We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi, @wgifford
I copied this notebook and tried to run the same on my machine.
Got this error when trying to generate the evaluation zeroshot_trainer.evaluate(test_dataset), can you guide here:
zeroshot_trainer.evaluate(test_dataset)
IsADirectoryError Traceback (most recent call last) Cell In[20], line 1 ----> 1 zeroshot_trainer.evaluate(test_dataset) File /anaconda/envs/spark/lib/python3.10/site-packages/transformers/trainer.py:3975, in Trainer.evaluate(self, eval_dataset, ignore_keys, metric_key_prefix) 3972 start_time = time.time() 3974 eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop -> 3975 output = eval_loop( 3976 eval_dataloader, 3977 description="Evaluation", 3978 # No point gathering the predictions if there are no metrics, otherwise we defer to 3979 # self.args.prediction_loss_only 3980 prediction_loss_only=True if self.compute_metrics is None else None, 3981 ignore_keys=ignore_keys, 3982 metric_key_prefix=metric_key_prefix, 3983 ) 3985 total_batch_size = self.args.eval_batch_size * self.args.world_size 3986 if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: File /anaconda/envs/spark/lib/python3.10/site-packages/transformers/trainer.py:4202, in Trainer.evaluation_loop(self, dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix) 4199 if not self.args.batch_eval_metrics or description == "Prediction": 4200 all_labels.add(labels) -> 4202 self.control = self.callback_handler.on_prediction_step(args, self.state, self.control) 4204 if self.args.batch_eval_metrics: 4205 if self.compute_metrics is not None and logits is not None and labels is not None: File /anaconda/envs/spark/lib/python3.10/site-packages/transformers/trainer_callback.py:514, in CallbackHandler.on_prediction_step(self, args, state, control) 513 def on_prediction_step(self, args: TrainingArguments, state: TrainerState, control: TrainerControl): --> 514 return self.call_event("on_prediction_step", args, state, control) File /anaconda/envs/spark/lib/python3.10/site-packages/transformers/trainer_callback.py:518, in CallbackHandler.call_event(self, event, args, state, control, **kwargs) 516 def call_event(self, event, args, state, control, **kwargs): 517 for callback in self.callbacks: --> 518 result = getattr(callback, event)( 519 args, 520 state, 521 control, 522 model=self.model, 523 processing_class=self.processing_class, 524 optimizer=self.optimizer, 525 lr_scheduler=self.lr_scheduler, 526 train_dataloader=self.train_dataloader, 527 eval_dataloader=self.eval_dataloader, 528 **kwargs, 529 ) 530 # A Callback can skip the return of `control` if it doesn't change it. 531 if result is not None: File /anaconda/envs/spark/lib/python3.10/site-packages/transformers/utils/notebook.py:322, in NotebookProgressCallback.on_prediction_step(self, args, state, control, eval_dataloader, **kwargs) 320 else: 321 self.prediction_bar = NotebookProgressBar(len(eval_dataloader)) --> 322 self.prediction_bar.update(1) 323 else: 324 self.prediction_bar.update(self.prediction_bar.value + 1) File /anaconda/envs/spark/lib/python3.10/site-packages/transformers/utils/notebook.py:143, in NotebookProgressBar.update(self, value, force_update, comment) 141 self.first_calls = self.warmup 142 self.wait_for = 1 --> 143 self.update_bar(value) 144 elif value <= self.last_value and not force_update: 145 return File /anaconda/envs/spark/lib/python3.10/site-packages/transformers/utils/notebook.py:188, in NotebookProgressBar.update_bar(self, value, comment) 185 self.label += f", {1/self.average_time_per_item:.2f} it/s" 187 self.label += "]" if self.comment is None or len(self.comment) == 0 else f", {self.comment}]" --> 188 self.display() File /anaconda/envs/spark/lib/python3.10/site-packages/transformers/utils/notebook.py:197, in NotebookProgressBar.display(self) 195 return 196 if self.output is None: --> 197 self.output = disp.display(disp.HTML(self.html_code), display_id=True) 198 else: 199 self.output.update(disp.HTML(self.html_code)) File /anaconda/envs/spark/lib/python3.10/site-packages/IPython/core/display.py:432, in HTML.__init__(self, data, url, filename, metadata) 430 if warn(): 431 warnings.warn("Consider using IPython.display.IFrame instead") --> 432 super(HTML, self).__init__(data=data, url=url, filename=filename, metadata=metadata) File /anaconda/envs/spark/lib/python3.10/site-packages/IPython/core/display.py:327, in DisplayObject.__init__(self, data, url, filename, metadata) 324 elif self.metadata is None: 325 self.metadata = {} --> 327 self.reload() 328 self._check_data() File /anaconda/envs/spark/lib/python3.10/site-packages/IPython/core/display.py:353, in DisplayObject.reload(self) 351 if self.filename is not None: 352 encoding = None if "b" in self._read_flags else "utf-8" --> 353 with open(self.filename, self._read_flags, encoding=encoding) as f: 354 self.data = f.read() 355 elif self.url is not None: 356 # Deferred import IsADirectoryError: [Errno 21] Is a directory: "\n <div>\n \n <progress value='1' max='179' style='width:300px; height:20px; vertical-align: middle;'></progress>\n [ 1/179 : < :]\n </div>\n "
The text was updated successfully, but these errors were encountered:
I tried this morning in python 3.10 and python 3.11 using the latest version of the notebook (https://github.com/ibm-granite/granite-tsfm/blob/main/notebooks/tutorial/ttm_tutorial.ipynb) locally on my MacBook. I could not reproduce the above error.
Could you try again, in a new python environment?
Sorry, something went wrong.
No branches or pull requests
Hi, @wgifford
I copied this notebook and tried to run the same on my machine.
Got this error when trying to generate the evaluation
zeroshot_trainer.evaluate(test_dataset)
, can you guide here:The text was updated successfully, but these errors were encountered: