-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
453 lines (372 loc) · 22.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
"""
Train or test a classification, auto-encoder, adversarial attack or defence model.
Usage: python train.py ...
Input: N/A
Output: Trained models saved in directory specified by output_dir
Author: Ying Xu
Date: Jul 8, 2020
"""
import tensorflow as tf
from models.mySeq2Seq import Seq2SeqModel
from models.myClassifier import ClassificationModel
from models.myCNNClassifier import CNNClassificationModel
from models.myBertClassifier import BertClassificationModel
from misc.evaluate_attacks import evaluate_attack
from models.myAdversarialDefendingCopy import AdversarialModelCopy
import config
from timeit import default_timer
from misc import utils, input_data
import misc.eval_steps as eval_steps
from models.bert import modeling
import numpy as np
stop_words = [".", ",", "!", "...", "not", "n't"]
def maping_vocabs_bert(vocab_src, vocab_tgt):
vocab_map = {}
unk_id = 100
for ind, word in enumerate(vocab_src):
if word == '<sos>':
vocab_map[ind] = vocab_tgt.index('[CLS]')
elif word == '<eos>':
vocab_map[ind] = vocab_tgt.index('[SEP]')
elif word == '<unk>':
vocab_map[ind] = vocab_tgt.index('[UNK]')
elif word in vocab_tgt:
vocab_map[ind] = vocab_tgt.index(word)
else:
vocab_map[ind] = unk_id
return vocab_map
def maping_vocabs(vocab_src, vocab_tgt):
vocab_map = {}
unk_id = input_data.UNK_ID
for ind, word in enumerate(vocab_src):
if word in vocab_tgt:
vocab_map[ind] = vocab_tgt.index(word)
else:
vocab_map[ind] = unk_id
return vocab_map
def setStopWord(vocab):
stop_word_index = []
if args.use_stop_words:
for word in stop_words:
if word in vocab:
stop_word_index.append(vocab.index(word))
stop_word_index.append(input_data.UNK_ID)
stop_word_index.append(input_data.SOS_ID)
stop_word_index.append(input_data.EOS_ID)
return stop_word_index
def load_data_iters(args):
data_task = 'ae'
if args.classification: data_task = 'clss'
if args.adv: data_task = 'adv'
if args.ae_vocab_file is not None: data_task = 'adv_counter_fitting'
train_iter = input_data.get_dataset_iter(args, args.input_file, args.output_file, data_task,
is_bert=(args.classification_model == 'BERT'))
train_next = train_iter.get_next()
dev_iter = input_data.get_dataset_iter(args, args.dev_file, args.dev_output, data_task, is_training=False,
is_bert=(args.classification_model == 'BERT'))
dev_next = dev_iter.get_next()
return train_iter, train_next, dev_iter, dev_next
def create_models(args):
model, model_dev, model_classifier = None, None, None
if args.adv:
# if args.copy:
if args.classification_model == 'BERT':
args.bert_config = modeling.BertConfig.from_json_file(args.bert_config_file)
model = AdversarialModelCopy(args, mode='Train')
model_dev = AdversarialModelCopy(args, mode="Infer", include_cls=False, embedding=model.get_embedding())
model_classifier = AdversarialModelCopy(args, mode="Infer", include_ae=False, embedding=model.get_embedding())
elif args.classification:
if args.classification_model == 'RNN':
utils.print_out('Initialise classification model: RNN')
model = ClassificationModel(args, 'Train')
elif args.classification_model == 'CNN':
utils.print_out('Initialise classification model: CNN')
model = CNNClassificationModel(args, mode='Train')
elif args.classification_model == 'BERT':
bert_config = modeling.BertConfig.from_json_file(args.bert_config_file)
model = BertClassificationModel(args, bert_config, mode='Train')
modeling.init_bert(args.bert_init_chk, word_embedding_trainable=True)
else:
model = Seq2SeqModel(args, mode="Train")
model_dev = Seq2SeqModel(args, mode="Infer")
return model, model_dev, model_classifier
def init_model(args):
if args.load_model_cls is not None:
vars = [i[0] for i in tf.train.list_variables(args.load_model_cls)]
# cls_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='my_classifier')
# map_cls = {variable.op.name: variable for variable in cls_var_list if variable.op.name in vars}
if args.defending:
def_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='defending_classifier')
map_def = {variable.op.name.replace('defending_classifier', 'my_classifier'): variable for variable in
def_var_list
if variable.op.name.replace('defending_classifier', 'my_classifier') in vars}
tf.train.init_from_checkpoint(args.load_model_cls, map_def)
if args.load_model_cls is not None:
if args.use_defending_as_target:
vars = [i[0] for i in tf.train.list_variables(args.load_model_cls)]
cls_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='my_classifier')
map_def = {variable.op.name.replace('my_classifier', 'defending_classifier'): variable for variable in cls_var_list
if variable.op.name.replace('my_classifier', 'defending_classifier') in vars}
tf.train.init_from_checkpoint(args.load_model_cls, map_def)
else:
vars = [i[0] for i in tf.train.list_variables(args.load_model_cls)]
cls_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='my_classifier')
map_cls = {variable.op.name: variable for variable in cls_var_list if variable.op.name in vars}
tf.train.init_from_checkpoint(args.load_model_cls, map_cls)
if args.load_model_ae is not None:
vars = [i[0] for i in tf.train.list_variables(args.load_model_ae)]
ae_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='my_seq2seq')
map_ae = {variable.op.name: variable for variable in ae_var_list if variable.op.name in vars}
tf.train.init_from_checkpoint(args.load_model_ae, map_ae)
if (args.classification and args.load_model is not None):
vars = [i[0] for i in tf.train.list_variables(args.load_model)]
cls_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='my_classifier')
map_cls = {variable.op.name: variable for variable in cls_var_list if variable.op.name in vars}
tf.train.init_from_checkpoint(args.load_model, map_cls)
# initialse the copy attention layer with pretrained bi_att model
if args.adv and args.copy and args.classification_model != 'RNN' and args.load_copy_model is not None:
vars = [i[0] for i in tf.train.list_variables(args.load_copy_model)]
var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='my_copy_attention_layer')
map_copy = {variable.op.name.replace('my_copy_attention_layer', 'my_classifier'): variable for variable in
var_list if variable.op.name.replace('my_copy_attention_layer', 'my_classifier') in vars}
tf.train.init_from_checkpoint(args.load_copy_model, map_copy)
def train(args):
vocab, _ = input_data.load_vocab(args.vocab_file)
ae_vocab, _ = (args.ae_vocab_file, None) if args.ae_vocab_file is None else input_data.load_vocab(args.ae_vocab_file)
args.stop_words = setStopWord(vocab) if args.ae_vocab_file is None else setStopWord(ae_vocab)
args.vocab_map = None if args.ae_vocab_file is None else (maping_vocabs_bert(ae_vocab, vocab)
if args.classification_model == 'BERT'
else maping_vocabs(ae_vocab, vocab))
train_iter, train_next, dev_iter, dev_next = load_data_iters(args)
model, model_dev, model_classifier = create_models(args)
utils.print_out('Training model constructed.')
saver = tf.train.Saver(max_to_keep=args.max_to_keep)
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
# initialise models with pretrained weights
init_model(args)
if args.use_model is not None:
args.use_model.set_sess(sess)
sess.run([tf.global_variables_initializer(), tf.tables_initializer()])
sess.run(train_iter.initializer)
if args.load_model_cls is not None and args.classification_model != 'BERT' and (not args.use_defending_as_target):
saver_cls = tf.train.Saver(var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='my_classifier'))
saver_cls.restore(sess, args.load_model_cls)
if args.adv and args.load_model is not None:
saver_all = tf.train.Saver(var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES))
saver_all.restore(sess, args.load_model)
utils.print_out('start training...')
tf.get_default_graph().finalize()
# init best infos
step = 0
last_improvement_step = -1
best_loss = 1e6
best_auc_max = -1
best_auc_min = 1e6
best_T = [100.0]*9
upper_bounds = [95.0, 88.0, 78.0, 64.0, 54.0, 44.0, 34.0, 24.0, 14.0]
lower_bounds = [90.0, 84.0, 74.0, 58.0, 48.0, 38.0, 28.0, 18.0, 8.0]
while True:
try:
batch = sess.run(train_next)
if args.copy:
copy_mask = eval_steps.get_copy_mask(sess, model, batch, np.max(batch[5]), n_top_k=args.top_k_attack)
batch = batch+(copy_mask,)
results = sess.run(model.make_train_outputs(full_loss_step=(step % args.at_steps == 0), defence=args.defending),
feed_dict=model.make_train_inputs(batch)) # Alternative training
except tf.errors.OutOfRangeError:
break
if step % args.print_every_steps == 0:
step_name = 'train'
if args.defending and step % args.at_steps > 0:
step_name = 'defending'
utils.print_out('Step: ' + str(step) + ', '+step_name+' loss=' + str(results[1]) +
(', ae_loss=' + str(results[4]) + ', cls_loss=' + str(results[5]) if len(results) > 5 else '') +
(', senti_loss='+str(results[7])+', aux_loss=' + str(results[6]) +', def_loss=' + str(results[8])
if len(results) > 6 else '') +
(' *' if (results[1] < best_loss) else ''))
if (results[1] < best_loss):
best_loss = results[1]
if step % (10 * args.print_every_steps) == 0:
if args.adv:
cls_acc, cls_acc_pos, cls_acc_neg, changed_bleu = eval_steps.eval_adv(args, sess, dev_iter, model_dev, model_classifier,
dev_next, vocab, step, 10 * args.print_every_steps)
eval_score = cls_acc
eval_bleu = changed_bleu
if args.target_label is not None:
eval_score = cls_acc_neg if args.target_label == 1 else cls_acc_pos
# eval_bleu = neg_bleu if args.target_label == 1 else pos_bleu
# use accuracy as best selection measure in each threshold
thre_score = cls_acc
if args.save_checkpoints:
for i in range(9):
if eval_score >= lower_bounds[i] and eval_score < upper_bounds[i]:
if thre_score < best_T[i]:
best_T[i] = thre_score
saver.save(sess, args.output_dir + '/' + 'nmt-T'+str(i)+'.ckpt')
utils.print_out('Step: ' + str(step) + ' model saved for T'+str(i)+' *')
if (eval_score <= 0.0) or eval_score >= args.lowest_bound_score:
if eval_score < best_auc_min:
best_auc_min = eval_score
last_improvement_step = step
else:
break
elif args.classification:
auc, acc = eval_steps.eval_classification(args, sess, dev_iter, dev_next, model, vocab)
utils.print_out('Step: ' + str(step) + ', test acc=' + str(acc) + ', auc=' + str(auc))
eval_score = acc
if args.output_classes > 2:
eval_score = acc
if eval_score > best_auc_max:
best_auc_max = eval_score
last_improvement_step = step
saver.save(sess, args.output_dir + '/' + 'nmt.ckpt')
else:
acc, word_acc, rouge, bleu = eval_steps.eval_ae(sess, dev_iter, model_dev, dev_next, vocab, step,
50*args.print_every_steps)
utils.print_out('Step: ' + str(step) + ', test acc=' + str(acc) + ', word_acc=' + str(word_acc)
+ ', rouge=' + str(rouge) + ', bleu=' + str(bleu))
if bleu > best_auc_max:
best_auc_max = bleu
last_improvement_step = step
saver.save(sess, args.output_dir + '/' + 'nmt.ckpt')
if args.total_steps is None:
if step - last_improvement_step > args.stop_steps:
break
else:
if step >= args.total_steps:
break
step += 1
utils.print_out('finish training')
if args.do_test:
args.load_model = args.output_dir + '/' + 'nmt.ckpt-'+str(step)
def test(args):
data_task = 'ae'
if args.classification: data_task = 'clss'
if args.adv: data_task = 'adv'
if args.ae_vocab_file is not None: data_task = 'adv_counter_fitting'
vocab, _ = input_data.load_vocab(args.vocab_file)
ae_vocab, _ = (args.ae_vocab_file, None) if args.ae_vocab_file is None else input_data.load_vocab(args.ae_vocab_file)
args.stop_words = setStopWord(vocab) if args.ae_vocab_file is None else setStopWord(ae_vocab)
args.vocab_map = None if args.ae_vocab_file is None else (maping_vocabs_bert(ae_vocab, vocab)
