-
Notifications
You must be signed in to change notification settings - Fork 1
/
lm_inference.py
552 lines (483 loc) · 17 KB
/
lm_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
#!/usr/bin/env python3
import argparse
import logging
import sys
from pathlib import Path
from typing import Any, List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
import torch.quantization
from typeguard import typechecked
from espnet2.fileio.datadir_writer import DatadirWriter
from espnet2.tasks.lm import LMTask
from espnet2.text.build_tokenizer import build_tokenizer
from espnet2.text.token_id_converter import TokenIDConverter
from espnet2.text.whisper_token_id_converter import OpenAIWhisperTokenIDConverter
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import str2bool, str2triple_str, str_or_none
from espnet.nets.batch_beam_search import BatchBeamSearch
from espnet.nets.beam_search import BeamSearch, Hypothesis
from espnet.nets.scorer_interface import BatchScorerInterface
from espnet.nets.scorers.length_bonus import LengthBonus
from espnet.utils.cli_utils import get_commandline_args
# Alias for typing
ListOfHypothesis = List[
Tuple[
Optional[str],
List[str],
List[int],
Hypothesis,
]
]
class GenerateText:
"""GenerateText class
Examples:
>>> generatetext = GenerateText(
lm_train_config="lm_config.yaml",
lm_file="lm.pth",
token_type="bpe",
bpemodel="bpe.model",
)
>>> prompt = "I have travelled to many "
>>> generatetext(prompt)
[(text, token, token_int, hypothesis object), ...]
"""
@typechecked
def __init__(
self,
lm_train_config: Union[Path, str, None] = None,
lm_file: Union[Path, str, None] = None,
ngram_scorer: str = "full",
ngram_file: Union[Path, str, None] = None,
token_type: Optional[str] = None,
bpemodel: Optional[str] = None,
device: str = "cpu",
maxlen: int = 100,
minlen: int = 0,
batch_size: int = 1,
dtype: str = "float32",
beam_size: int = 20,
ngram_weight: float = 0.0,
penalty: float = 0.0,
nbest: int = 1,
quantize_lm: bool = False,
quantize_modules: List[str] = ["Linear"],
quantize_dtype: str = "qint8",
):
# 1. Build language model
lm, lm_train_args = LMTask.build_model_from_file(
lm_train_config, lm_file, device
)
lm.to(dtype=getattr(torch, dtype)).eval()
if quantize_lm:
logging.info("Use quantized LM for decoding.")
lm = torch.quantization.quantize_dynamic(
lm,
qconfig_spec=set([getattr(torch.nn, q) for q in quantize_modules]),
dtype=getattr(torch, quantize_dtype),
)
token_list = lm_train_args.token_list
# 2. Build ngram model
if ngram_file is not None:
if ngram_scorer == "full":
from espnet.nets.scorers.ngram import NgramFullScorer
ngram = NgramFullScorer(ngram_file, token_list)
else:
from espnet.nets.scorers.ngram import NgramPartScorer
ngram = NgramPartScorer(ngram_file, token_list)
else:
ngram = None
# 3. Build BeamSearch object
scorers = dict(
lm=lm.lm,
ngram=ngram,
length_bonus=LengthBonus(len(token_list)),
)
weights = dict(
lm=1.0,
ngram=ngram_weight,
length_bonus=penalty,
)
beam_search = BeamSearch(
scorers=scorers,
weights=weights,
beam_size=beam_size,
vocab_size=len(token_list),
sos=lm.sos_ids[0], # not really used
eos=lm.eos_id,
token_list=token_list,
pre_beam_score_key="full",
)
# TODO(karita): make all scorers batchfied
if batch_size == 1:
non_batch = [
k
for k, v in beam_search.full_scorers.items()
if not isinstance(v, BatchScorerInterface)
]
if len(non_batch) == 0:
beam_search.__class__ = BatchBeamSearch
logging.info("BatchBeamSearch implementation is selected.")
else:
logging.warning(
f"As non-batch scorers {non_batch} are found, "
f"fall back to non-batch implementation."
