-
Notifications
You must be signed in to change notification settings - Fork 0
/
decision_tree_regression.R
36 lines (30 loc) · 1.14 KB
/
decision_tree_regression.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Decision Tree Regression
# Importing the dataset
dataset = read.csv('Position_Salaries.csv')
dataset = dataset[2:3]
# Splitting the dataset into the Training set and Test set
# No need to split the dataset since we have few data
# Fitting Decision Tree Regression to the dataset
install.packages('rpart')
library(rpart)
regressor = rpart(formula = Salary ~ .,
data = dataset,
control = rpart.control(minsplit = 1))
# Predicting a new result with Decision Tree Regression
y_pred = predict(regressor, data.frame(Level = 7.5))
# Visualising the Decision Tree Regression results (higher resolution)
install.packages('ggplot2')
# this is not a continous model so you need more resolution
library(ggplot2)
x_grid = seq(min(dataset$Level), max(dataset$Level), 0.01)
ggplot() +
geom_point(aes(x = dataset$Level, y = dataset$Salary),
colour = 'red') +
geom_line(aes(x = x_grid, y = predict(regressor, newdata = data.frame(Level = x_grid))),
colour = 'blue') +
ggtitle('Truth or Bluff (Decision Tree Regression)') +
xlab('Level') +
ylab('Salary')
# Plotting the tree
plot(regressor)
text(regressor)