if args.classification_model == 'BERT'
else maping_vocabs(ae_vocab, vocab))
test_iter = input_data.get_dataset_iter(args, args.test_file, args.test_output, data_task,
is_training=False, is_test=True,
is_bert=(args.classification_model == 'BERT'))
test_next = test_iter.get_next()
step = 0
if args.adv:
model_test = AdversarialModelCopy(args, mode="Infer", include_cls=False)
model_classifier = AdversarialModelCopy(args, mode="Infer", include_ae=False, embedding=model_test.get_embedding())
elif args.classification:
if args.classification_model == 'RNN':
utils.print_out('Initialise classification model: RNN')
model_test = ClassificationModel(args, mode='Train')
elif args.classification_model == 'CNN':
utils.print_out('Initialise classification model: CNN')
model_test = CNNClassificationModel(args, mode='Train')
elif args.classification_model == 'BERT':
bert_config = modeling.BertConfig.from_json_file(args.bert_config_file)
model_test = BertClassificationModel(args, bert_config, mode='Test')
else:
model_test = Seq2SeqModel(args, mode="Infer")
utils.print_out('Testing model constructed.')
saver = tf.train.Saver()
with tf.Session() as sess:
if args.classification and args.use_defending_as_target:
vars = [i[0] for i in tf.train.list_variables(args.load_model)]
def_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='my_classifier')
map_def = {variable.op.name.replace('my_classifier', 'defending_classifier'): variable for variable in def_var_list
if variable.op.name.replace('my_classifier', 'defending_classifier') in vars}
tf.train.init_from_checkpoint(args.load_model, map_def)
if args.adv or (args.classification and not args.use_defending_as_target):
vars = [i[0] for i in tf.train.list_variables(args.load_model)]
var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
map_all = {variable.op.name: variable for variable in
var_list if variable.op.name in vars}
tf.train.init_from_checkpoint(args.load_model, map_all)
sess.run([tf.global_variables_initializer(), tf.tables_initializer()])
sess.run(test_iter.initializer)
# if args.adv or (args.classification and not args.defending):
# saver.restore(sess, args.load_model)
if args.use_model is not None:
args.use_model.set_sess(sess)
if args.adv:
eval_steps.eval_adv(args, sess, test_iter, model_test, model_classifier, test_next, vocab, step,
demo_per_step=1, is_train=False)
elif args.classification:
auc, acc = eval_steps.eval_classification(args, sess, test_iter, test_next, model_test, vocab)
utils.print_out('Test: acc=' + str(acc) + ', auc=' + str(auc))
else:
acc, word_acc, rouge, bleu = eval_steps.eval_ae(sess, test_iter, model_test, test_next, vocab, step,
demo_per_step=1)
utils.print_out('Test: acc=' + str(acc) + ', word_acc=' + str(word_acc)
+ ', rouge=' + str(rouge) + ', bleu=' + str(bleu))
def test_adv_pos_neg(args):
data_task = 'adv'
if args.ae_vocab_file is not None: data_task = 'adv_counter_fitting'
vocab, _ = input_data.load_vocab(args.vocab_file)
ae_vocab, _ = (args.ae_vocab_file, None) if args.ae_vocab_file is None else input_data.load_vocab(args.ae_vocab_file)
args.stop_words = setStopWord(vocab) if args.ae_vocab_file is None else setStopWord(ae_vocab)
args.vocab_map = None if args.ae_vocab_file is None else (maping_vocabs_bert(ae_vocab, vocab)
if args.classification_model == 'BERT'
else maping_vocabs(ae_vocab, vocab))
test_iter = input_data.get_dataset_iter(args, args.test_file, args.test_output, data_task,
is_training=False, is_test=True,
is_bert=(args.classification_model == 'BERT'))
test_next = test_iter.get_next()
step = 0
model_test = AdversarialModelCopy(args, mode="Infer", include_cls=False)
model_classifier = AdversarialModelCopy(args, mode="Infer", include_ae=False, embedding=model_test.get_embedding())
utils.print_out('Testing model constructed.')