)
beam_search.to(device=device, dtype=getattr(torch, dtype)).eval()
for scorer in scorers.values():
if isinstance(scorer, torch.nn.Module):
scorer.to(device=device, dtype=getattr(torch, dtype)).eval()
logging.info(f"Beam_search: {beam_search}")
logging.info(f"Decoding device={device}, dtype={dtype}")
# 4. [Optional] Build Text converter: e.g. bpe-sym -> Text
if token_type is None:
token_type = lm_train_args.token_type
if bpemodel is None:
bpemodel = lm_train_args.bpemodel
if token_type is None:
tokenizer = None
elif (
token_type == "bpe"
or token_type == "hugging_face"
or "whisper" in token_type
):
if bpemodel is not None:
tokenizer = build_tokenizer(token_type=token_type, bpemodel=bpemodel)
else:
tokenizer = None
else:
tokenizer = build_tokenizer(token_type=token_type)
if bpemodel not in ["whisper_en", "whisper_multilingual"]:
converter = TokenIDConverter(token_list=token_list)
else:
converter = OpenAIWhisperTokenIDConverter(model_type=bpemodel)
beam_search.set_hyp_primer(
list(converter.tokenizer.sot_sequence_including_notimestamps)
)
logging.info(f"Text tokenizer: {tokenizer}")
self.lm = lm
self.lm_train_args = lm_train_args
self.converter = converter
self.tokenizer = tokenizer
self.beam_search = beam_search
self.maxlen = maxlen
self.minlen = minlen
self.device = device
self.dtype = dtype
self.nbest = nbest
@torch.no_grad()
@typechecked
def __call__(self, text: Union[str, torch.Tensor, np.ndarray]) -> ListOfHypothesis:
"""Inference
Args:
text: Input text used as condition for generation
If text is str, it will be converted to token ids
and a <sos> token will be added at the beginning.
If text is Tensor or ndarray, it will be used directly.
Returns:
List of (text, token, token_int, hyp)
"""
if isinstance(text, str):
tokens = self.tokenizer.text2tokens(text)
token_ids = self.converter.tokens2ids(tokens)
else:
token_ids = text.tolist()
hyp_primer = token_ids[1:] # remove initial space in BPE
self.beam_search.set_hyp_primer(hyp_primer)
logging.info(f"hyp primer: {hyp_primer}")
nbest_hyps = self.beam_search(
x=torch.zeros(1, 1, device=self.device), # only used to obtain device info
maxlenratio=-self.maxlen, # negative int means a constant max length
minlenratio=-self.minlen, # same for min length
)
nbest_hyps = nbest_hyps[: self.nbest]
results = []
for hyp in nbest_hyps:
assert isinstance(hyp, Hypothesis), type(hyp)
# remove sos/eos and convert to list
token_int = hyp.yseq[:-1]
if not isinstance(token_int, list):
token_int = token_int.tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(filter(lambda x: x != 0, token_int))
# Change integer-ids to tokens
token = self.converter.ids2tokens(token_int)
_text = None
if self.tokenizer is not None:
_text = self.tokenizer.tokens2text(token)
results.append((_text, token, token_int, hyp))
return results
@staticmethod
def from_pretrained(
model_tag: Optional[str] = None,
**kwargs: Optional[Any],
):
"""Build GenerateText instance from the pretrained model.
Args:
model_tag (Optional[str]): Model tag of the pretrained models.
Currently, the tags of espnet_model_zoo are supported.
Returns:
GenerateText: GenerateText instance.
"""
if model_tag is not None:
try:
from espnet_model_zoo.downloader import ModelDownloader
except ImportError:
logging.error(
"`espnet_model_zoo` is not installed. "
"Please install via `pip install -U espnet_model_zoo`."
