.node(DEFAULT_TOKEN_START, "START", shape='Mdiamond', fillcolor="#e0e0e0")
g.node(DEFAULT_TOKEN_END, "END", shape='Mdiamond', fillcolor="#e0e0e0")
output_path = os.path.join(output_folder, "graph.graphml")
logger.info(f" Saving graph as GraphML format in '{output_path}'")
nx.write_graphml(G, output_path)
g.graph_attr["dpi"] = "300"
logger.info(f" Saving graph as DOT format in '{output_file}.dot'")
g.render(output_file, view=False, format="dot")
if args.png_visualization:
logger.info(f" Saving graph PNG visualization in '{output_file}.png'")
g.render(output_file, view=False, format="png")
if args.interactive_visualization:
output_folder = os.path.join(output_folder, "visualization")
output_file = os.path.join(output_folder, "graph.html")
logger.info(f" Saving graph HTML interactive visualization in '{output_file}'")
shutil.copytree("util/visualization/", output_folder, dirs_exist_ok=True)
with open("util/visualization/graph.html") as reader:
html = reader.read()
html_first, html_end = html.split("// [GRAPH HERE]")
widest_path[:] = [f"'{node_id}'" for node_id in widest_path]
graph_html = f"graph_happy_path = [{', '.join(widest_path)}]; "
tooltips = {}
for n, data in G.nodes(data=True):
nid = get_node_id(get_node_name(n))
nname = re.sub("<BR/>", "", get_node_name(n, label=True, no_cluster_ids=nodes_are_labels).replace("'", r"\'")[1:-1], flags=re.IGNORECASE)
tooltips[nid] = get_tooltip(node_info, nid)
if nid == "start":
graph_html += f"var v{nid} = graph.insertVertex(parent, '{nid}', '\t', 0, 0, 40, 10, 'fillColor=#B3B3B3;strokeColor=#03071e;"
elif nid == "end":
graph_html += f"var v{nid} = graph.insertVertex(parent, '{nid}', 'END', 0, 0, 50, 10, 'whiteSpace=wrap;"
else:
graph_html += f"var v{nid} = graph.insertVertex(parent, '{nid}', '{nname}', 0, 0, 150, 10, 'whiteSpace=wrap;"
if "speaker" in data:
weight, speaker = data["weight"], data["speaker"]
graph_html += f"strokeOpacity={weight * 100};fillColor={'#DC2F02' if speaker == 'user' else '#03071E'};";
else:
if nid == 'start':
graph_html += "shape=ellipse;fillColor=#B3B3B3;"
else:
graph_html += "shape=ellipse;fillColor=#FFA500;"
graph_html += "');"
for eix, (s0, s1, w) in enumerate(G.edges(data="weight")):
nname0, nname1 = get_node_name(s0), get_node_name(s1)
nid0, nid1 = get_node_id(nname0), get_node_id(nname1)
graph_html += f"var e{eix} = graph.insertEdge(parent, null, '{w:.1%}', v{nid0}, v{nid1},'edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;curved=1;endArrow=blockThin;endFill=1;strokeWidth={w * 4};"
try:
color = None
if "speaker" in G.nodes[s1]:
color = "#3333AA" if G.nodes[s1]["speaker"] == DEFAULT_USER_NAME else "#cf8602"
else:
color = "#3333AA" if G.nodes[s0]["speaker"] == DEFAULT_USER_NAME else "#cf8602"
graph_html += f"strokeColor={color};"
except KeyError:
pass
graph_html += "');"
graph_html += f"tooltips = {json.dumps(tooltips)};"
with open(output_file, "w") as writer:
writer.write(html_first + graph_html + html_end)
def process_trajectories(path_trajectories, output_folder):
logger.info(f" Reading trajectories from ({path_trajectories})...")
with open(path_trajectories) as reader:
data = json.load(reader)
unique_domains = set()
for dialog_id, dialogue in data.items():
domain = next(iter(dialogue["goal"]))
unique_domains.add(domain)
multi_domain = len(unique_domains) > 1
all_trajectories = {}
for dialog_id in data:
domain = next(iter(data[dialog_id]["goal"]))
if args.target_domains and domain not in args.target_domains:
continue
if domain not in all_trajectories:
all_trajectories[domain] = {}
trajectories = all_trajectories[domain]
trajectories[dialog_id] = []
n_turns = len(data[dialog_id]["log"])
for ix, turn in enumerate(data[dialog_id]["log"]):
turn = turn["turn"]
if ix == 0:
trajectories[dialog_id].append((turn, None, None))
elif ix >= n_turns - 1:
trajectories[dialog_id].append((DEFAULT_TOKEN_END, None, None))
else:
# (id, speaker, acts)
spkr_end_ix = turn.index(":")
spkr, dial_act = turn[:spkr_end_ix], turn[spkr_end_ix + 1:].strip().replace(":", "")
if re.match(r"^\w+-(\w)", dial_act):
domain, dial_act = dial_act.split("-")
trajectories[dialog_id].append((f"{spkr.lower()}: {dial_act}", spkr.lower(), dial_act))
for domain in all_trajectories:
trajectories = all_trajectories[domain]
logger.info(f" {len(trajectories)} trajectories read" + (f" for domain '{domain}'." if multi_domain else "."))
for domain in all_trajectories:
if multi_domain:
logger.info(f"> Graph for domain: '{domain.upper()}'")
logger.info(f" About to start creating the graph...")
m = re.match(r".+trajectories-(.*).json", path_trajectories)
model_name = m.group(1) if m else ""
output_path = os.path.join(output_folder, model_name) if model_name else output_folder
output_path = os.path.join(output_path, domain) if multi_domain else output_path
os.makedirs(output_path, exist_ok=True)
if model_name:
output_path_clusters = os.path.join(os.path.join(os.path.split(path_trajectories)[0], "clusters", model_name))
output_path_clusters = os.path.join(output_path_clusters, domain) if multi_domain else output_path_clusters
else:
output_path_clusters = None
create_graph(all_trajectories[domain], output_path, output_path_clusters)
logger.info(f" Finished creating the graph.")
if __name__ == "__main__":
if os.path.isdir(args.input_path):
for filename in os.listdir(args.input_path):
m = re.match(r"trajectories(.*).json", filename)
if m:
process_trajectories(os.path.join(args.input_path, filename), args.output_path)
else:
process_trajectories(args.input_path, args.output_path)