saver = tf.train.Saver()
sess_pos = tf.Session()
sess_pos.run([tf.global_variables_initializer(), tf.tables_initializer()])
sess_pos.run(test_iter.initializer)
saver.restore(sess_pos, args.load_model_pos)
_, _, dev_logits, dev_labels = eval_steps.run_classification(args, model_classifier, vocab, sess_pos, test_iter, test_next)
target_predicts = np.argmax(dev_logits, axis=-1)
pos_mask = (dev_labels[:, 1] == 1)
neg_mask = (dev_labels[:, 1] == 0)
correct_mask = (target_predicts == dev_labels[:, 1])
pos_predict_mask = pos_mask & correct_mask
neg_predict_mask = neg_mask & correct_mask
keep_orig_mask = 1 - correct_mask
sess_neg = tf.Session()
sess_neg.run([tf.global_variables_initializer(), tf.tables_initializer()])
saver.restore(sess_neg, args.load_model_neg)
if args.use_model is not None:
args.use_model.set_sess(sess_pos)
start = default_timer()
decoder_reference_list, decoder_prediction_list_pos, cls_labels, copy_masks_pos = \
eval_steps.run_adv(args, model_test, sess_pos, test_iter, test_next)
decoder_reference_list, decoder_prediction_list_neg, cls_labels, copy_masks_neg = \
eval_steps.run_adv(args, model_test, sess_neg, test_iter, test_next)
decoder_prediction_list = []
for i in range((len(decoder_reference_list) // args.batch_size) + (1 if (len(decoder_reference_list) % args.batch_size > 0) else 0)):
start, end = i*args.batch_size, (i+1)*args.batch_size
decoder_prediction_batch = np.array(decoder_reference_list[start:end]) * np.expand_dims(keep_orig_mask[start:end], axis=1) + \
np.array(decoder_prediction_list_pos[start:end]) * np.expand_dims(pos_predict_mask[start:end], axis=1) \
+ np.array(decoder_prediction_list_neg[start:end]) * np.expand_dims(neg_predict_mask[start:end], axis=1)
decoder_prediction_list.extend(decoder_prediction_batch)
end = default_timer()
utils.print_out('Adversarial attack elapsed:' + '{0:.4f}'.format(end - start) + 's')
cls_logits_def, cls_origs_def, cls_logits, cls_orig_logits, sent_embs, adv_sent_embs, \
orig_alphas, trans_alphas, trans_alphas_def = \
eval_steps.run_classifications(args, sess_pos, test_iter, decoder_prediction_list, model_classifier, test_next)
evaluate_attack(args, step, decoder_reference_list, decoder_prediction_list,
cls_logits, cls_orig_logits, cls_labels, vocab,
sent_embs, adv_sent_embs,
is_test=True, orig_alphas=orig_alphas,
trans_alphas=trans_alphas,
cls_logits_def=cls_logits_def, cls_origs_def=cls_origs_def)
def main(args):
if args.do_train:
train(args)
if args.do_test:
test(args)
if args.do_cond_test:
test_adv_pos_neg(args)
if __name__ == '__main__':
args = config.add_arguments()
main(args)