)
raise
d = ModelDownloader()
kwargs.update(**d.download_and_unpack(model_tag))
return GenerateText(**kwargs)
@typechecked
def inference(
output_dir: str,
maxlen: int,
minlen: int,
batch_size: int,
dtype: str,
beam_size: int,
ngpu: int,
seed: int,
ngram_weight: float,
penalty: float,
nbest: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
lm_train_config: Optional[str],
lm_file: Optional[str],
word_lm_train_config: Optional[str],
word_lm_file: Optional[str],
ngram_file: Optional[str],
model_tag: Optional[str],
token_type: Optional[str],
bpemodel: Optional[str],
allow_variable_data_keys: bool,
quantize_lm: bool,
quantize_modules: List[str],
quantize_dtype: str,
):
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if word_lm_train_config is not None:
raise NotImplementedError("Word LM is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random seed
set_all_random_seed(seed)
# 2. Build generatetext
generatetext_kwargs = dict(
lm_train_config=lm_train_config,
lm_file=lm_file,
ngram_file=ngram_file,
token_type=token_type,
bpemodel=bpemodel,
device=device,
maxlen=maxlen,
minlen=minlen,
dtype=dtype,
beam_size=beam_size,
ngram_weight=ngram_weight,
penalty=penalty,
nbest=nbest,
quantize_lm=quantize_lm,
quantize_modules=quantize_modules,
quantize_dtype=quantize_dtype,
)
generatetext = GenerateText.from_pretrained(
model_tag=model_tag,
**generatetext_kwargs,
)
# 3. Build data iterator
loader = LMTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=LMTask.build_preprocess_fn(generatetext.lm_train_args, False),
collate_fn=LMTask.build_collate_fn(generatetext.lm_train_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
# 4. Start for-loop
# FIXME(kamo): The output format should be discussed about
with DatadirWriter(output_dir) as writer:
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
# N-best list of (text, token, token_int, hyp_object)
results = generatetext(**batch)
# Only supporting batch_size==1
key = keys[0]
for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
# Create a directory: outdir/{n}best_recog
ibest_writer = writer[f"{n}best_recog"]
# Write the result to each file
ibest_writer["token"][key] = " ".join(token)
ibest_writer["token_int"][key] = " ".join(map(str, token_int))
ibest_writer["score"][key] = str(hyp.score)
if text is not None:
ibest_writer["text"][key] = text
def get_parser():
parser = config_argparse.ArgumentParser(
description="LM Decoding (conditional generation)",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--lm_train_config",
type=str,
help="LM training configuration",
)
group.add_argument(
"--lm_file",
type=str,
help="LM parameter file",
)
group.add_argument(
"--word_lm_train_config",
type=str,
help="Word LM training configuration",
)
group.add_argument(
"--word_lm_file",
type=str,
help="Word LM parameter file",
)
group.add_argument(
"--ngram_file",
type=str,
help="N-gram parameter file",
)
group.add_argument(
"--model_tag",
type=str,
help="Pretrained model tag. If specify this option, *_train_config and "
"*_file will be overwritten",
)
group = parser.add_argument_group("Quantization related")
group.add_argument(
"--quantize_lm",
type=str2bool,
default=False,
help="Apply dynamic quantization to LM.",
)
group.add_argument(
"--quantize_modules",
type=str,
nargs="*",
default=["Linear"],
help="""List of modules to be dynamically quantized.
E.g.: --quantize_modules=[Linear,LSTM,GRU].
Each specified module should be an attribute of 'torch.nn', e.g.:
torch.nn.Linear, torch.nn.LSTM, torch.nn.GRU, ...""",
)
group.add_argument(
"--quantize_dtype",
type=str,
default="qint8",
choices=["float16", "qint8"],
help="Dtype for dynamic quantization.",
)
group = parser.add_argument_group("Beam-search related")
group.add_argument(
"--batch_size",
type=int,
default=1,
help="Batch size for inference",
)
group.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses")
group.add_argument("--beam_size", type=int, default=20, help="Beam size")
group.add_argument("--penalty", type=float, default=0.0, help="Insertion penalty")
group.add_argument(
"--maxlen",
type=int,
default=100,
help="Maximum output length",
)
group.add_argument(
"--minlen",
type=int,
default=1,
help="Minimum output length",
)
group.add_argument("--ngram_weight", type=float, default=0.0, help="ngram weight")
group = parser.add_argument_group("Text converter related")
group.add_argument(
"--token_type",
type=str_or_none,
default=None,
choices=["char", "word", "bpe", None],
help="Token type for LM. If not given, refers from the train args",
)
group.add_argument(
"--bpemodel",
type=str_or_none,
default=None,
help="Model path for sentencepiece. If not given, refers from the train args",
)
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()