-
Notifications
You must be signed in to change notification settings - Fork 185
/
Copy pathpredict.py
158 lines (128 loc) · 4.85 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Prediction interface for Cog ⚙️
# https://cog.run/python
import os
import time
import subprocess
import json
import soundfile as sf
import torch
from cog import BasePredictor, Input, Path, BaseModel
from fairseq import utils as fairseq_utils
from fairseq.models.text_to_speech.vocoder import CodeHiFiGANVocoder
from omni_speech.model.builder import load_pretrained_model
from omni_speech.utils import disable_torch_init
from omni_speech.infer.infer import create_data_loader, ctc_postprocess
MODEL_CACHE = "models"
MODEL_URL = (
f"https://weights.replicate.delivery/default/ictnlp/LLaMA-Omni/{MODEL_CACHE}.tar"
)
os.environ["HF_DATASETS_OFFLINE"] = "1"
os.environ["TRANSFORMERS_OFFLINE"] = "1"
os.environ["HF_HOME"] = MODEL_CACHE
os.environ["TORCH_HOME"] = MODEL_CACHE
os.environ["HF_DATASETS_CACHE"] = MODEL_CACHE
os.environ["TRANSFORMERS_CACHE"] = MODEL_CACHE
os.environ["HUGGINGFACE_HUB_CACHE"] = MODEL_CACHE
class ModelOutput(BaseModel):
audio: Path
text: str
def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
if not os.path.exists(MODEL_CACHE):
download_weights(MODEL_URL, MODEL_CACHE)
# Model
disable_torch_init()
self.tokenizer, self.model, _ = load_pretrained_model(
f"{MODEL_CACHE}/Llama-3.1-8B-Omni", model_base=None, s2s=True
)
with open(f"{MODEL_CACHE}/vocoder/config.json") as f:
vocoder_cfg = json.load(f)
self.vocoder = CodeHiFiGANVocoder(
f"{MODEL_CACHE}/vocoder/g_00500000", vocoder_cfg
).cuda()
def predict(
self,
input_audio: Path = Input(description="Input audio"),
prompt: str = Input(
default="Please directly answer the questions in the user's speech"
),
temperature: float = Input(
description="Controls randomness. Lower values make the model more deterministic, higher values make it more random.",
default=0.0,
ge=0.0,
le=1.0,
),
top_p: float = Input(
description="Controls diversity of the output. Valid when temperature > 0. Lower values make the output more focused, higher values make it more diverse.",
default=0.0,
ge=0.0,
le=1.0,
),
max_new_tokens: int = Input(
description="Maximum number of tokens to generate", default=256, ge=1
),
) -> ModelOutput:
"""Run a single prediction on the model"""
questions = [
{
"speech": str(input_audio),
"conversations": [{"from": "human", "value": f"<speech>\n{prompt}"}],
}
]
data_loader = create_data_loader(
questions,
self.tokenizer,
self.model.config,
input_type="mel",
mel_size=128,
conv_mode="llama_3",
)
(input_ids, speech_tensor, speech_length) = next(iter(data_loader))
input_ids = input_ids.to(device="cuda", non_blocking=True)
speech_tensor = speech_tensor.to(
dtype=torch.float16, device="cuda", non_blocking=True
)
speech_length = speech_length.to(device="cuda", non_blocking=True)
with torch.inference_mode():
output_ids, output_units = self.model.generate(
input_ids,
speech=speech_tensor,
speech_lengths=speech_length,
do_sample=True if temperature > 0 else False,
temperature=temperature,
top_p=top_p if temperature > 0 else None,
num_beams=1,
max_new_tokens=max_new_tokens,
use_cache=True,
pad_token_id=128004,
streaming_unit_gen=False,
)
prediction = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[
0
].strip()
output_units = ctc_postprocess(
output_units, blank=self.model.config.unit_vocab_size
)
print(prediction)
print(f"output_units: {output_units}")
print(type(output_units))
output_units = [(list(map(int, output_units.strip().split())))]
x = {
"code": torch.LongTensor(output_units[0]).view(1, -1),
}
x = fairseq_utils.move_to_cuda(x)
wav = self.vocoder(x, True)
out_path = "/tmp/out.wav"
sf.write(
out_path,
wav.detach().cpu().numpy(),
16000,
)
return ModelOutput(audio=Path(out_path), text=prediction)